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Abstract. Subensemble Acceptance Method (SAM) [1, 2] is an essential link
between measured event-by-event fluctuations and their grand canonical the-
oretical predictions such as lattice QCD. The method allows quantifying the
global conservation law effects in fluctuations. In its basic formulation, SAM
requires a sufficiently large system such as created in central nucleus-nucleus
collisions and sufficient space-momentum correlations. Directly in the spin-
odal region of the First Order Phase Transition (FOPT) different approxima-
tions should be used that account for finite size effects. Thus, we present the
generalization of SAM applicable in both the pure phases, metastable and un-
stable regions of the phase diagram [3]. Obtained analytic formulas indicate
the enhancement of fluctuations due to crossing the spinodal region of FOPT
and are tested using molecular dynamics simulations. A rather good agreement
is observed. Using transport model calculations with interaction potential we
show that the spinodal enhancement of fluctuations survives till the later stages
of collision via the memory effect [4]. However, at low collision energies the
space-momentum correlation is not strong enough for this signal to be trans-
ferred to second and third order cumulants measured in momentum subspace.
This result agrees well with recent HADES data on proton number fluctuations
at
√

sNN = 2.4 GeV which are found to be consistent with the binomial mo-
mentum space acceptance [5].

1 Introduction

In heavy ion collisions (HIC) and their microscopic (e.g., transport model) simulations fluc-
tuations are measured within a subsystem which is comparable in size to the size of the total
system. This situation is described by the new statistical ensemble, called subensemble [1, 2].
On the other hand, in theoretical calculations (for instance Lattice QCD and statistical mod-
els) fluctuations are calculated within grand canonical ensemble (GCE) which is a limiting
case of the subensemble when the total system is much larger than the observed subsystem,
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and thus the effects of global charge conservation are negligible. While ensembles are equiv-
alent w.r.t. mean quantities they are not equivalent w.r.t. fluctuations [6], thus they cannot be
directly compared to each other. The Subensemble Acceptance Method (SAM) [1] provides
the model-independent analytic connection between fluctuations in subensemble and fluctu-
ations calculated within GCE. The method is applicable for sufficiently large systems such
as those created in central HIC. As an example, we present the SAM formulas for intensive
fluctuation measures of conserved charge distribution in the subsystem up to 4-th order in the
case of a single conserved charge:

ω = βωGC , Sσ = (1 − 2α) SσGC , κσ2 = (1 − 3αβ) κσ2
GC − 3αβ

(
Sσ2

GC

)2
. (1)

Here ω, Sσ, and κσ2 are the scaled variance, skewness, and kurtosis of a conserved charge
distribution, ωGC , SσGC , and κσ2

GC are the corresponding GCE values, α is the acceptance
parameter equal to the fraction of the total volume occupied by the subvolume, β ≡ 1 − α.
The GCE and canonical ensemble limits correspond to α → 0 and α → 1, respectively.
For the case of a noninteracting gas, the SAM formulas are reduced to binomial acceptance
formulas [7, 8].

Various generalizations and extensions of SAM include extensions to arbitrary number
of conserved charges [10], factorial cumulants [11], nonuniform systems [12], the next-to-
leading order corrections in the presence of finite size effects have been obtained [13]. The
SAM formulas have been checked numerically for the specific examples of a system contain-
ing FOPT and the critical point (CP) — the well-known Van der Waals mean-field model [2]
and molecular dynamics simulations of the classical system of particles with Lenard-Jones
(LJ) interaction potential in a box [9]. In these studies only pure phase and supercritical re-
gions of the phase diagram were considered. Here we focus on the application of the method
at low collision energies and, in particular, in the mixed phase of FOPT.

2 Fluctuations in the mixed phase of first order phase transition

For a description of the mixed phase we used [3] molecular dynamics simulations with LJ
potential, similar to Ref. [9]. Figure 1 shows the scaled variance ω̃ = ω/(1 − α) of particle
number distribution in the central cell with α = 0.2 corrected for particle number conservation
using SAM.

We find that in the region of the phase diagram which corresponds to the first metastable
state, scaled variance is well described by the model of noninteracting clusters in GCE (with
the distribution of clusters taken from the simulation itself). Thus, the SAM is applicable.

In the spinodal region, the particle number distribution exhibits double peaks and corre-
sponding large fluctuations. These fluctuations arise primarily from geometric factors. To
investigate this phenomenon, a geometric model was developed, representing a cubic liquid
mass moving within a cubic volume. Termed the Minecraft model, this approach simpli-
fies complex forms into cubic geometries. Subsequent analysis of various shapes indicates
that, in terms of scaled variance, this simplification provides a reasonable approximation.
Assuming a uniform static system in the mixed phase, the formalism is reduced to the model-
independent formulas for cumulants obtained earlier [14]. However, our analysis indicates
that the uniform approximation cannot be used for realistic systems such as those created in
HIC.

One can see that two simple analytical approximations, cluster model and Minecraft
model, can describe the numeric result rather well.



Figure 1. Scaled variance of particle
number distribution inside subvolume for
α = 0.2 in the mixed phase (T/Tc = 0.76).
The solid line corresponds to the molecular
dynamics result. The orange line shows the
cluster model results in the nucleation
region 0.16 ≤ n/nc ≤ 0.35. The dashed line
shows the results of the Minecraft model in
the spinodal region 0.35 ≤ n/nc ≤ 1.75,
and the dash-dotted line is its extension to
the nucleation region.

3 Fluctuations in heavy ion collisions

Contrary to the scenario discussed in Sec. 3 in HIC the created system is expanding and fluc-
tuations are measured not in a coordinate but in a momentum subspace. Thus, for a more
realistic description we used [4] the UrQMD transport model with interaction potential [15]1

and studied proton number fluctuations in the central cell of volume 27 fm3. We artificially in-
troduced the FOPT by modifying the potential to create a minimum in energy density (see [4]
for details). The two potentials (with and without PT) are indistinguishable at densities less
than 2.5 nuclear saturation density and system trajectories are similar [4]. In the case of the
PT the phase separation is observed with two maxima of particle number distribution while
crossing the spinodal region. The corresponding strong enhancement in fluctuations survives
until the later stages of collision, where two potentials are indistinguishable.

However, in contrast to a coordinate subspace, in a momentum subspace we do not ob-
serve the strong signal of the PT in scaled variance, ω[p], and skewness, Sσ[p], of proton
number distribution. This is because at low collision energies considered here, the collective
flow is insufficient to produce strong correlations between the coordinate and momenta of
particles and thus, the signal of spatial interactions between particles in fluctuations is not
observed when measured in momentum subspace. Only in the higher moment, namely kur-
tosis, κσ2[p], we begin to see the substantial difference in fluctuations between the two cases
(with and without PT).

Considering this result, the question arises about the interpretation of the recent HADES
data [19] which exhibit large proton number fluctuations at

√
sNN = 2.4 GeV. We show [5]

that the ∆y dependencies of ω[p], Sσ[p], and κσ2[p] obtained by HADES are well described
by binomial acceptance formulas which assume that particle momenta are uncorrelated, see
Fig. 2. As an input, we use the experimental values of ω[p], Sσ[p], and κσ2[p] in the largest
rapidity window of ∆Y = 1 together with their uncertainties to calculate the corresponding
values at ∆y < 1 from binomial acceptance formulas.2 This indicates that large fluctuations
at ∆Y = 1 are not local in rapidity space and their origin is to be determined. For example, the
event-by-event nucleon participant fluctuations can deviate from the estimate or the presence
of nuclear fragments can cause fluctuations in the number of bare protons, which can be
quantitatively checked in future studies.

1Namely, the Chiral SU(3)-flavor parity-doublet Polyakovloop quark-hadron mean-field model (CMF) poten-
tial [16, 17] in its most recent version [18]

2We obtain the dependence of α on ∆y by fitting the HADES rapidity distribution by Gaussian function.
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Figure 2. Scaled variance (a), skewness (b), and kurtosis (c) of proton number distribution as functions
of the rapidity interval ∆y. The HADES data are shown by the symbols. The line corresponds to the
binomial acceptance formulas. The blue bands represent uncertainties due to HADES data errors in the
∆Y = 1 rapidity interval.

4 Summary

Subensemble acceptance method (SAM) formulas allow to compare fluctuations measured in
different subensembles with each other and with grand canonical calculations. The method
is applicable in the stable and metastable regions of a phase diagram. Directly in the vicinity
of the critical point or in the spinodal region the modifications of the SAM which account
for finite size effects should be used. The expanding system created in heavy ion collisions
exhibits large fluctuations when crossing the spinodal region. This signal survives until the
later stages of a collision via the memory effect. However, at low collision energies this signal
is not transferred to second and third order cumulants measured in momentum subspace.
This conclusion is in agreement with recent HADES data on proton number fluctuations at
√

sNN = 2.4 GeV which are consistent with the binomial limit of SAM.
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