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Abstract. The chiral magnetic effect (CME) in high-energy heavy-ion colli-
sions arises from the interplay between the chirality imbalance and the intense
magnetic field and will cause a charge separation along the magnetic field di-
rection. While the CME search is still ongoing in experiments, the non-CME
contributions need to be excluded from the CME observables. In this work, we
examine the influence of globally spin-aligned ρ mesons on the γ112 correla-
tor, the RΨ2 (∆S ) correlator, and the signed balance functions, via a toy model
and a multiphase transport model (AMPT). We find that the CME observables
are sensitive to the 00-component of the spin density matrix, ρ00: they receive
positive (negative) contributions when ρ00 is larger (smaller) than 1/3.

1 Introduction

The generation of quark gluon plasma (QGP) in heavy-ion collisions involves many novel
phenomena in strong interactions, such as the spin alignment of vector mesons and the chiral
magnetic effect (CME). The CME observables in experiments include γ112 [1], R(∆S ) [2],
and the signed balance functions [3]. In this work, we show that the polarized vector mesons
have non-trivial contributions to these observables, with positive or negative contributions
depending on whether ρ00 is larger or smaller than 1/3. Since pions are the most abundant
particles, with approximately 80% of them originating from resonance decay at midrapidity
at RHIC [4, 5], the spin alignment of ρmesons, which constitute 60% of the total resonances,
is important to the CME measurment.

2 Impact of ρ00 on the CME observables

2.1 The γ112 correlator

The γ112 correlator [1] is defined as γ112 ≡
〈
cos(ϕα + ϕβ − 2ΨRP)

〉
, where ϕα and ϕβ are the

azimuthal angles of particles α and β, respectively, and ΨRP represents the reaction plane.
The bracket means averaging over all particle pairs and over all events. The difference in
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γ112 between opposite-sign (OS) and same-sign (SS) pairs is supposed to contain the CME
signal, i.e., ∆γ112 ≡ γ

OS
112 − γ

SS
112 ≈ 2a2

1. However, ∆γ112 is contaminated with backgrounds,
e.g., decay daughters of flowing resonances [1]. In addition to elliptic flow, the global spin
alignment could also contribute a background to ∆γ112. In the decay of ρ → π+ + π−, the
emission angle of π± can be expressed as dN/dϕ∗ ∝ 1 − (3ρ00/2 − 1/2) cos 2ϕ∗, where ϕ∗

is the azimuthal angle of the decay product in the ρ rest frame. In the absence of the CME,
∆γ112 can be expressed as [6]

∆γ112 =
Nρ

N+N−

[
1
8

( fc + fs)(3ρ00 − 1) −
1
2

( fc − fs)
]
, (1)

where fc and fs account for the Lorentz boost of the ρ meson. At a given vρ2, the ∆γ112
measurement should have a linear dependence on the ρ00 value of ρ mesons.
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Figure 1. Toy model simulations (left) and AMPT (right) simulations of the π-π ∆γ112 correlation as a
function of ρ-meson ρ00 with various inputs of vρ2. Linear fits are applied to guide eyes.

We test the aforementioned idea with a toy model and the AMPT model, both without
the CME but with the spin alignment effect. The details of the models can be found in
Ref. [6]. The left panel of Fig. 1 shows the toy model simulations of π-π ∆γ112 with different
v
ρ
2 inputs. At a given vρ2, ∆γ112 indeed increases linearly with ρ00. ∆γ112 also increases with vρ2

at a fixed ρ00, exhibiting the convolution of vρ2 and ρ00 in the background contribution from ρ
mesons to ∆γ112. Note that the global spin alignment effect could give a negative contribution
to the ∆γ112 measurement if ρ00 is smaller than 1/3. Results of AMPT calculations are
similar to the toy model simulations. At ρ00 = 1/3, the positive ∆γ112, which is a non-CME
background, may come from the positive vρ2 and transverse momentum conservation. The
slope, d∆γ112/dρ00, could be different between the toy model and the AMPT model, because
of the different ρ-meson spectra.

2.2 The RΨ2 (∆S ) correlator

Another CME observable, RΨ2 (∆S ) [2], is defined as a double ratio of four distributions,
RΨ2 (∆S ) ≡ [N(∆S real)/N(∆S shuffled)] /

[
N(∆S ⊥real))/(N(∆S ⊥shuffled)

]
, where ∆S = ⟨sin∆ϕ+⟩ −

⟨sin∆ϕ−⟩, ∆S ⊥ = ⟨cos∆ϕ+⟩ − ⟨cos∆ϕ−⟩, and ∆ϕ = ϕ − Ψ2. Ψ2 denotes the 2nd-order event
plane. The subscripts “real” and “shuffled” represent real events and charge shuffled events,
respectively. Ideally, the CME should cause a concave shape in RΨ2 (∆S ), which can be
quantified by the width of a Gaussian fit, σR. Analytically, σR is related to the widths of the
four initial distributions,

S concavity

σ2
R

=
1

σ2(∆S real)
−

1
σ2(∆S shuffled)

−
1

σ2(∆S ⊥real)
+

1
σ2(∆S ⊥shuffled)

. (2)



S concavity is 1 (-1), when the RΨ2 (∆S ) distribution is convex (concave). Similar to the case of
∆γ112, we have [6]

Sign(S concavity) = Sign
[
−

Nρ
2N+N−

(3ρ00 − 1)
]
. (3)

In this case, if ρ00 is smaller (larger) than 1/3, S concavity becomes 1 (-1), and the RΨ2 (∆S )
distribution becomes convex (concave).

4− 2− 0 2 4
 S''∆

0.8

1

1.2

1.4

 S
'')

∆
 (

2
Ψ 

R

 = 1/3 + 0.2
00

ρ
 = 1/3 + 0.1

00
ρ

 = 1/3
00

ρ

 = 1/3 - 0.1
00

ρ
 = 1/3 - 0.2

00
ρ

0.2 0.4 0.6
00

ρ

0.1−

0.05−

0

0.05

2 Rσ
co

n
ca

vi
ty

S

 = 0ρ
2v

 = 0.05ρ
2v
 = 0.10ρ

2v

 = 0.15ρ
2v

Figure 2. (Left) toy model simulations of the RΨ2 (∆S ′′) with zero vρ2 and different ρ00 inputs. (Right)
S concavity/σ

2
R extracted using Gaussian fits to RΨ2 (∆S ′′) for different vρ2 and ρ00 inputs.

We take the same procedure as in Ref. [2] to correct the RΨ2 (∆S ) correlator for the par-
ticle number fluctuations, i.e., ∆S ′′ = ∆S/σsh, where σsh is the width of N(∆S shuffuled).
Figure 2(left) shows RΨ2 (∆S ′′) as a function of ρ00 from the toy model with zero vρ2. The
RΨ2 (∆S ′′) shapes are concave (convex) for ρ00 > 1/3 (ρ00 < 1/3), indicating a finite back-
ground from spin-aligned vector mesons. Figure 2(right) also shows S concavity/σ

2
R extracted

using Gaussian fits for different vρ2 and ρ00 inputs. The red circles represent the case with zero
v
ρ
2, and corroborate Eq. (3). At a given vρ2, S concavity/σ

2
R decreases with increased ρ00. On the

other hand, at a given ρ00, S concavity/σ
2
R also decreases with increased vρ2.

2.3 The signed balance functions

The signed balance functions probe the CME by examining the momentum ordering be-
tween positively and negatively charged particles [3, 7], based on ∆By = (N+ + N−)[Ny(+−) −

Ny(−+)]/(N+N−), where Ny(αβ) is the number of pairs in which particle α is ahead of parti-
cle β along the y axis (pαy > pβy) in an event. Similarly, ∆Bx can be constructed along the
x axis. The CME will enhance the width of the ∆By distribution via the charge separation
along the y axis, and therefore the final observable is the ratio r ≡ σ(∆By)/σ(∆Bx). r can
be calculated in both the laboratory frame (rlab) and the ρ rest frame (rrest). The CME will
lead to rrest > rlab > 1. In this work, we focus on rlab. It is more straightforward to define an
observable based on the difference instead of the ratio [6],

∆σ2(∆B) ≡ σ2(∆By) − σ2(∆Bx) ≈ c1 + c2(3ρ00 − 1), (4)

where c1 and c2 are constants depending on the spectra of ρ mesons, vρ2, and vπ2.
Figure 3 shows the toy model and AMPT simulations of ∆σ2(∆B) as a function of ρ00

with various vρ2 inputs. At a given vρ2, ∆σ2(∆B) exhibits a linear dependence on ρ00. Note that
the slope, d∆σ2(∆B)/dρ00, could be different between the toy model and the AMPT model,
because of the different ρ-meson spectra.
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3 Conclusion

In this work, we have demonstrated how the globally spin-aligned ρ mesons affect the CME
observables involving pions, the ∆γ112 correlator, the RΨ2 (∆S ) correlator, and the signed
balance functions. Qualitative derivations indicate that the ρ00 dependence originates from
the anisotropic emission of the decay products, which imitates elliptic flow in the ρ rest frame.
We find that all these observables are influenced not only by elliptic flow vρ2, but also by the
spin alignment ρ00 of ρ mesons.
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Figure 4. AVFD simulations of the
ρ00 for the excess of π+π− pairs
over the same-sign pairs in 30–40%
Au+Au at 200 GeV. The n5/s
denotes the CME strength. Panel
(a) shows ρ00 as a function of n5/s,
and panel (b) shows the CME
induced ρ00 as a function of the true
signal, 2a2

1.

Nevertheless, the global spin alignment may partially stem from the CME-induced charge
separation of π+ and π−, some of whom later form ρmesons via coalescence. In that case, the
CME tends to give a positive contribution to the ρ00 of ρ mesons. Figure 4 shows the ρ00 for
the excess of π+π− pairs over the same-sign pairs in the anomalous-viscous fluid dynamics
(AVFD) model [8], which qualitatively illustrates the influence of the CME to the ρ00. A
more rigorous study to this effect is needed in the future.
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