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Abstract. We explore the far-oft-equilibrium aspects of the (1+1)-dimensional
early-stage evolution of a weakly-coupled quark-gluon plasma using kinetic
theory and hydrodynamics. For a large set of far-off-equilibrium initial con-
ditions the system exhibits a peculiar phenomenon where its total equilibrium
entropy decreases with time. Using a non-equilibrium definition of entropy
based on Boltzmann’s H-function, we demonstrate how this apparently anoma-
lous behavior is consistent with the second law of thermodynamics. We also
use the H-function to formulate ‘maximum-entropy’ hydrodynamics, a far-off-
equilibrium macroscopic theory that can describe both free-streaming and near-
equilibrium regimes of quark-gluon plasma in a single framework.

1 Introduction

Precise determination of transport coefficients like the specific shear and bulk viscosities, 1/ s
and {/s, of the quark-gluon plasma formed in high-energy nucleus-nucleus collisions hinges
upon accurately modeling the stress tensor (7+”) evolution during the system’s early stage.
This stage is characterised by far-off-equilibrium dynamics which may be modeled by weakly
coupled kinetic theory until O(1) fm/c [1, 2]. This approach is, however, numerically daunting
as solving kinetic theory amounts to tackling a 7-dimensional problem in phase-space. More-
over, if one is only interested in the evolution of macroscopic quantities like T#”, solving for
the full kinetic distribution is likely unnecessary. It is thus desirable to have a macroscopic
framework which can model the far-off-equilibrium evolution of 7*” both physically accu-
rately and numerically efficiently. In this work, we first explore the sensitivity of the T+
evolution in kinetic theory to initial state momentum anisotropies of the plasma. By con-
sidering extreme off-equilibrium initial conditions for a quark-gluon gas undergoing Bjorken
expansion [3], we point out non-intuitive out-of-equilibrium effects arising in kinetic theory.
In the second part we formulate a new macroscopic theory (ME-hydrodynamics) which can
be used to describe in a single framework both the far-off-equilibrium pre-hydrodynamic and
the near-equilibrium dissipative hydrodynamic regimes of the plasma.

2 Kinetic theory of a massive quark-gluon gas

For a weakly interacting gas of quarks, anti-quarks, and gluons undergoing boost-invariant
Bjorken expansion along the beam axis, we solve the Boltzmann equation in a relaxation-time
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approximation,

0 f! 1 . .

ot - D) (fl_f;q)- )]
Here 7 is Milne time, 7 is the microscopic relaxation time, and the superscript i € {g, g, g} on
the kinetic distributions distinguishes between particle species. ]‘eiq are given by Fermi-Dirac
(for quarks and anti-quarks) or Bose-Einstein (for gluons) distributions which involve the
Landau matched effective temperature and quark chemical potential (7, i). Symmetries of
Bjorken flow imply vanishing net-quark diffusion, i.e. n(r)oc1/7 and T#" = }; fp [ o fi=
diag(e, Py, Pr, P1), where e is energy density and Pr and Pj are effective transverse and
longitudinal pressures. An important physical quantity is the non-equilibrium entropy density
(in the rest frame of a fluid having velocity ), obtained from Boltzmann’s H-function:

1
s== S [ @ [filnfi—¥ln(l+aifi)], @)
i pi i

where a,; = -1 and a; = 1. In equilibrium s — seq = (¢ + P — un)/T. In Fig. 1 we
show solutions of kinetic theory for two sets of extreme far-off-equilibrium initial conditions
(see figure caption) which were set up using a Romatschke-Strickland (RS) distribution [5,
6]. Although all curves start with the same effective (7, ug), the phase trajectories are quite
sensitive to the choice of initial momentum space anisotropy. In Bjorken flow, Navier-Stokes
hydrodynamics predicts that the ratio s.q/7 must increase over time due to viscous heating.
While this is indeed the case for panel (a) (see dotted lines for s.q/n evolution in (b)), this
expectation is not borne out for the trajectories in panel (c). Here, s.,/n decreases for a
certain duration of time. However, this does not imply a violation of the second-law of
thermodynamics as the total entropy per baryon which includes non-equilibrium effects never
decreases. The feature of decreasing equilibrium entropy per baryon density results in a
peculiar phenomena which we call ‘non-equilibrium cooling’ (see Fig. 2). Here, the effective
temperature falls even faster than what is expected for an ideal (inviscid) fluid.

3 Maximum-entropy truncation of the Boltzmann equation
The Boltzmann equation can be expressed as an infinite hierarchy of equations for momen-
tum moments of f(x, p) [7] where low-order moments corresponding to components of 7"
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are coupled to higher-order ‘non-hydrodynamic’ moments. To obtain a macroscopic de-
scription solely in terms of 7*”, the infinite hierarchy has to be truncated by expressing the
non-hydrodynamic moments in terms of an approximate kinetic distribution using only infor-
mation contained in 7#”. Based on Jaynes’s insights on the connections between statistical
mechanics and information theory [8], Everett et al. [9] recently proposed a novel way of
reconstructing a kinetic distribution from the energy-momentum tensor using the maximum
entropy principle. The idea is to find an f(x, p) that maximizes the non-equilibrium entropy
density (2), subject to the information (constraint) that it reproduces the given 10 components
of T#”. For a single component gas the maximum entropy distribution is [9]
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where A, are Lagrange multipliers corresponding to 7. Landau matching conditions fur-
ther simplify the argument of the exponential [10]. Unlike the commonly used distributions
for Grad or Chapman-Enskog (CE) truncation, fiyg is positive definite for all momenta and al-
lows for non-equilibrium matching to conserved currents for a wide range of non-equilibrium
stresses. It also ensures that the resulting macroscopic framework, which we call ME-hydro,
has a non-negative entropy production rate [11] and that in the limit of small viscous stresses
ME-hydro reduces to second-order Chapman-Enskog fluid dynamics [9].

4 ME-hydro vs. RTA kinetic theory in Bjorken and Gubser flows

The exact evolution equations for the 3 independent components of T#” = diag(e, Pr, Pr, Pr)

in Bjorken flow are given by

dPr
dr

de

e+ P

_ Pr-P PT+§T dP;
dr ~ T

B dr

P,—-P 3P
1L __L+Q_ 4)

TR T T’ TR T T

The terms ({7, {r) introduce couplings to ‘non-hydrodynamic’ moments of f(t, pr, p.); for
example, {; = fp E;z p;‘ f. To truncate we replace f — fiyug where fyg is constructed using
the instantaneous values of (e, Py, P) [12]. In Gubser flow [13] the exact evolution equations
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similarly truncated using fiyg [12]. Figures 3-4 show that ME-hydro is in excellent agreement
with the underlying kinetic theory for both of these profiles even when the system is far-off-
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equilibrium. Figure 4a shows that Chapman-Enskog hydrodynamics [14] fail to capture the
late-time transverse free-streaming regime of Gubser flow. The only framework that performs
slightly better than ME-hydro is anisotropic hydrodynamics [15, 16] (shown in panel (b))
which uses the RS ansatz as a truncation distribution.

4.1 Summary

Non-equilibrium effects during the early stages of QGP evolution can substantially alter
its phase trajectories as compared to near-equilibrium predictions. ME-hydrodynamics, a
macroscopic theory based on a simple physical principle, holds promise in describing such
far-off-equilibrium effects. Further numerical analysis is required to test this expectation.
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