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Abstract. The equation of state of Quantum Chromodynamics has been in re-
cent years the focus of intense effort from first principle methods, mostly lattice
simulations, with particular interest to the finite baryon density regime. Be-
cause of the sign problem, various extrapolation methods have been used to
reconstruct bulk properties of the theory up to as far as µB/T ' 3.5 . However,
said efforts rely on the equation of state at vanishing baryon density as an inte-
gration constant, which up to µB/T ' 2 − 2.5 proves to be the dominant source
of uncertainty at the level of precision currently available. In this contribution
we present the update of our equation of state at zero net baryon density from
2014, performing a continuum limit from lattices with Nτ = 8, 10, 12, 16. We
show how the improved precision is translated in a lower uncertainty on the
extrapolated equation of state at finite chemical potential.

1 Introduction

The equation of state of Quantum Chromodynamics (QCD) is a quantity of crucial impor-
tance, both for its fundamental interest, as well as for its use in the modeling of heavy-ion
collisions. At vanishing baryon density, the equation of state - pressure, baryon density, en-
tropy density, energy density, speed of sound - is now known for about a decade thanks to
continuum extrapolated lattice simulations at physical quark masses, with results from differ-
ent collaborations showing very good quantitative agreement [1, 2].

With the advent of the beam energy scan program at RHIC, and the general aim to explore
the QCD phase diagram at different densities, the attention has largely moved to the finite-
density regime. Because of the fermion sign problem, direct simulations at finite baryon
density cannot be easily performed, although significant progress has been made recently
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in this regard. A number of extrapolation methods have been employed in recent years to
determine the equation of state at finite chemical potential, exploiting simulations carried out
in the accessible parameter space. Taylor expansion allows for a reconstruction of finite-
density thermodynamics up to µB/T ' 2 − 2.5 [3], while with a novel expansion scheme
based on imaginary chemical potential simulations, a value of µB/T ' 3.5 was reached [4,
5]. Moreover, new advances in reweighting techniques have produced the first direct results
at finite baryon density, although in a small volume [6–8]. Independently of the method
employed to access thermodynamics at finite baryon chemical potential, the equation of state
at µB = 0 is required as an integration constant.

In this contribution, we present new continuum extrapolated results for the equation of
state at µB = 0 with significantly improved precision, and show how that is translated into
better precision at finite density, too.
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Figure 1. Left: continuum extrapolation of the integration constant in Eq. (1). Right: continuum
extrapolation of the trace anomaly in the temperature range T = 120 − 260 MeV.

2 Results

The pressure cannot be directly determined via lattice simulations, so it is customary to obtain
it as an integral over the temperature of the trace anomaly I(T ):

p(T )
T 4 =

p(T0)
T 4

0

+

∫ T

T0

dT ′

T ′
I(T ′)
T ′4

(1)

where p(T0) is an integration constant, namely the pressure at a temperature T0 chosen at
will. The trace anomaly can instead be determined directly on the lattice via:

I(T )
T 4

dT
T

= N4
τ

 dβ 〈−sG〉R +
∑

f

dm f

〈
ψ̄ fψ f

〉
R

 (2)

where the sum in the second term runs over the quark flavors, β = 6/g2 is the gauge coupling
and m f are the fermion masses, while 〈−sG〉R and

〈
ψ̄ fψ f

〉
R

are the renormalized gauge action
and chiral condensates.

As already mentioned, it is not possible to directly determine the pressure from lattice
simulations for a given choice of parameters. Hence, in order to determine the integration
constant in Eq. (1), it is necessary to calculate an integral in some parameter, starting from
a point where the pressure has a known value. We choose to calculate the pressure at T0 =

185 MeV, and we obtain it via an integral of the chiral condensates, integrating down in the
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Figure 2. Left: Equation of state at µB = 0 (colored bands), compared to our old results (grey bands).
Right: entropy density at strangeness neutrality, calculated from the alternative expansion scheme at
different values of µB/T , with our new results at µB = 0. In both panels, hadron resonance gas model
results are shown as solid lines.

quark mass(es) from infinity, where the pressure is equal to 0:

p(T0)
T 4

0

=

∫ ms

∞

dm3
〈
ψ̄ψ

〉
R,3 (m3) +

∫ ml

ms

dm2
〈
ψ̄ψ

〉
R,2 (m2) . (3)

The first term is an integral of the 3-flavour theory, whereby the quark mass runs from in-
finity down to the strange quark mass. In the second term, the strange quark mass is fixed to its
physical value, and the light quark masses are integrated down to their physical (degenerate)
mass. The left panel of Fig. 1 shows our continuum extrapolation of this integration constant,
obtained from lattices with Nτ = 10, 12, 16. Results at Nτ = 8 are shown, but not included in
the continuum fit. In order to estimate the systematic uncertainties, two ways of setting the
scale were considered (with fπ and w0 [9]), and we considered both the case with and with-
out tree level correction of the pressure. The final result p(T = 185 MeV)/T 4 = 1.356(26)
has roughly a factor 2x improvement in precision over our result from 2014 [1]. In the right
panel of Fig. 1, we show the trace anomaly at finite Nτ (colored points), together with our
continuum extrapolation (black band). This is obtained via a combined fit including a linear
dependence on 1/N2

τ and a spline in the temperature. This result also has roughly a factor
2-3x improvement in precision over our previous determination.

The continuum extrapolated results shown in both panels of Fig. 1 are the necessary in-
gredients to completely determine the thermodynamics at µB = 0. Through Eq. (1), the
pressure can be obtained in the available range T = 120 − 260 MeV, and from it other ther-
modynamic quantities follow from standard identities. The results are shown in the left panel
of Fig. 2 (colored bands), where they are compared with our previous results (grey bands).
The improvement in precision is dramatic. We note that, at low temperature, our result for
the pressure shows a slight tension with the prediction of the hadron resonance gas model,
shown as a solid line. However, a full analysis of the systematic uncertainties is in progress,
and additional statistics will be collected in this regime on our Nτ = 16 lattice.

At the existing level of precision the equation of state at µB = 0 was the dominant source
of uncertainty in the equation of state at finite chemical potential, up to µB/T ' 2.5. In order
to observe the improvement at finite density, we show in the right panel of Fig.2 the entropy
density at increasing values of µB/T , obtained with our alternative expansion scheme, and
using the new µB = 0 equation of state (colored points). The corresponding results obtained
with our previous µB = 0 equation of state are shown as grey bands for comparison. The new
determination shows much improved uncertainties except for largest value of the chemical
potential, namely µB/T = 3.5, where the extrapolation errors remain dominant.
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Figure 3. Isentropic lines in the density range covered by the RHIC beam energy scan, in the case of
strangeness neutrality (colored points). The QCD transition line is shown as a black band [10].

The improved precision achieved over the whole range accessible to our alternative ex-
pansion, allows us to draw a more precise than ever picture of the phase diagram, at least in
the regime accessible to the RHIC beam energy scan. In Fig. 3 we show isentropic trajec-
tories for different values of s/nB, obtained with our new results. The transition line is also
shown, as a black band. With the precision achieved, no trace of critical lensing – a focusing
effect on isentropic lines towards a critical point – is present.
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