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Abstract. We derive the equations of motion of relativistic magnetohydro-
dynamics from the Boltzmann equation using the method of moments. We
consider a locally electrically neutral system composed of two particle species
with opposite charges, with vanishing dipole moment or spin, so that the fluid
has vanishing magnetization and polarization. We find that the dynamics of this
fluid changes dramatically in the presence of a magnetic field. The shear stress
tensor no longer adheres to a single differential equation; instead, it splits into
three non-degenerate components, each evolving according to distinct dynam-
ical equations. Exploring these equations in a Bjorken flow scenario, we find
that for large magnetic fields, our theory predicts oscillatory behavior beyond
the scope of an Israel-Stewart-like theory.

1 Introduction

Relativistic magnetohydrodynamics (RMHD) provides a theoretical framework for under-
standing the dynamics of relativistic fluids in the presence of strong magnetic fields. This
framework is crucial in various astrophysical scenarios, including high-energy heavy-ion
collisions [1]. In the early stages of these collisions, intense magnetic fields are generated,
reaching peaks of 1019 Gauss (RHIC) and 1020 Gauss (LHC) [2]. While previous studies
have primarily focused on single-particle fluids [3–6], we explore a very simple yet more
realistic scenario involving a two-species fluid of massless particles with opposite charges.
We show that the derived equations of motion differ considerably to the traditional fluid-
dynamical equations for the shear stress tensor. Instead, we find that different components of
the shear stress tensor, decomposed with respect to the direction of the magnetic field, satisfy
distinct evolution equations. Notably, under a moderately strong magnetic field, the shear
stress tensor exhibits oscillatory dynamics, deviating from conventional hydrodynamics and
magnetohydrodynamics approaches, challenging standard Israel-Stewart-type theories and
calling for a more nuanced understanding of the dynamics in electrically charged fluids.

2 Equations of motion

We consider a relativistic locally electrically neutral fluid composed of two types of massless
classical particles with opposite electric charges and vanishing dipole moment or spin, so that
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the fluid has vanishing magnetization and polarization. We also assume vanishing electric
charge chemical potential, i.e., µ = 0. For this system the Boltzmann equation reads,

kµ∂µ f ±k + q±kνFµν
∂

∂kµ
f ±k = C[ f ±, f ∓], (1)

where we consider only elastic collisions,

C[ f ∓, f ±] ≡
1
2

∫
dK

′
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)
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′
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′
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k′

)
. (2)

The index ± designates particle species, where ’+’ represents particles with positive charges
and ’-’ represents particles with negative charges. Above, W∓∓

KK′↔PP′
is the transition rate

and f ± is the single particle distribution function for ± particle species, respectively. Fur-
ther, Fµν is the Faraday tensor which is decomposed as Fµν ≡ Eµuν − Eνuµ + ϵµναβuαBβ.
Here we defined electric field four-vector, Eµ ≡ Fµν uν and magnetic field four-vector, Bµ

≡ ϵµναβFαβ uν/2.

2.1 Exact equations of motion

For a fluid consisting of two particle species, we directly calculate the time derivative of the
total shear stress tensor, πµν = πµν+ + π

µν
− , and the relative shear stress tensor of the whole

system, δπµν ≡ πµν+ − π
µν
− where πµν± denotes the individual shear stress tensor for each par-

ticle species. We have used the 14-moment approximation, together with the assumption of
massless particles to calculate the collision term [7]. The resultant equations of motion are

∆
µν
αβπ̇
αβ + Σπµν +

2|q|B
5T

bλ⟨µδπν⟩λ =
8

15
ϵσµν −

4
3
πµνθ −

10
7
σλ⟨µπν⟩λ − 2ωλ⟨νπµ⟩λ , (3)

∆
µν
αβδπ̇

αβ + Σ
′

δπµν +
2|q|B
5T

bλ⟨µπν⟩λ = −
4
3
δπµνθ −

10
7
σλ⟨µδπν⟩λ − 2ωλ⟨νδπµ⟩λ . (4)

Above, we defined energy density, ϵ ≡ uµuνT µν, the shear tensor, σµν ≡ ∇⟨µ uν⟩, the expansion
scalar, θ ≡ ∇µuµ and the vorticity tensor, ω = (∇µuν − ∇νuµ)/2, with uµ being the fluid four-
velocity and ∇µ = ∆νµ∂ν the spatial projected gradient. Further, we have defined two transport
coefficients: Σ = 3n0(σ+−T + σT )/5 and Σ

′

= n0(5σ+−T + 3σT )/5, utilized later where σ+−T de-
notes the cross section for different species particle collision and n0 is particle density of
individual particle species (since µ = 0). We further assume σ++T = σ

−−
T ≡ σT , representing

the total cross section, which is also assumed to be constant for simplifying the derivation
of fluid dynamical equations. We have also employed the notation, A⟨µν⟩ ≡ ∆µναβA

αβ, with

∆
µν
αβ ≡

(
∆
µ
α∆
ν
β + ∆

ν
α∆
µ
β − 2/3∆µν∆αβ

)
/2, ∆µν = gµν − uµuν and gµν = diag (1,−1,−1,−1). Fur-

ther, bµν = ϵµναβuαbβ is a dimensionless antisymmetic tensor where bµ ≡ Bµ/B specifies the
direction of magnetic field.

2.2 New Projections and definitions

Now focusing on the shear-stress tensor, we proceed to decompose it with respect to the di-
rection of the magnetic field, bµ, in a complete, normalized, and orthogonal basis (uµ, bµ, ℓµ±):

πµν = π∥

(
bµbν +

1
2
Ξµν

)
+ 2π−⊥b(µ ℓ ν)− + 2π+⊥b(µ ℓ ν)+ + π

+
⊥⊥ℓ
µ
+ℓ
ν
+ + π

−
⊥⊥ℓ
µ
−ℓ
ν
−, (5)

where we defined the projection operator, Ξµν ≡ gµν − uµuν + bµbν = ∆µν + bµbν, onto the
subspace orthogonal to uµ and bµ, and gµν = uµuν − bµbν − ℓµ+ℓ

ν
− − ℓ

µ
−ℓ
ν
+. Here, ℓµ± is the plane

orthogonal to the magnetic field in the local rest frame of the fluid such that

uµ = (1, 0, 0, 0) , ℓ
µ
± = (0, 1,±i, 0) /

√
2, bµ = (0, 0, 0, 1) , (6)



It is important to note that now the ’±’ index no longer denotes the particles species but
rather our convention for the projections into the subspace orthogonal to the magnetic field
and fluid 4-velocity.

Using the definitions from Eq.(5), we take required projections of Eqs.(3) and (4) to obtain
different components of shear stress tensor and rewrite them in new basis to get equations of
motion for longitudinal (π∥), semi-transverse (π⊥ ≡ π−⊥ + π

+
⊥) and transverse component

(π⊥⊥ ≡ π−⊥⊥ + π
+
⊥⊥) of shear stress tensor. In the following section, we shall investigate these

equations in a simple dynamical model, Bjorken flow [8], to observe the behaviour of different
components of shear stress tensor for moderately large values of magnetic field.

3 Bjorken Flow

We have established that the shear stress tensor comprises three distinct components, and as
we shall see, each component evolves in a unique manner. To examine these components in
Bjorken flow, we consider the magnetic field, bµ in transverse direction. The shear tensor in
this coordinate is expressed as following where only its spatial diagonal elements survive [9],

σµν = diag
(
0,

1
3τ
,

1
3τ
,−

2τ
3

)
, (7)

with the expansion rate, θ = 1/τ. The shear tensor can also be decomposed according to (5),
leading to

σ∥ = bµbνσµν =
1
3τ
, (8a)

σ±⊥ = ℓ
∓
µbνσµν = 0, (8b)
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±
µ ℓ
±
νσ
µν
⊥⊥ = ℓ

±
µ ℓ
±
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1
2τ
. (8c)

Since, σ±⊥ = 0, the semi-transverse component has no impact on the evolution of the other
two components. Thus, our focus is solely on the dynamics of the longitudinal and transverse
components. The equation of state, pertaining to two types of particles, each with three
quarks and two spins, is defined as:

ϵ =
3 × 2 × 2 × 3

π2 T 4. (9)

Furthermore, from Maxwell’s equations, we have that (see also [10]),

Ḃ + Bθ = 0 =⇒ B ∼
(
τ0

τ

)
. (10)

The second-order equations of motion takes following form in Bjorken flow:
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where, π⊥⊥ ≡ π−⊥⊥ + π
+
⊥⊥, δπ⊥⊥ ≡ δπ−⊥⊥ − δπ

+
⊥⊥ and δπ⊥⊥ = iδπ̂⊥⊥. We have also considered Σ

′

=

4Σ/3. Our objective is to solve Eqs. (11)–(14) and investigate the behavior of the longitudinal
and transverse components of the shear stress tensor in the presence of a magnetic field.
Results are shown in Fig. 1.



(a) Longitudinal component (b) Transverse component

Figure 1. Oscillatory dynamics in the transverse shear stress tensor are evident for higher initial mag-
netic field values (η/s = 10). A slight hint of oscillatory behavior is also observed in the longitudinal
component with a stronger magnetic field.

An initial observation reveals distinct evolutionary paths for the different components of
the shear stress tensor, each governed by its unique dynamical equation. Particularly notewor-
thy is the prominent oscillatory behavior observed in the transverse component, especially for
higher values of η/s. While oscillations are present even for smaller η/s values, they are less
apparent in comparison. Such oscillatory behavior cannot be described by Israel-Stewart-like
theories.

4 Conclusion

Hence, the presence of oscillatory dynamics is noted for moderately stronger magnetic fields.
The Israel-Stewart theory functions effectively within a domain characterized by smaller
magnetic fields, which have minimal impact on the system’s evolution. However, for stronger
magnetic fields, the theory proves inadequate, necessitating the examination of more funda-
mental equations to accurately capture the underlying dynamics. Our theoretical framework
predicts the existence of oscillatory dynamics in the presence of higher magnetic field values,
a scenario relevant to LHC and RHIC.
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