
Quantum to classical parton evolution in the QGP

João Barata1,∗, Jean-Paul Blaizot2,, and Yacine Mehtar-Tani1,3,

1Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
2Institut de Physique The orique, Universite Paris Saclay, CEA, CNRS, F-91191 Gif-sur-Yvette, France
3RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract.
We study the time evolution of the density matrix of a high energy quark in the
presence of a dense QCD background that is modeled as a stochastic Gaussian
color field. At late times, we find that only the color singlet component of the
quark’s reduced density matrix survives the in-medium evolution and that the
density matrix becomes asymptotically diagonal in both transverse position and
momentum spaces. In addition, we observe an accelerated entropy growth due
to the larger phase space being explored by the quark and that the quantum
and classical quark entropies converge at late times. We further observe that
the quark state loses all memory of the initial condition. Combined with the
fact that the reduced density matrix satisfies Boltzmann-diffusion transport, we
conclude that the quark reduced density matrix can be interpreted as a classical
phase space distribution.

1 Introduction

Jets offer an optimal tool to explore the multiple stages involved in the time evolution of
underlying QCD matter. To that end, several jet observables have been studied over recent
years, capturing both global and local properties of the fragmentation cascade in the medium.
In parallel, a lot of progress has been achieved in the description of medium induced modi-
fications to the jet structure due to the interactions with the matter. One important question,
which we follow to address at the level of single parton evolution, relates to what extent the
medium effects are truly quantum, and can not be consistently captured in a classical descrip-
tion. Such aspects can, in general, be naturally addressed at the level of the jet density matrix.
Moreover, this description allows to directly compute interesting observables such as the jet
entropy. Below, we show an exploratory calculation of this quantity in the heavy ion context
and argue that it can be highly sensitive to the medium scales.

2 Single parton density matrix evolution in a QGP

We consider first the single parton limit, where the jet evolution is dominated by the dynamics
of the leading parton. We consider that this particle evolves in the presence of a dense quark
∗email: jlourenco@bnl.gov
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Figure 1. Position space evolution of the reduced density matrix [1].

gluon plasma (QGP), which can be represented in terms of a stochastic gauge field with
statistics:

g2
〈
Aa(q, t)A†b(q′, t′)

〉
A
= δabδ(t − t′)(2π)2δ(2)(q − q′) γ(q) . (1)

In this case the parton’s (here a quark) reduced density matrix is obtained after tracing over
all the medium’s degrees of freedom

ρ ≡ trA (ρ[A]) =
〈
|ψA(t)⟩⟨ψA(t)|

〉
A
, (2)

where |ψA(t)⟩ represents the state of the leading parton for a given field configuration at time
t. This density matrix has projections in both singlet and octet color subspaces. The octet
term, in the absence of a coherent magnetic color field, is quickly damped and only the
singlet survives the time evolution in the matter [1]. The evolved density matrix satisfies the
following Boltzmann transport

⟨k|ρs(t)| k̄⟩ = CF

∫
q

∫ t

0
dt′ ei (k2−k̄2)

2E (t−t′)γ(q)
[
⟨k − q|ρs(t′)| k̄ − q⟩ − ⟨k|ρs(t′)|k̄⟩

]
, (3)

with γ ∼ q−4 the in-medium elastic scattering rate. Working in the small angle scattering
limit, Eq. (3) reduces to a Boltzmann-diffusion equation, describing the parton’s momentum
diffusion in the medium. Notice that in this case, intermediate kinetic phases are taken into
account, which usually drop out when computing the momentum broadening distribution. In
Fig. 1 we show the time evolution of the density matrix ρ in a position representation as a
function of time. Starting from a Gaussian wave-packet with non-zero width, we observe that
the time evolution leads first to a spreading along the diagonal. This mechanism becomes
relevant once the momentum exchanges with the medium become of the order of the typical
initial momentum scale. At late time, the density matrix becomes highly diagonal. This
indicates that the full object can be properly described starting from a classical statistical
approach.

3 Single parton entropy in the medium

Having computed the density matrix for a single parton in the medium, we follow to see if
the diagonalization of ρ is captured at the level of the associated entropy. To that end we
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Figure 2. Time evolution of the entrpy and state purity, with characteristic scalings being indicated [1].

introduce the von-Neumann entropy

S vN[ρ] = −Trρ ln ρ = log
(

1 − p
4p

)
+

1
√

p
ln

1 + p + 2
√

p
(1 − p)

, (4)

which for the current problem can be fully expressed in terms of the purity p = Trρ2. To
establish the presence of true quantum features, we introduce the (classical) Wigner entropy

S W ≡ −

∫
K,b

ρW (b, K) log ρW (b, K) . (5)

At asymptotic times, one can show that

S W − S vN

S W

≈

√
p

ln(1/p)
, (6)

and the two entropies can be identified. Furthermore one can show that in this regime the
entropy grows exactly with the logarithm of the phase space, as expected for a classical dis-
tribution. The combination of all these facts supports the interpretation of the parton density
matrix as a classical distribution. In Fig. 2 we show the time evolution of the entropy and pu-
rity. At late times, the entropy grows in an accelerated fashion, once spatial and momentum
diffusion are possible. The collapse of the Wigner and von-Neumann entropies occurs after
scatterings with the medium become sizable [1].

4 Medium modified jet entropy

Having discussed the case of a single parton, we now consider the evolution of the entropy for
a full jet at leading logarithmic accuracy, following [2]. Here we consider the modifications to
the jet entropy due to i) energy loss effects, ii) medium induced gluon radiation. To that end,
we introduce the von-Neumann entropy measured on the hardest subjets, having a minimal
energy fraction zc and anguar resolution Rc:

S = −
∑

n

∫
dΠn

dP
dΠn

log
dP
dΠn

, (7)

where Πn denotes the phase for n subject and dPn the probability to produce such a state.



To include energy loss, we use the quenching weight approximation [3] to account for a
global quench of the n particle cross-section. It is instructive to consider the one parton limit,
where one directly has

S = −

∫
q

dP0

d2q
Q log

(
dP0

d2q
Q
)
= S0 Q + S(Q) , (8)

where Q < 1 denotes the one-body quenching factor, S0 denotes the single parton entropy in
the vacuum, and S(Q) is the entropy gained by the fact that energy has been lost. Thus, in this
simple case, the entropy gets both a damping term and an additional piece, which competes
with the quenching factor. At O(αs), a similar result is found:

S
αs
Q (E,R) =

2αs

π

(
Qg log

1
zc

log
R
Rc
+ S(Q(2)) +

∫ 1

zc

dz
z

∫ R

Rc

dθ
θ

Q(2)
0 (z, θ) log

8παsΛ
2

z2θ2E2

)
, (9)

where Λ is dimensionful regulator. Again, we see a quenching factor multiplying the single
parton entropy, which competes with the entropy related to a two body energy loss process.

The entropy can also be computed in the limit where energy loss is neglected, but the
production of induced radiation is taken into account. Focusing on the leading order modifi-
cation, we use that the in-medium cross-section can be decomposed as dσ

σ
= (1 + Fmed) dσvac

σ
,

to write the entropy variation ∆S = S − S vac approximately as

R
d[∆Sαs ](E)

dR
≈

2αs

π

{∫ 1

zc

dz
z

log
[

eFmed(z,R)

1 + Fmed(z,R)

] }
. (10)

The modification factor Fmed should vanish at small angles, where one recovers that ∆S ≪ 1.
However, once the angular scale becomes larger than the typical medium scale, then ∆S ≫ 0.
This suggests that the entropy might give a new handle on resolving QGP scales using jets.

5 Conclusion

In this work, we have computed the evolution of the single parton and jet density matrices
in the presence of a QGP background. Using these to compute the associated entropies, we
show that this offer new interesting insights into the jet modifications due to evolution in the
medium. Such quantities can be experimentally extracted and complete leading logarithmic
computations will be provided in future work.
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