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Abstract. The effect of a finite volume presents itself both in heavy ion exper-
iments as well as in recent model calculations. The magnitude is sensitive to
the proximity of a nearby critical point. We calculate the finite volume effects
at finite temperature in continuum QCD using lattice simulations. We focus on
the vicinity of the chiral crossover. We investigate the impact of finite volumes
at zero and small chemical potentials on the QCD transition though the chiral
observables.

1 Introduction

It is well known that QCD exhibits a thermal transition which turned out to be an analytic
crossover in the case of physical quark masses and vanishing baryon chemical potential µB =

0 [1]. Finite size scaling using aspect ratios LT = 4, 5, 6 specified the transition as analytic
since the peak of the chiral susceptibility shows basically no or a mild volume dependence.
Further studies of the equation of state demonstrate that the main driver of uncertainties are
not finite volume effects, but instead cut-off effects which lead to taste-violation in the case of
staggered quarks [2]. These can be significantly reduced by employing tree-level corrections,
stout-smearing methods or using the HISQ action [3, 4]. Nevertheless finite volume effects
play a crucial role phenomenologically and theoretically. The fireball produced in heavy-ion
collisions is of finite size and if the crossover turns into a real transition, volume effects get
more and more severe. Hence we study the impact of finite volumes at vanishing chemical
potential and at finite µB using the imaginary chemical potential Taylor method by setting the
focus on the chiral observables.

2 Chiral observables

In the case of vanishing quark masses the chiral condensate 〈ψ̄ψ〉 deals as a true order pa-
rameter to probe the spontaneous breaking of the underlying chiral symmetry. Since nature
presents us small but finite quark masses, the symmetry is also explicitly broken which leads
to a non-vanishing value of the condensate at high temperatures T although the spontaneous
breaking is restored. We are interested in physical results and perform whenever it is possible
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a continuum extrapolation. Hence we use the following renormalization scheme to remove
additive and multiplicative divergences

〈ψ̄ψ〉 =
T
V
∂ log Z
∂m

〈ψ̄ψ〉R = −
[
〈ψ̄ψ〉T − 〈ψ̄ψ〉T=0

] m
f 4
π

(1)

χ =
T
V
∂2 log Z
∂m2 χR =

[
χT − χT=0

] m2

f 4
π

, (2)

by subtracting the zero temperature part of the observable 〈...〉T=0 and multiplying with the
light quark mass m in lattice units. To get a dimensionless quantity, the result is divided by
the pion decay constant fπ.

3 Volume dependence of the chiral condensate
The key feature of a crossover transition is basically no or a very mild volume dependence
of the observable and hence the absence of discontinuities or divergences up to the infinite
volume limit. In the opposite direction, i.e. decreasing the volume, the behavior is not so
clear. Chiral perturbation theory predicts an exponential dependence of the condensate as a
function of the spatial extension Nx. The leading asymptotic behavior of the condensate at
vanishing magnetic field and T = 0 takes on the form [6]

〈ψ̄ψ〉 ∼

√
mπ

F2
π

e−mπNx

(2πNx)3/2 . (3)

This can be compared with our lattice results if we pick a temperature below Tc as shown
in Fig. 1. Here the chiral condensate is solved via a spline interpolation at fixed T = 140
MeV for all lattices with Nt = 12. The blue curve is the fit function f (Nx) as shown in the
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Figure 1. Chiral condensate solved at a fixed temperature T = 140 MeV for every lattice with Nt = 12
as a function of the spatial extension Nx. The blue curve is a fit inspired by chiral PT (Eq. (3)) in the
range of Nx ∈ [28, 64].

legend and provides χ2/ndof = 1.03. The coefficient c is mπ according to Eq. (3) and reads
c = 131 ± 10 MeV. This remarkable agreement with the pion mass is only true for Nx ≥ 28.
One reason for this lies in the fact that the transition temperature for 183 × 12 and 203 × 12
is below T = 140 MeV as shown in Fig. 3 on the right panel. Hence the system tends to be
deconfined and cannot be described by the chiral PT Eq. (3).



4 Volume dependence of the transition temperature Tc

To obtain the transition temperature Tc we follow a similar strategy as described in [5]. For
a broad range of aspect ratios we can now perform a continuum extrapolation as examplary
demonstrated in the left panel of Fig. 2. The continuum extrapolotated results of the transi-
tion temperature for each aspect ratio are shown on the right panel. Again we observe an
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Figure 2. Left: Exemplary continuum extrapolation of Tc at aspect ratio LT = 4. Right: Continuum
extrapolated Tc as a function of the aspect ratio LT and additional infinite volume extrapolation via an
exponential fit.

exponential dependence which allows us to obtain the infinite volume limit of the continuum
extrapolated transition temperatures

Tc(Nt → ∞, LT → ∞) = 158.9 ± 0.6 MeV. (4)

The exponential dependence on the volume is not limited to Tc. As demonstrated in Fig. 3,
the peak of the susceptibility χmax indicates a similar behavior (left). It decreases and stays
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Figure 3. Volume dependence of χmax (left), and Tc (right) as functions of Nx.

nearly constant if Nx ' 40 (LT ' 3.3) which is a clear sign of a crossover. It confirms the
common standard to use LT = 4 in QCD thermodynamics to be close to the infinite volume
limit. In the opposite direction, the peak increases significantly as the volume is further
decreased.



5 Volume dependence of Tc at finite and real µB

So far we set the focus on vanishing chemical potential. Let us extend our results to finite
density and investigate the volume dependence. To circumvent the sign problem, we per-
formed simulations at purely imaginary and vanishing chemical potentials. These runs deal
as a lever arm to extrapolate to finite and real µ̂B. Given these runs, we extrapolate Tc to real
µB according to Tc(µB)

Tc(0) = 1 − κ2

(
µB

Tc(µB)

)2
up to leading order.
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Figure 4. Tc extrapolated to finite and real µB for various box sizes converted in fm for Nt = 12.

The results calculated in a finite box of a length given in fm are shown in Fig. 4. Here we can
conclude that a box size of 5 fm agrees with the infinite volume extrapolated result.
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