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Abstract.
A central question in heavy-ion collisions is how the initial far-from-equilibrium
medium evolves and thermalizes while it undergoes a rapid longitudinal expan-
sion. In this work we use the two-particle irreducible (2PI) effective action for
the first time to consider this question, focusing on ϕ4 scalar theory truncated
at three loops. We calculate the momentum distribution of quasiparticles in
the medium and show that isotropization takes place. We furthermore consider
the thermal mass of quasiparticles and the importance of number-changing pro-
cesses.

1 Introduction

Heavy-ion collision experiments produce droplets of hot QCD matter which expand violently
into the surrounding vacuum and hadronize. The evolution of this QCD matter appears to be
captured by relativistic hydrodynamics which accurately describes a wide array of experi-
mental observables. This raises the question of how this fluid-dynamic description arises in a
far-from-equilibrium QCD medium created in the collision of two ions. Current state-of-the-
art models assume an initial classical regime, applicable due to high gluon occupancy at very
early times, followed by a kinetic theory evolution of QCD quasiparticles [1]. Despite the ap-
peal of this picture, it has some shortcomings. Firstly, an abrupt change from classical fields
to quasiparticles makes it difficult to study e.g. the role of instabilities and non-thermal fixed
points. Secondly, both frameworks make assumptions that limit their applicability across
different energy scales. Thus a more unified and fundamental framework is needed.

In this work we take the first step towards a unified description of the initial stages of
heavy-ion collisions. We use the two-particle irreducible (2PI) effective action Γ[D] which
depends on a resummed two-point function D(x, y).1 The effective action includes terms that
describe a free evolution and 2PI bubble diagrams that describe interactions [2]. Without
truncation the action is equivalent to the full quantum field theory. In practice one does a
truncation leaving bubble diagrams up to three loops, see Fig. 1. The 2PI effective action
with this truncation contains both classical field theory and kinetic theory in their respective
limits and thus encompasses the whole of the initial stages. In this work we will apply the
2PI effective action to ϕ4 scalar field theory with a classical Lagrangian

L ≡
1
2

(∂µϕ)(∂µϕ) −
m2

2
ϕ2 −

g2

4!
ϕ4. (1)

This allows us to study isotropization in a simple context.

2 The 2PI effective action and longitudinal expansion

The main novelty in this work is to use the 2PI action with a rapid longitudinal expansion as
is found in heavy-ion collisions. (For an earlier proof-of-concept calculation see [3] and for
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1In general Γ[ϕ,D] where ϕ is a one-point function. We set ϕ = 0 in this work.



Figure 1: 2PI bubble diagrams that contribute to the effective action Γ[ϕ,D], truncated at
three loops. The first diagram is called the tadpole diagram. The second diagram has two
field insertions ϕ.

an isotropic expansion in cosmology see [4].) The relevant coordinates are the proper time τ,
the rapidity η and the position in the transverse plane x⊥. We label the conjugate momenta
to η, x⊥ as ν,p⊥. The equations of motion are expressed in terms of the statistical functions
F(τ, τ′; p⊥, ν) and the spectral function ρ(τ, τ′; p⊥, ν).2 The equation of motion for F is[
∂2
τ +

1
τ
∂τ + m2 + M2

0(τ) + p2
⊥ +

ν2

τ2

]
F(τ, τ′, p⊥, ν)

=

∫ τ

τinit

dτ′′τ′′ Σρ(τ, τ′′, p⊥, ν) F(τ′′, τ′, p⊥, ν) +
∫ τ′

τinit

dτ′′τ′′ ΣF (τ, τ′′, p⊥, ν) ρ(τ′′, τ′, p⊥, ν),

(2)

with a similar equation for ρ. We have assumed homogeneity in the transverse plane and
boost invariance. The left hand side of Eq. (2) contains the d’Alembertian □ = ∂µ∂µ written
in the coordinates (τ, p⊥, ν) as well as a vacuum mass m2 and an effective mass M2

0(τ), defined
as

M2
0(τ) ≡ g

2

2

∫
d2 p⊥ dν

(2π)3

[
F(τ, τ, p⊥, ν) − F0(τ, τ, p⊥, ν)

]
. (3)

The right-hand side of Eq. (2) contains so-called memory integrals which describe scattering
and which depend on the whole history of the system. They include the self-energies Σρ and
ΣF which come from the bubble diagrams in Fig. 1 by cutting open one propagator. The
detailed expression for the self-energies can be found in [2]. In the current work we use a
minimal form of renormalization where only power-law divergences in the tadpole are re-
moved, see Eq. (3), where F0 is the bare propagator. For this reason we focus on observables
that have little UV sensitivity. For further details on the numerical implementation see [5].

3 Results

In this work we initalize the system at time τQ = 0.016 with the free spectral function ρ and
with F given by

F(τ0, τ0; p⊥, ν) =
(

1
2
+ f0(p⊥, ν)

)
π

2
e−πν

∣∣∣H(1)
iν (mTτ0)

∣∣∣2 (4)

where H(1)
iν is a Hankel function. Here m2

T = m2 + p2
⊥ with a vacuum mass m/Q = 0.625.

Furthermore, Q is the typical momentum of particles in the initial state. It is analogous to the
saturation momentum in the color-glass condensate which typically has value Q ≈ 2 GeV.
Eq. (4) is the same expression as in vacuum except that we have an initial occupation density
f0(p⊥, ν) = e−p2

⊥/Q
2
e−ν

2/β2
where β = 4.0.

2There are two 2-point functions, F and ρ because we work on the Keldysh-Schwinger contour. They are defined
as F(x, y) = 1

2 ⟨{ϕ(x), ϕ(y)}⟩ and ρ(x, y) = −i⟨[ϕ(x), ϕ(y)]⟩.
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Figure 2: The occupation density f (pz, p⊥) extracted from 2PI simulations. The left panel
describes free streaming (g4 = 0) while the right panel is a full calculation with g4 = 500.
The full calculation shows isotropization as p⊥ and pz have a comparable magnitude at all
times.
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Figure 3: The effective mass M as a function of p⊥ and ν at τQ = 20. The effective mass has
a moderate dependence on the momenta.
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Figure 4: The evolution of the number density with time in a full calculation and in a calcu-
lation that only includes mean-field effects through the tadpole. The full calculation incorpo-
rates number-changing processes that account for a 20 % reduction in the number density.



To study isotropization microscopically we will extract an occupation density from the
statistical function F at different times. We fit the full F from the 2PI simulation to a quasi-
particle ansatz

Fquasiparticle(τ, τ′; p⊥, ν) =
π( 1

2 + f (p⊥, ν; τ))
4

[
H(1)

iν (m⊥τ)H
(2)
iν (m⊥τ′) + H(2)

iν (m⊥τ)H
(1)
iν (m⊥τ′)

]
.

(5)

which has the same form as a free propagator, except that there is a slowly varying occupation

density f (p⊥, ν; τ) and a slowly varying mass M(p⊥.ν; τ) in m⊥ =
√

m2 + M2(τ) + p2
⊥. In

Fig. 2 we show the extracted occupation density f (p⊥, pz; τ) at different times for g4 = 500
as well as for free streaming (g4 = 0). (Here pz = ν/τ.) The full calculation shows clear signs
of isotropization: the momenta p⊥ and pz remain comparable at all times and the overall
magnitude of the occupation density decreases to compensate for the larger extent of f in ν.
This is unlike free streaming where the typical value of pz falls like 1/τ while p⊥ is constant.

The quasiparticle ansatz in Eq. (5) contains an effective mass M(p⊥, ν; τ) that changes
with time and which depends on the momentum. It includes non-perturbative corrections to
the vaccum mass and thermal corrections. We show M in Fig. 3 and see that it has moderate
momentum dependence and is anisotropic. This information is not available in kinetic theory.

Another important difference between a full 2PI calculation and kinetic theory is the
possibility of number-changing processes in 2PI calculations. In kinetic theory all exci-
tations are on shell so that 1 → 3 and 3 → 1 processes are kinematically forbidden.
This means that the number density per unit rapidity and unit area in the transverse plane
n(τ) =

∫ d2 p⊥dν
(2π)2 f (p⊥, ν; τ) is a conserved quantity. In the 2PI framework, excitatation can be

off-shell and thus number-changing processes are allowed. In Fig. 4 we study the importance
of this effect and see that in a full 2PI calculation n changes substantially, especially at early
times, giving a 20 % overall reduction in the number of particles. This is expected because
the initial conditions are overoccupied.

4 Conclusion

We have calculated the evolution of a longitudinally expanding medium using the two-particle
irreducible (2PI) effective action. We see isotropization of the medium by looking at the
evolution of the occupation density. We furthermore see that number-changing processes
are important and that the thermal mass has a moderate momentum dependence. The 2PI
framework allows us to study many other aspects of the non-equilibrium evolution of an
expanding quantum field theory, such as isotropization in the stress-energy tensor T µν and
the decay of a background field ϕ into quasiparticles. We leave a more detailed discussion of
these developments to future work.
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