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Abstract. The polarization of the Λ particle offers the unique opportunity to
study the hydrodynamic gradients in the Quark-Gluon Plasma formed in heavy-
ion collisions. However, the theoretical formula commonly used to calculate
polarization is only a linear order expansion in thermal vorticity and neglects
higher-order corrections. Here, I present an exact calculation to all orders in
(constant) thermal vorticity at global equilibrium, obtaining the analytic form
of the spin density matrix and the polarization vector for massive particles of
any spin. Finally, I extend these results to local equilibrium and assess their
phenomenological impact by numerically calculating the polarization vector in
a 3+1 hydrodynamic simulation.

1 Introduction

The experimental measurement of the polarization vector of Λ particles in heavy ion colli-
sions paved a new way in the hydrodynamic studies of the QGP [1–14]. In fact, with spin
polarization one can access the thermodynamic gradients, such as the thermal vorticity (to
be defined soon), in the plasma at freeze-out. According to the hydrodynamic model, it was
found early on that the polarization vector of massive spin-S fields is [15–17]:

S µ(p) = −
S (S + 1)

3
1

2m
ϵµνρσpσ

∫
dΣ · pϖνρn(p)[1 + (−1)2S n(p)]∫

dΣ · p n(p)
, (1)

where p is the four-momentum of the particle at hand, the integral is calculated on the de-
coupling hypersurface, n(p) = [eβ·p + (−1)2S+1]−1 is the Fermi-Dirac or the Bose-Einstein
distribution function and ϖ is the thermal vorticity:

ϖµν = −
1
2

(∂µβν − ∂νβµ), (2)

βµ being the four-temperature vector. Additional thermodynamic gradients contribute to spin
polarization, such as the thermal shear [18–21] and the gradient of the chemical potential
(spin hall effect) [22–24], which however I will not discuss further. It is important to stress
that all the terms mentioned so far are the leading order contributions to the spin vector in
linear response theory. Even in the case of global equilibrium, where the only contribution
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to the spin vector comes from the constant thermal vorticity, there are no results beyond the
first order of approximation in ϖ. Here, I show how to compute the spin vector to all orders
in ϖ for fields of any spin at global equilibrium [25]. I will also provide a finite and analytic
expression of the spin density matrix, which can be used to compute any spin observable,
including the vector meson spin alignment.

2 Spin density matrix and polarization vector

To compute the polarization vector or any other spin-related quantity, one uses the spin den-
sity matrix Θ. For massive fields of spin S , the spin density matrix is a (2S + 1) × (2S + 1)
hermitian matrix, characterized by S 2 − 1 real numbers. The definition of the spin density
matrix adopted in the context of relativistic heavy-ion collisions is [26]:

Θsr(p) =
Tr
(̂
ρ â†r (p)̂as(p)

)
∑

l Tr
(̂
ρ â†l (p)̂al(p)

) = ⟨̂a†r (p)̂as(p)⟩∑
l⟨̂a
†

l (p)̂al(p)⟩
. (3)

In the above equation, ρ̂ is the statistical operator, and â and â† are the annihilation and
creation operators of states with momentum p and spin r, s.

The spin density matrix is related to the spin vector S µ through [26]:

S µ(p) =
3∑

i=1

[p]µitr
(
Θ(p)DS (Ji)

)
, (4)

where DS (Ji) is the i-th generator of SO(3) in the S -representation. The transformation de-
noted as [p] is the so-called standard boost: a Lorentz transformation that maps the rest frame
momentum p = (m, 0) to the momentum p = (ε, p), i.e. pµ = [p]µνpν. Other formulae for
the polarization vector, such as those involving the Wigner function, are always derived from
eqs. (3) and (4).

3 Exact spin physics at global equilibrium

From equation (4), the polarization vector can be computed once the spin density matrix is
known. Here, I will compute exactly the spin density matrix for fields of any spin at global
equilibrium. This state is described by the density operator:

ρ̂ =
1
Z

exp
−b · P̂ +

ϖ : Ĵ
2
+ ζQ̂

 , (5)

where Q̂ is the charge operator, and P̂ and Ĵ are the generators of the Poincaré group: the
four-momentum and the angular momentum-boost operator, respectively. The vector bµ and
antisymmetric tensor ϖµν, that is the thermal vorticity, are constants, and they define the
four-temperature vector as the Killing vector:

βµ(x) = bµ +ϖµνxν.

In addition, ζ = µ/T is also constant, µ being the chemical potential. The proper temperature
is T =

(√
β · β
)−1

.



In Refs. [27, 28], it was realized that factorizing the operator (5) and performing the
analytic continuation ϖ 7→ −iϕ provides a powerful technique to compute exact expectation
values. This method allows the calculation of ⟨̂a†r (p)̂as(p)⟩:

⟨̂a†s(p)̂at(p′)⟩ = 2ε′
∞∑

n=1

(−1)2S (n+1)δ3(Λnp − p′)D(W(Λn, p))tse−b̃·
∑n

k=1 Λ
k penζ , (6)

where Λ = exp
[
−iϕ : J/2

]
is the Lorentz transformation with parameter ϕ equal to the imag-

inary vorticity and W(Λ, p) = [Λp]−1Λ[p] is the so-called Wigner rotation. The vector b̃(ϕ)
is:

b̃µ(ϕ) =
∞∑

k=0

1
(k + 1)!

ϕ
µ
ν1ϕ
ν1
ν2
. . . ϕνk−1

νk
bνk , (7)

and its form is a consequence of the fact that the Poincaré group is non-Abelian.
Plugging eq. (6) into eq. (3), yields:

Θrs(p) =
∑∞

n=1(−1)2S (n+1)e−b̃·
∑n

k=1 Λ
k penζDrs(W(Λn, p))δ3(Λn p − p)∑∞

n=1(−1)2S (n+1)e−b̃·
∑n

k=1 Λ
k penζ tr[D(W(Λn, p))]δ3(Λn p − p)

. (8)

To proceed further in the calculation, and as long as the thermal vorticity is imaginary, the
constraint Λp = p must be enforced. Indeed, from eq. (6), one sees that if this is not the case
⟨̂a†s(p)̂at(p)⟩ = 0, and the spin density matrix would become trivial.

Imposing the constraint Λp = p, it follows that:

ϕµν = ϵµνρσξρ
pσ
m
, ξρ = −

1
2m
ϵρµνσϕµνpσ. (9)

Notice that, since we are still using the imaginary vorticity, these quantities are purely aux-
iliary mathematical constructions. Thanks to the constraint Λp = p, and after some algebra
(see Ref. [25] for the full derivation), the spin density matrix becomes:

Θ(p) =
∑∞

n=1(−1)2S (n+1)e−nb·penζe−inξ0·DS (J)∑∞
n=1(−1)2S (n+1)e−nb·penζ tr

(
e−inξ0·DS (J)

) ,
where ξµ0 = [p]−1µ

νξ
ν, ξ0 being its spatial part, and DS (J) is the three-vector of the generators

of the rotation group in the S -representation. The series can be summed as a geometric
series [29], and after the summation it can be analytically continued outside of the radius
of convergence. By analytically continuing ϕ, back to the physical vorticity, ϕ 7→ iϖ, then
−iξ 7→ θ, where I defined:

θµ = −
1
2
ϵµνρσϖνρ

pσ
m
. (10)

This quantity is physical, and represents the angular velocity (over temperature) of the fluid,
as perceived by the particle with momentum pµ. Finally, the exact spin density matrix for
massive particles of any spin at global equilibrium with rotation and acceleration reads:

Θ(p) =

[
(−1)2S I − e−b·p+θ0·DS (J)

]−1
− (−1)2S I∑S

k=−S

(
eb·p−k

√
−θ2 − (−1)2S

)−1 . (11)

From eq. (11), one can compute all spin-related quantities, including spin polarization
and spin alignment. In particular, the mean spin vector reads, using eq. (4):

S µ(p) =
θµ
√
−θ2

∑S
k=−S k

[
eb·p−ζ−k

√
−θ2 − (−1)2S

]−1

∑S
k=−S

[
eb·p−ζ−k

√
−θ2 − (−1)2S

]−1 . (12)



Figure 1. The components of the polarization vector along the total angular momentum (left panel) and
the beam direction (right panel) as a function of the azimuthal angle. The blue dashed line is the linear
approximation (1), whereas the solid orange line corresponds to eq. (13).

This formula reproduces the previous literature, including the small vorticity approximation
and the case of Boltzmann statistics. In the case of very large thermal vorticity, it predicts a
polarization equal to one [25].

4 Polarization in heavy-ion collisions

One can now evaluate the effect of the formula (12) in phenomenological applications. Al-
though the derivation holds in global equilibrium, eq. (12) can be generalized to local equilib-
rium by promoting the thermal vorticity to be a local variable, i.e. ϖ 7→ ϖ(x), and integrating
eq. (12) over the decoupling hypersurface.

S µLE(p) =

∫
dΣ · p n(p) S µ(p)∫

dΣ · p n(p)
. (13)

In Fig. 1, I report the result of eq. (13) compared to that of eq. (1) in Au-Au collisions
at
√

sNN = 30 GeV, where the vorticity should be larger compared to
√

sNN = 200 GeV
and hence the impact of higher order corrections may be more significant. I simulated the
centrality class 10-60% using the hydrodynamic code vHLLE [30]. The initial state is an
averaged entropy density profile generated by GLISSANDO v.2.702 [31]. For the figure, I
consider the case of Dirac fermions at midrapidity. I remind the reader that polarization is
defined as Pµ = S µ/S , where S is the spin. One can see that the two formulae give the same
result, and it follows that the linear approximation is a good one, at least for

√
sNN > 30 GeV.

5 Conclusions

In this work, I have shown how to calculate the spin density matrix and the polarization vector
for massive spin-S fields to all orders in thermal vorticity, and I obtained an analytic finite
expression for both quantities. Using the spin density matrix, all spin observables can be
computed. The spin vector is a finite sum, representing the average of the spin state weighted
by Bose or Fermi distribution functions.

I have shown a numerical calculation for AuAu collisions at 30 GeV, demonstrating that
the linear approximation of the polarization vector is an excellent one in most practical ap-
plications to heavy-ion collisions. The exact spin vector, eq. 13, may turn out to be more
important in even lower-energy collisions, where the thermal vorticity is larger.
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