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Abstract. The equation of state of the quark gluon plasma is a key ingredient of
heavy ion phenomenology. In addition to the traditional Taylor method, several
novel approximation schemes have been proposed with the aim of calculating
it at finite baryon density. In order to gain a pragmatic understanding of the
limits of these schemes, we compare them to direct results at µB > 0, using
reweighting techniques free from an overlap problem. We use 2stout improved
staggered fermions with 8 time-slices and cover the entire RHIC BES range in
the baryochemical potential, up to µB/T = 3. This work is based on Ref. [1].

1 Introduction

The equation of state of strongly interacting matter under extreme conditions such as high
temperatures or baryon densities plays a key role in many physical systems, such as the early
Universe, heavy ion collisions and neutron stars. The most well established first-principles
method to study the strongly coupled regime is lattice QCD [2]. While many properties of
strongly interacting matter at zero baryon density have been elucidated using this method,
studies at finite baryon density are, however, hampered by the sign problem. Thus, most
lattice results on the properties of hot-and-dense QCD matter rely on extrapolations from zero
or purely imaginary chemical potential, two situations with no sign problem. Details can be
found in reviewing literatures such as Ref. [3]. There has recently been considerable progress
in the calculation of the equation of state of a hot-and-dense quark gluon plasma (QGP). In
addition to ordinary Taylor expansions, several resummation schemes have been proposed
[4–8], with a promise of better convergence properties. It is important for phenomenological
applications to determine the region of validity of these techniques. This is the purpose of
this work. Here we compare three such schemes: the Taylor expansions, shifting sigmoid
resummation [4, 8] and exponential resummation [5] with reweighted results. In this paper
we did not do sign reweighting. We did reweighting from mu=0 and phase reweighting
[9, 10] using a 2 stout improved staggered lattice action with 2+1 fermions at physical quark



masses, for which details can be found in Ref. [1]. In this work we consider the quark
chemical potentials satisfying µq ≡ µu = µd and µs = 0. The observable of interest is the light
quark density n̂L = dp̂/dµ̂B, where p̂ = p/T with pressure p, as a function of the temperature
T and dimensionless chemical potential µ̂B ≡ µB/T = 3µq/T ≡ 3µ̂q. We simulate the phase
quenched ensemble for µ2

B = 1.5, 3, 4.5, 6, 7.5, 9 with a subsequent reweighting to real baryo-
chemical potental, following the method of Ref. [10]. We will refer to this approach as ’direct
simulation’ in the following discussion. We also simulate µ = 0 for T = 140, 150, 160, 170
MeV to perform reweighting from µB = 0 to calculate the Taylor coefficients and exponential
resummation using the reduced matrix formalism [11].

2 Comparison between reweighted data and extrapolation schemes
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Figure 1. Left: The direct results for n̂L at non-zero µB compared with different approximations (or
extrapolations): the Taylor method to different orders up to p8 and the exponential resummations [5] to
order N = 2, 4 and 6, calculated from the ensemble at µB = 0, as well as the shifting nL/nSBL

L method
calculated from imaginary chemical potential simulations and reweighting from µB = 0. Right: The
density n̂L as a function of the temperature T for µ̂B = 3 for the ordinary Taylor expansion (bottom)
and the resummation schemes based on shifting n̂L/µ̂B and n̂L/n̂SBL

L (top). The direct Taylor data from
µB = 0 simulations has smaller errors than the fit to imaginary µB data. This is mainly due to the small
volume in our study. For larger volumes, the signal-to-noise ratio of the direct p6 and p8 would be
considerably larger. A spline interpolation of the direct results is included to lead the eye.

Using simulations at imaginary chemical potentials: Im µ̂B
16
π
= 0, 4, 6, 7, 8, 9, 10 and 12,

we computed the normalized shifting sigmoid resummation schemes of Refs. [4, 8] up to
order κ4 and λ4 (for the Stefan-Boltzmann normalized variant [8]). The systematic error in-
cludes the fit range in imaginary µB, the ansatz in µ2

B, and the interpolation of the light quark
susceptibility at µB = 0. We also demonstrate a more straightforward use of the imaginary
chemical potential data by performing a second determination of the Taylor expansion coef-
ficients, fitting n̂L

µ̂B
with a polynomial of order µ̂6

B. For the fits we also include d2 p̂
dµ̂2

B
and d4 p̂

dµ̂4
B

at
µB = 0 as further data points. We show the comparison of the different reweighting schemes
with the direct data in Fig. 1, as a function of T at a fixed µ̂B = 3 , the largest value where
we have direct data. The Taylor expansion at next-to-leading order - O(µ4

B) in the pressure -
is not consistent with the direct data, systematically underestimating nL below 150 MeV, and
systematically overestimating it above 150 MeV. This is due to a peak in p4(T ) slightly above
the crossover temperature. Including the next term in the expansion, with the coefficient
p6(T ), the Taylor method agrees with the direct data up to µ̂B = 3 at T = 160 MeV and up
to µ̂B ≈ 1.2 at T = 170 MeV. Including the next-to-next-to-next-to-leading order term p8(T ),



the expansion agrees with the direct data at all studied temperatures up to µ̂B = 3. In contrast,
the exponential resummation scheme shows bad convergence properties from µ̂2

B ≈ 4 for all
temperatures. While the N = 2 truncation of the scheme remains close to the direct results in
the entire range, the higher orders make the agreement better only below this value, but not
above. At large T , the method based on shifting n̂L/n̂SBL

L outperforms the method of shifting
n̂L/µ̂B. This is not surprising, as the Stefan-Boltzmann correction was introduced as a way to
improve the convergence properties of the scheme at high T .

In summary, we can say that both the Taylor expansion to order µ̂8
B(NNNLO) and the

resummation based on shifting n̂L/n̂SBL
L to order λ4 accurately describe the direct data for the

equation of state in the range 0 ≤ µ̂B ≤ 3 - which includes the entire range of the RHIC Beam
Energy Scan. Note the faster convergence of the resummed expansion, as the calculation of
the coefficient λ4 only requires the determination of the Taylor coefficients up to order µ̂6

B. On
the other hand, the shifting n̂L/µ̂B method at order κ4 has a slight systematic discrepancy with
the direct data at large T , and exponential resummation shows bad convergence properties in
N above µ̂2

B ≈ 4.

3 Conclusion

We judged the reliability of different approximation schemes by comparing them with direct
non-zero chemical potential results in the range 0 ≤ µ̂B ≤ 3. While this gives a practical an-
swer to the question of which approximation one can trust, a theoretical understanding of the
reasons would also be welcome. For the schemes defined purely in terms of thermodynamic
quantities, such as the Taylor expansion or the resummations based on shifting sigmoids,
this requires knowledge of the position of partition function (Lee-Yang) zeros in the complex
µB plane [7, 12–15]. The exponential resummation scheme, instead, is not defined in terms
of thermodynamic quantities, but comes rather from manipulating the integrand of the path
integral for the partition function. Understanding its convergence region might also require
better understanding of the nuances of the path integral, in addition to the thermodynamic
singularities. We speculate that the limited convergence region has to do with quark deter-
minant zeros. In fact, the effective action of the quarks in a fixed gauge field background is
approximated by a finite sum, with a radius of convergence determined by the determinant
zeros, which correspond to logarithmic divergences of the effective action. These are not
simply related to the Lee-Yang zeros of the partition function, and may provide stronger lim-
itations on the convergence of the expansion. An obvious challenge is to extend the range of
validity of the methods studied in this paper to lower T and higher µ̂B, so that the transition
line [16–20], and the location of the conjectured critical endpoint [21–25] can be studied with
first principle lattice calculations. Of course, the continuum and infinite volume limits will
also have to be taken eventually.
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