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Abstract.
The BEST Collaboration equation of state combining lattice data with the 3D
Ising critical point encounters limitations due to the truncated Taylor expan-
sion up to µB

T ∼ 2.5. This truncation consequently restricts its applicability at
high densities. Through a resummation scheme, the lattice results have been
extended to µB

T = 3.5. In this article, we amalgamate these ideas with the 3D-
Ising model, yielding a family of equations of state valid up to µB = 700MeV
with the correct critical behavior. Our equations of state feature tunable param-
eters, providing a stable and causal framework-a crucial tool for hydrodynamics
simulations.

1 Introduction

The primary objective of the Beam Energy Scan experiment at the Relativistic Heavy-Ion
Collider (RHIC) is to map the Quantum Chromodynamics (QCD) phase diagram [1, 2]. Cur-
rently, researchers are in the process of analyzing the experimental data [3]. On the theory
side, at vanishing chemical potential, high-precision lattice simulations indicate that the tran-
sition from a hadron gas to a fluid of strongly interacting quarks and gluons is a smooth
crossover [4, 5]. Effective QCD-based models suggest that this crossover eventually trans-
forms into a line of first-order transitions, featuring a critical point at finite density, the precise
location of which is still unknown. Unfortunately, lattice simulations at finite baryon density
are challenged by the sign problem.

Extrapolation methods that utilize lattice results at zero chemical potential are thus still
needed for the equation of state at finite density. Taylor expansion is widely used and is
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effective for low-density physics, approximately µB/T < 3; [6–8]. However, its applicability
is limited, making it difficult to model high-density critical phenomena.

The BEST Collaboration constructed a parametric family of possible equations of state
which, at zero µB, agree with the lattice Taylor expansion data, while featuring a critical point
at chosen TC and µBC [9]. However, the construction appears to be limited to µB ≲ 450 MeV
due to unphysical features ("wiggles") induced by extrapolation of Taylor expansion to higher
µB. On the other hand, the range of µB > 450 MeV is needed to describe hydrodynamics in
the regime relevant for RHIC Beam Energy Scan.

The Wuppertal-Budapest collaboration developed a novel re-summation expansion
scheme [10] that exhibits smooth behavior at high density, producing no visible artifacts up
to µB/T ∼ 3.5, by introducing a chemical potential-dependent transition temperature. This
scheme simply relates the baryon density χB

1 (T, µB) ≡ nB(T, µB) with the baryon susceptibility
χB

2 (T, µB = 0) at zero chemical potential:

T
χB

1 (T, µB)
µB

= χB
2 (T ′, 0) , where χB

n (T ) =
∂nP/T 4

∂(µB/T )n , (1)

via an effective temperature
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(
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2 (T )
(
µB

T

)2
+ κBB

4 (T )
(
µB

T

)4
+ . . .

)
. (2)

This scheme has inherent advantages, because κBB
2 (T ) does not introduce wiggles since

it is constant near the transition, and κBB
4 is consistent with zero. The remaining task is to

introduce a critical point in this equation of state.

1.1 Methodology

1.1.1 Mapping Ising to QCD

Near the critical point, the divergence of the correlation length results in a system whose
behavior is determined largely by (global) symmetries, and not by microscopic degrees of
freedom. Systems with shared symmetries exhibit similar critical behavior. This fact has
been used in Ref. [9] to map the universal critical behavior from the 3D Ising model to the
vicinity of the QCD critical point. To combine the approach of Ref. [9] with the Taylor
resummation approach of Ref. [10], in this work we employ a two-step mapping with the
intermediate step using (T ′, µB) coordinates, where the line of first-order phase transition
remains constant at T ′ = T0. Upon substitution of T ′lattice for T ′ in the subsequent step, the
critical line follows the curvature in the QCD coordinates, as illustrated in Fig. 1.

The mapping depicted in Fig. 1 involves free parameters: w′, ρ′, and α′12 which can easily
be related to the BEST parameters w, ρ, and α1 and α2 in [9], as detailed in [11], Being
inherently even in µB, this mapping ensures baryon-antibaryon symmetry. In Section 1.1.2,
we explain how to merge the critical behavior with the lattice data.

1.1.2 Embedding Ising Critical point into lattice equation of state

It is crucial to interpret Eq. (1) as a definition of T ′. The physics at finite density should
be incorporated into T ′, including the singularity at the critical point. To ensure smooth
behavior, we initially merge the lattice data κBB

2,lattice and χBB
2,lattice with HRG data (based on

the PDG 2021+ particles list [12]), and parameterize in [11] to cover the temperature range
relevant for hydrodynamics. Using Eq. (1), we construct n f ull

B as follows:



Figure 1. The top left plot represents the 3D Ising model with a critical point located at (r = 0, h = 0).
The top right plot displays the alternative T -expansion scheme coordinates, with a critical point at
(T ′ = T0, µB = µBC). Finally, the bottom plot corresponds to the QCD coordinates, featuring a critical
point located at (TC , µBC). The tunable (yet unknown) parameters are in red.
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T
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2,lattice(T ′full(T, µB), 0) (3)

T ′full(T, µB) = T ′lattice(T, µB)︸         ︷︷         ︸
lowest orders in (µB/T )

+ T ′crit(T, µB) − Taylor[T ′crit(T, µB)]︸                                     ︷︷                                     ︸
higher order in (µB/T )

. (4)

T ′lattice is kept to O((µB/T )2), and the critical part contributes to higher orders. T ′crit is:
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where ncrit
B is the singular contribution to nB obtained by mapping the 3D Ising model to QCD

coordinates. By substituting Eq. (5) into Eq. (4), we reconstruct the full baryon density using
Eq. (3).

1.2 Results

In this contribution we present an enhancement in QCD thermodynamics with respect to the
BEST collaboration result [9], as illustrated in Fig. 2. This improvement extends the analysis
to a higher chemical potential, reaching up to µB = 700 MeV. The transition line in the figure
exhibits the expected curvature in QCD, thereby reducing the number of free parameters.
Specifically, we fix α1 to be the slope of the curve in Fig. 1. Furthermore, our parametric
equations of state remain valid for smaller mapping angles α12, corresponding to physical
(small) quark masses, according to [13].



Figure 2. Left panel: baryon density, with a discontinuity marking a first-order transition. Right panel:
2nd order baryon susceptibility with a divergence indicating the critical point. Both have been obtained
using parameters µBC = 500MeV, TC = 116.49MeV, w = 15.0, ρ = 0.3, α1 = 11.19˚ and α12 = α1.
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