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Abstract. We modify the hydrodynamic equations of a relativistic chiral
plasma to account for dissipative effects due to QCD sphaleron transitions. By
analyzing the linearized hydrodynamic equations, we show that sphaleron tran-
sitions lead to nontrivial effects on vector and axial charge transport phenomena
in the presence of a magnetic field. Notably, dissipative effects of sphaleron
transitions lead to the emergence of a wavenumber threshold that characterizes
the onset of Chiral Magnetic Waves. Sphaleron damping also significantly im-
pacts the time evolution of both vector and axial charge perturbations in the
presence of a magnetic field. We further investigate the dependence of charge
separation on the rate of sphaleron transitions, which may have implications for
the experimental search for the Chiral Magnetic Effect in heavy ion collisions.

1 Introduction

QCD has a topologically non-trivial vacuum structure. Transitions between sectors can ther-
mally activated by sphaleron transitions at sufficiently high temperatures, which is linked
to the non-conservation of axial charge. Despite the expected importance of axial charge-
changing processes in QCD, these have only been explored to a limited extent. In this pro-
ceeding, we present our primary results from [1]. We devise a macroscopic description of
axial charge dynamics that includes damping due to sphaleron transitions. We then explore
how this affects both vector and axial charge transport. Finally, we discuss the implications
of our results for the experimental search for the Chiral Magnetic Effect (CME).

2 Sphaleron damping in QCD plasmas

Although chiral transport phenomena in high-temperature QCD plasmas are intrinsically non-
equilibrium phenomena, their possible macroscopic manifestations emerge naturally within
the framework of anomalous hydrodynamics [2]. If the process of axial charge equilibration
is slow compared to the typical kinetic equilibration of the plasma, the axial currents jµA, f rep-
resent additional slow variables whose dynamics can be described macroscopically by intro-
ducing additional axial chemical potentials µ f

A associated with the residual deviations of the
axial charge j0A, f from the genuine equilibrium state. For a weakly-coupled S U(Nc) plasma,
this is indeed the case as the timescale of axial charge relaxation due to sphaleron transi-
tions τsph ≈

χAT
Γsph
∼ α−5

S T 3 [3] is much larger than the timescale associated with the kinetic
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equilibration of the plasma, τkin ≈
4πη/s

T ∼ α−2
S T−1 [4]. When considering the quark-gluon

plasma (QGP) created in heavy ion collisions at RHIC and LHC energies, where tempera-
tures typically range up to ∼ 4Tc, one finds that with the estimate of Γsph ≈ 0.1T 4 from [5]
τsph ∼ 10T−1 can be larger, but not significantly larger than τkin ≈ 2T−1fm/c for favorable
values of the transport coefficient η/s = 0.16.

3 Hydrodynamic excitations

We consider a an S U(Nc) × U(1) gauge theory coupled to N f flavors of massless Dirac
fermions, which describes a high temperature QCD plasma in the presence of electromag-
netic fields. In the presence of a slowly-varying, non-dynamical background electromagnetic
field, the charge conservation laws take the form

∂µ jµV, f = 0, (1)

∂µ jµA, f = (eq f )2CEµBµ −
g2

16π2 Ga
µνG̃

µν
a , (2)

where the right hand side of Eq. (2) reflects the non-conservation of axial charge, where
effects due to the Abelian chiral anomaly are described explicitly by the term (eq f )2CEµBµ
with the anomaly coefficient C = Nc/2π2. Non-Abelian contributions to the axial anomaly
are described by the last term in Eq. (2), which tend to erase any pre-existing axial charge
imbalance. By following the arguments of Shaposnikov, McLerran, and Mottola [6], the

expectation value of
〈
g2

16π2 Ga
µνG̃

µν
a

〉
can be expressed in terms of the sphaleron transition rate

Γsph as 〈
g2

16π2 Ga
µνG̃

µν
a

〉
= 4Γsph

∑
f

µ f ,A

T
, (3)

which in the presence of finite axial chemical potentials
∑

f µ f ,A is manifestly non-zero. The
vector and axial currents are described by the constitutive relations:

jµV, f = nV, f uµ + ν
µ
V, f , , jµA, f = nA, f uµ + ν

µ
A, f , (4)

where νV/A, f refers to viscous corrections to the currents for a given fermion flavor. Such vis-
cous corrections incorporate transport coefficients associated with both ordinary and anoma-
lous charge transport, which include the CME, the Chiral Separation Effect, and the chiral
vortical effects. This is described in more detail in Ref. [1].

We collect the conservation laws, constitutive equations, and the transport coefficients to
obtain the collection of hydrodynamic equations. Then, we linearize the equations around a
static equilibrium background, characterized by a fluid velocity field uµ = (1, 0), temperature
T , and vanishing vector/axial charge chemical potentials µV f = µA f = 0, which is typical in
high energy heavy ion collisions.

Denoting the evolution equation in the form ∂tϕa + Mabϕb = 0 , one find that for a single
fermion flavor (N f = 1), for the fields ϕa = (δnV , δnA) the evolution takes the form

MN f=1
ab =

(
Dk2 ieq f Cχ−1

A k · B
ieq f Cχ−1

V k · B Dk2 + γsph

)
(5)

where for illustrative purposes, we will use the equation of state c2
s = 1/3 as well as χV =

χA = T 2 and D = (2πT )−1.



Figure 1. The dispersion relations for an N f = 1 QCD plasma. The first column shows the dispersion
relations in the absence of sphaleron transitions. Propagation of the Chiral Magnetic Wave depends on
the magnetic field strength; at lower magnetic field strengths the propagation is dominated by charge
diffusion. In the second and third column, a wavenumber threshold kCMW emerges that indicates the on-
set of the formation of the CMW. Below kCMW, the modes are purely dissipative due to charge diffusion
and dissipative effects from sphaleron damping. Aboce kCMW, the behavior of modes depends on both
the magnetic field strength (as in ordinary CMWs) and the sphaleron transition rate.

3.1 Dispersion relations

The dynamics of vector and axial charges in the absence of sphaleron transitions can be
studied by setting γsph = 0 in Eq. (5). The resulting dispersion relations are the known
dispersion relations associated with the CMW up to O(k2) [7], as shown in the first column
of Fig. 1. We observe that the dispersion relations have two distinct, competing parts, namely
a diffusive imaginary part and a propagating real part. Since the diffusion constant D is
fixed, the mechanism dominating the behavior of the excitations depends primarily on the
magnitude and orientation of the wavevector k of the perturbation and on the strength of the
magnetic field. In the presence of a weak magnetic field, the dynamics of charge modes
will be governed by diffusion. As the magnetic field increases in strength, the low k modes
oriented along the magnetic field will propagate with decreasing influence from diffusion.

The inclusion of sphaleron transitions associated with the term γsph leads to the emergence

of a wavenumber threshold that provides the minimum wavenumber kCMW =
√
χV
χA

2Γsph

e|q f |C|B| ,
above which a propagating CMW can form for a given magnetic field strength. In the second
and third column of Fig. 1, one readily observes that below kCMW, the modes are dominated
by dissipation due to sphaleron damping and charge diffusion. Above kCMW, modes are
highly diffusive unless the sphaleron transition rate is low and the magnetic field strength is
sufficiently high.

We note that in [1] we have also performed a similar analysis for a two flavor N f = 2
scenario, where sphaleron transitions induce a non-trivial coupling between the two flavors.



3.2 Charge separation

Vector charge separation along the direction of the magnetic field has been sug-
gested as an experimental signature of the CME in heavy-ion collisions [8].
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Figure 2. Electric charge separation, quantified
by the electric dipole moment D for an initial ax-
ial charge distribution as a function of Γsph for
single- and two-flavor configurations of various ini-
tial charge ratios at t = 10 fm/c.

We consider vector charge separation as
the result of an initial axial charge pertur-
bation. We can quantify charge separa-
tion via the electric dipole moment:

D(B, t) =
∫

d3x
x · B
|B|

∑
f

eq f nV, f (t, x).

(6)

In Fig. 2, we present the dependence
of the dipole moment D(B, t) on the
sphaleron transition rate Γsph. By normal-
izing the dipole moment to its value for
Γsph = 0, the quantity D(Γsph)/D(Γsph =

0) becomes independent of the magnetic
field strength and can be viewed an over-
all suppression factor of the charge sep-
aration signal due to sphaleron transi-
tions. When the sphaleron transition rate
is large, the charge separation is propor-
tional to 1/Γsph. By inspecting the results in Fig. 2 one finds that after an evolution for
10fm/c, the suppression for sphaleron rates Γsph/T 4 ≲ 0.01 is still rather modest. However,
for values on the order of the (quenched) lattice QCD estimates [5] Γsph/T 4 ≳ 0.02 there is
in a significant suppression of the signal, as well as a strong sensitivity of the result to the
actual value of the sphaleron transition rate. While such a suppression may make it harder
to detect possible signatures of the CME and CMW in heavy-ion collisions, the strong sensi-
tivity to the sphaleron rate also suggests a possible experimental avenue for constraining the
sphaleron rate using charge separation measurements associated with chiral phenomena such
as the CME and CMW.
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