
Quarkonium production in high energy pp collisions

Jiaxing Zhao1, Pol Bernard Gossiaux1, Taesoo Song2, Elena Bratkovskaya2,3, and Jörg
Aichelin1∗,
1SUBATECH, Nantes University, IMT Atlantique, IN2P3/CNRS 4 rue Alfred Kastler, 44307 Nantes
cedex 3, France

2GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
3Helmholtz Research Academy Hesse for FAIR (HFHF), GSI Helmholtz Center for Heavy Ion Physics,
Campus Frankfurt, 60438 Frankfurt, Germany

Abstract. We investigate the charmonium and bottomonium production in
pp collisions using the Wigner densities formalism. The Wigner density of
the quarkonia is approximated by analytical 3-D isotropic harmonic oscillator
Wigner densities with the same root-mean-square radius given by the solution
of the Schrödinger equation. This approach reproduces quite well the available
experimental transverse momentum and rapidity distributions.

Hidden heavy flavour mesons are a useful tool to study the strongly interacting quark
gluon plasma, which is created during high energy heavy-ion collisions. Due to the large
quark mass mQ, mQ ≫ ΛQCD, with ΛQCD being the QCD cutoff, quarkonium production
can be factorized into the production of a heavy quark, QQ̄, pair, which can be described
by perturbative QCD and a subsequent soft non-perturbative process, which describes the
formation of a colorless quarkonium from the QQ̄ pair. For the latter part many approaches
have been advanced. They include the Color-Evaporation Model , the Color-Singlet Model
and the Color-Octet Model. The latter two are encompassed in the NRQCD approach. For
a review we refer to [1]. More recently, the rapidity and pT distributions of hidden heavy
flavour mesons, produced in pp collisions, have also been well reproduced in the Wigner
density matrix formalism [2–4]. Here we will extend this formalism up to 3S and use EPOS4
to generate the initial heavy quarks.

The Wigner density formalism is based on the quantal density matrix projection in which
the probability that a meson i is produced is given by Pi = Tr(ρiρ

(N)) with ρi being the density
matrix of the meson i and ρ(N) the density matrix of the N heavy quarks and antiquarks,
produced in a pp collision. A partial Fourier transformation of the density matrices yields
then

dPi

d3Rd3P
=

∑∫
d3rd3 p
(2π)6 Wi(r,p)

∏
j>2

∫
d3r jd3 p j

(2π)3(N−2) W (N)(r1,p1, r2,p2, ..., rN ,pN). (1)

Wi is the two-body Wigner density of the bound heavy quark pair and
W (N)(r1,p1, r2,p2, ..., rN ,pN) is the quantal density matrix in Wigner representation of
the ensemble of N heavy quarks produced in a pp collision. r(R) and p(P) are the relative
(center of mass) coordinate and momentum of the heavy quark and antiquark, which are
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J/ψ χc(1P) ψ(2S ) Υ(1S ) χb(1P) χb(1D) Υ(2S ) χb(2P) Υ(3S )

Mass Theo.(GeV) 3.071 3.483 3.652 9.390 9.870 10.109 9.959 10.208 10.288

Mass Exp. (GeV) 3.097 3.463 3.686 9.460 9.876 10.163 10.023 10.243 10.355

⟨r2⟩ (fm2) 0.182 0.453 0.714 0.042 0.153 0.284 0.236 0.410 0.520

σ(fm) 0.348 0.426 0.452 0.167 0.247 0.285 0.260 0.302 0.307

Table 1. The masses, root-mean-square radius, and the Gaussian widths σ of different charmonium
and bottomonium states in vacuum. The experimental data are from Ref. [7].

bound in a quarkonium. We assume that the unknown quantal N-body Wigner density can
be replaced by the average of classical phase space distributions, W (N) ≈ ⟨W (N)

classical⟩.
The classical momentum space distributions of the heavy quarks is provided by

EPOS4 [5, 6]. EPOS4, however, provides only the coordinate information of the vertex where
the QQ̄ pair is created. For a heavy quark pair, created at the same vertex, we assume that
the relative distance between Q and Q̄ in their center-of-mass frame is given by a Gaussian
distribution and the Wigner density for a QQ̄ pair can be expressed as

W (2)(r,p) ∼ r2 exp

− r2

2σ2
QQ̄

 f EPOS4
QQ̄ (p), (2)

where the distance is controlled by the effective width σQQ̄. Having now momenta and po-
sitions of the heavy quarks we can calculate the yield of charmonium and bottomonium via
Eq. (1).
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Figure 1. Wave function of different charmonium (left) and bottomonium (right) states. Solid lines are
from the Schrödinger equation, dashed lines are from the 3-D isotropic harmonic oscillator (Eq. (3)).

We come now to the construction of the quarkonium Wigner density. The Wigner density
is obtained by the Wigner-Weyl transformation of the density matrix of the quarkonia. The
quarkonium wave function is the solution of the two-body Schrödinger equation, which we
solve for charmonium and bottomonium with the Cornell potential, V(r) = −α/r + κr + c
with α = 0.513, κ = 0.17GeV2, c = −0.161, and with the quark masses mc = 1.5GeV
and mb = 5.2GeV. The wave functions are shown in Fig. 1, and the masses and root-mean-
square radii ⟨r2⟩ are shown in Table 1. We can see that the masses are very close to the
experimental values. The wave function is, however, not analytical, and therefore the Wigner



density can only be calculated numerically , what makes the solution of Eq. (1) complicated.
It is therefore convenient to approximate the wave function by a 3-D isotropic harmonic
oscillator wave function for the potential V(r) = 1/(2mQσ

4)r2. These wave functions are
analytical and can be expressed as ψnlm(r, θ, ϕ) = Rnl(r)Yl,m(θ, ϕ), where Yl,m are the spherical
harmonics. The radial part can be expressed as,

Rnl(r) =
[

2(n!)
σ3Γ(n + l + 3/2)

] 1
2 ( r
σ

)l
e−

r2

2σ2 Ll+1/2
n

(
r2

σ2

)
, (3)

where Ll+1/2
n are Laguerre polynomials. The parameters of the 3-D isotropic harmonic oscil-

lator wave functions are chosen to match the root-mean-square radius ⟨r2⟩ of the real quarko-
nium wave function: ⟨r2⟩ = 3σ2/2 for 1S , ⟨r2⟩ = 5σ2/2 for 1P, ⟨r2⟩ = 7σ2/2 for 1D and 2S ,
⟨r2⟩ = 9σ2/2 for 2P, and ⟨r2⟩ = 11σ2/2 for 3S states. The corresponding widths are shown
in Table 1 and the wave functions are shown in Fig. 1 with dashed lines. We can see that
the ground states and low lying excited states can be well reproduced by the 3-D isotropic
harmonic oscillator, while the difference increases for higher excited states, e.g. 2S , 2P, and
3S .

The Wigner densities for different states up to 3S are

W1S(r,p) = 8e−ξ, (4)

W1P(r,p) =
8
3

e−ξ
(
2ξ − 3

)
,

W1D(r,p) =
8

15
e−ξ

(
15 + 4ξ2 − 20ξ + 8[p2r2 − (p · r)2]

)
,

W2S(r,p) =
8
3

e−ξ
(
3 + 2ξ2 − 4ξ − 8[p2r2 − (p · r)2)]

)
,

W2P(r,p) =
8

15
e−ξ

(
− 15 + 4ξ3 − 22ξ2 + 30ξ − 8(2ξ − 7)[p2r2 − (p · r)2]

)
,

W3S(r,p) =
8

315
e−ξ

(
315 + 42ξ4 − 336ξ3 + 924ξ2 − 840ξ − [2009 + 32p2r2

+ 336r4/σ4 − 1400r2/σ2 − 896p2σ2 + 224p4σ4][p2r2 − (p · r)2] − [686

+ 608p2r2 + 112r2/σ2 − 896p2σ2 + 224p4σ4 − 672(p · r)2](p · r)2
)
,

where ξ = r2

σ2 + p2σ2. The transverse momentum and rapidity distribution of charmonium
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Figure 2. pT spectra of different charmonium states (left), where red is J/ψ, orange is χc(1P), and green
is ψ(2S ). Prompt J/ψ (middle). Prompt ψ(2S ) (right). The experimental data are from ALICE [8, 9],
ATLAS [10], and CMS [11].

and bottomonium (see Eq. (1)) are shown in Figs. 2 and 3. We see, as far as data are available,
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Figure 3. pT and rapidity y dependence of different bottomonium states. The experimental data are
from CMS [12].

a quite good agreement with the experimental results for cc̄ as well bb̄ mesons when choosing
σcc̄ = 0.4 fm and σbb̄ = 0.2 fm in Eq. (2).

We can conclude that the experimentally available rapidity and transverse momentum
distribution of cc̄ and bb̄ quarkonia can be well described in the Wigner density formalism.
The only parameter which enters the calculation is the width of the distribution of the relative
distance of the QQ̄ pair at production. The relative contribution of the different states is then
exclusively given by their wave function.
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