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Abstract. We demonstrate how deep convolutional neural networks can be
trained to predict 2+1 D hydrodynamic simulation results for flow coefficients,
mean-pT and charged particle multiplicity from the initial energy density pro-
file. We show that this method provides results that are accurate enough, so that
one can use neural networks to reliably estimate multi-particle flow correlators.
Additionally, we train networks that can take any model parameter as an ad-
ditional input and demonstrate with a few examples that the accuracy remains
good. The usage of neural networks can reduce the computation time needed
in performing Bayesian analyses with multi-particle flow correlators by many
orders of magnitude.

1 Introduction

Neural networks have proven to be an effective tool for a variety of applications in heavy-
ion physics. These range from performing pre-processing or selection of large data flows in
experiments to emulating computationally expensive simulations [1–4]. The rising popularity
of neural networks is driven by their accuracy and fast inference speed when dealing with
complex multi-dimensional data. These aspects can be crucial when performing real-time
data selection or heavy numerical simulations that need to be repeated a large number of
times.

The reduced computation time is especially needed when trying to extract the matter prop-
erties of the quark-gluon plasma (QGP) from the experimental data through hydrodynamic
simulations using a Bayesian analysis. This is due to the fact that one Bayesian analysis will
need ∼ 106−109 simulated collision events depending on which measured observables one in-
cludes in the analysis. Performing this many hydrodynamic simulations will take ∼ 105−108

CPU hours, which makes the inclusion of some multi-particle correlations impractical, even
though they could provide additional information to constrain the QCD matter properties.

In principle, all the final state information in hydrodynamic simulation is encoded into the
initial state and the matter properties of QGP. However, extracting the final state information
directly from the initial state is a highly nontrivial task since relativistic hydrodynamics is a
nonlinear theory. The convolutional networks are particularly good at detecting patterns in
structured 2-dimensional data, like images, which is why they are excellent tools when trying
to estimate the final state observables from an initial state event by event.
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Figure 1. Schematic presentation of neural network structure with multiple inputs.

2 Neural network

The convolutional neural networks, one for each observable, are trained to produce pT -
integrated flow coefficients vn, mean transverse momentum [pT ] and charged particle mul-
tiplicities dNch/dη. This was originally done in Ref. [4], from where one can find a detailed
description of the setup. Here we just go through the main points.

As the training data, we used 20 k EKRT (Eskola-Kajantie-Ruuskanen-Tuominen) model
[5–8] initial energy density profiles in the transverse plane and the corresponding final state
observables in these events at midrapidity. The final state observables are obtained from
the 2+1 D hydrodynamic simulations done in Ref. [9]. The training events are distributed
evenly between four different collision systems: 200 GeV Au+Au, 2.76 TeV Pb+Pb, 5.023
TeV Pb+Pb, and 5.44 TeV Xe+Xe. Even though we use one specific setup of an initial
state model combined with a hydrodynamics code to produce the training data, the methods
introduced here are expected to be applicable also with training data obtained from any other
setup of a similar type.

The neural network architecture is the DenseNet architecture [10] with slight modifica-
tions that will make it suitable for regression tasks. For a more complete description of the
architecture, see Ref. [4]. It took ∼ 1 hour to train a network that can produce one observable.
With a set of trained networks, one can generate 1 M events in ∼ 20 hours.

2.1 Model parameters as an input

A neural network that can predict a final state observable from an initial state is already a
lot faster than doing full hydrodynamic simulations, but it has a drawback: every time one
wants to change QCD matter properties or model parameters that affect time evolution of
the system, one would need to generate a new set of training data and retrain the networks.
This issue can be solved by adding all the parameters of interest as additional input to the
neural networks. Here we refer to this type of network with additional input parameters as
NNp. The architecture of NNp is demonstrated in Fig. 1. The energy density input is treated
the same way as without additional inputs and all the additional inputs are put through two
fully connected layers and then combined with the output of the DenseNet layer structure.
After this, we have included two fully connected layers from which we then obtain the final
output. The training of NNp was done using in total of 160 k training events distributed evenly
between 4 collision systems and 2 k parameter points sampled from a Latin hypercube. This
makes only 80 events of training data for one parameter point, which is 250 times more
efficient than the training in the previous case.
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Figure 2. Validation test of the neural networks for NS C(m, n) with 90 k validation events. The
experimental data are from the ALICE Collaboration [11]. Figure from Ref. [4].
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Figure 3. Neural network prediction for NS C(m, n) with 10 M events. The experimental data are from
the ALICE Collaboration [11]. Figure from Ref. [4].

3 Results and conclusions

To test the accuracy of the neural networks that were trained with one set of model parame-
ters, we generated 90 k independent EKRT initial energy density profiles and compared the
results of hydrodynamic simulations against the neural network predictions. In Fig. 2 we
show a comparison of these two for normalized symmetric cumulants NS C(m, n) as a func-
tion of centrality. We can see that the neural network can reproduce the cumulants well, even
though the size of the training data for one collision system was only 5 k events. In Fig. 3,
we demonstrate how one can then generate 10 M events with the neural networks to see how
these cumulants would look when statistical errors became insignificant. Here we can see
quite noticeable deviations from the result that used 90 k events, especially for NS C(2, 3),
for which the centrality dependence clearly changes, matching the shape of the ALICE mea-
surements better. This illustrates the importance of the number of events used when trying to
constrain the QCD matter properties with multi-particle flow correlations.

In the case of NNp networks, we are mostly interested in the network accuracy for gen-
erating new events with the same parameter values as in the training data. This is because
the most efficient way to do Bayesian analysis is to first generate a high number of events
using neural networks in a set of parameter points, compute all of the observables in these
parameter points, and then train Gaussian process emulators for these observables. Here the
accuracy of NNp networks was tested by taking two sets of model parameter points from the
training data which correspond to drastically different values of viscosities, and then generat-
ing 20 k new independent initial state profiles for both points and doing a similar validation
comparison between NNp and hydrodynamic simulations as before. The results are shown in
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Figure 4. Validation tests of NNp networks for NS C(m, n) with 20 k validation events in each case.
The upper (lower) panels show result with high (low) values of specific viscosities. The experimental
data are from the ALICE Collaboration [11].

Fig. 4, from where one can see that NNp can still very accurately reproduce the results from
hydrodynamic simulations. The only exception is the peripheral region of NS C(3, 4) in the
extremely high viscosity case, where the numerical errors of hydrodynamical simulations of
themselves might be very significant.

The goal of introducing neural networks in this work was to replace the slow hydrody-
namic simulations and make it possible to add multi-particle flow correlators to Bayesian
analysis. We have demonstrated that this is indeed possible and has the potential to cut the
computational time needed for these analyses by many orders of magnitude.
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