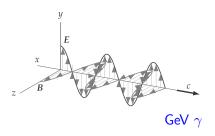
Hadron physics with polarized photons at LEPS/LEPS2

Sun Young Ryu (RCNP, Osaka University)

New Vistas in Photon Physics in Heavy-Ion Collisions

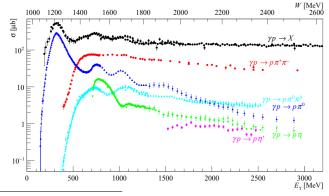
Sep 19 – 22, 2022 Institute of Nuclear Physics Polish Academy of Sciences & AGH University of Science and Technology



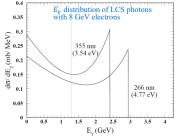
Sun Young Ryu syryu@rcnp.osaka-u.ac.jp

Hadron physics with LEPS and LEPS2

Outline


- 1. Compton-backscattered photon beam
- 2. Highlights from the LEPS experiments: photoproduction of (π, η, η', K^+) mesons and (ω, ϕ, K^*) mesons.
- 3. Current status of the LEPS2 photoproduction experiments: photoproduction of η and ω mesons with BGOegg detector.
- 4. Search for Θ^+ , P_s and K^-pp with the LEPS2 detector.

Photon Beam


- Because of a small attenuation of the photon inside the nucleon the photon is an ideal probe to
 explore the interior of the hadrons.
- The largest γp total cross section is $\sigma \approx 520\mu$ b at $E_{\gamma} \approx 0.32$ GeV, which corresponds to a mean free path for a photon in nuclear matter much larger than the nuclear radius ($\lambda \approx 100$ fm).
- At low masses, the $\Delta(1232)$ resonance, the first excited state, can be clearly observed as a peak in the cross section for $p\pi^0$. All other structures are not composites of a single resonant state, but arise due to several overlapping states.^a

^aA. Thiel, F. Afzal, and Y. Wunderlich, Prog. Part. Nucl. Phys. 125, 103949 (2022).

Backward Compton Scattering

• Kinematics of the backward Compton scattering $e(p_0) + \gamma_0(k_0) \rightarrow e(p) + \gamma(k)$ is characterized by two dimensionless variables x and y: ^a

$$x = \frac{2p_0k_0}{m^2c^2} \approx \frac{4E_0\omega_0}{m^2c^4}\cos^2\frac{\alpha_0}{2}, \qquad y = \frac{kk_0}{p_0}k_0 \approx \frac{\omega}{E_0}$$

• The maximum energy of the scattered photon ω_m and the maximum value of the parameter y are:

$$\omega \leq \omega_m = \frac{x}{x+1}E_0, \qquad y \leq y_m = \frac{x}{x+1} = \frac{\omega_m}{E_0}$$

• The energy spectrum of Compton backscattered photons is given by:

$$\frac{d\sigma}{dy} \approx \frac{2\sigma_0}{x} \left[\frac{1}{1-y} + 1 - y - 4r(1-r) \right], \qquad \text{where } r = \frac{y}{x(1-y)} \le 1.$$

^aV.G. Serbo, Acta Phys. Polon. B 37, 1333 (2006)

Backward Compton Scattering

- The energy range of Compton backscattered photons spans $E_{\gamma} = 1.4-2.9$ GeV at SPring-8, which fits the extensive study of baryon resonances near 2 GeV. Note that photons from UPC are produced at much higher energies ($E_{\gamma} = \gamma \hbar c/R_A \approx 3$ GeV @ Au+Au at $\sqrt{s_{NN}} = 200$ GeV and $E_{\gamma} = \gamma \hbar c/R_A \approx 75$ GeV @ Pb+Pb at $\sqrt{s_{NN}} = 5.02$ TeV). ^a
- The energy of a Compton backscattered photon depends on its emission angle θ :

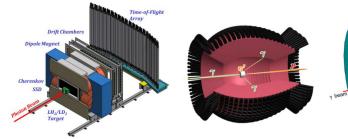
$$\omega = \frac{\omega_m}{1 + (\theta/\theta_0)^2}, \qquad \qquad \theta_0 = \frac{mc^2}{E_0}\sqrt{x+1}$$

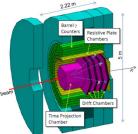
 If the laser light is polarized, then high-energy photons are polarized in the same direction, which is characterized by:

$$x = \frac{4E_0\omega_0}{m^2c^4}, \qquad a = \frac{1}{1+x}, \qquad \rho = \frac{\omega}{\omega_m}, \qquad k = \frac{\rho^2(1-a)^2}{1-\rho(1-a)}, \qquad \cos\theta_0 = \frac{1-\rho(1+a)}{1-\rho(1-a)}$$

At the Compton edge ($\omega = \omega_m$), $\rho = 1$, $\cos \theta_0 = -1$, and $k = (1 - a^2)/a$. For linear polarization,

$$\frac{P_{\gamma}}{P_{\text{laser}}} = \frac{(1 - \cos \theta_0)^2}{2(k + 1 + \cos^2 \theta_0)} \underbrace{\longrightarrow}_{Compton-edge} \frac{2}{2 + k} < 1$$


For circular polarization,


$$\frac{P_{\gamma}}{P_{\text{laser}}} = \frac{(k+2)\cos\theta_0}{(k+1+\cos^2\theta_0)} \underbrace{\longrightarrow}_{Compton-edge} -1$$

^aMariusz Przybycien, "Overview of UPC Snowmass LoI physics cases", RHIC Science Programs, 2021

Sun Young Ryu syryu@rcnp.osaka-u.ac.jp Hadron physics with LEPS and LEPS2

LEPS and LEPS2 at SPring-8

LEPS spectrometer

BGOegg calorimeter

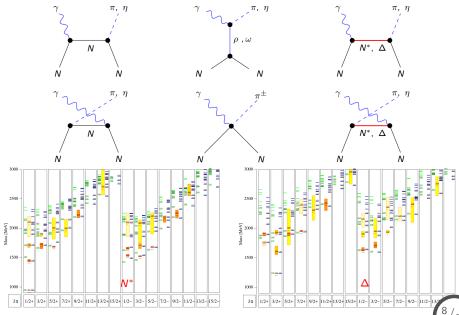
Solenoid spectrometer

⁶/₃₀

	LEPS (2000 - 2020)	LEPS2 (2013 -)
Tagged	$1.5 < E_{\gamma} < 2.4$ GeV (UV laser)	$1.3 < E_{\gamma} < 2.4$ GeV (UV laser)
γ Energy	$1.5 < {\it E}_{\gamma} < 2.9$ GeV (DUV laser)	$1.3 < E_{\gamma} < 2.9$ GeV (DUV laser)
Photon	Two laser injection	Four laser injection
Beam	$2 imes 10^{6}$ cps (UV laser)	$< 10^7$ cps (UV laser)
Intensity	$2 imes 10^5$ cps (UV laser)	$< 10^{6}$ cps (DUV laser)
Detector	Forward Dipole	BGOegg EM Solenoid
	Spectrometer	Calorimeter Spectrometer

Photoproduction of Pseudoscalar Mesons

• Photoproduction of pseudoscalar mesons (π, η, η', K) is the simplest process to analyze.

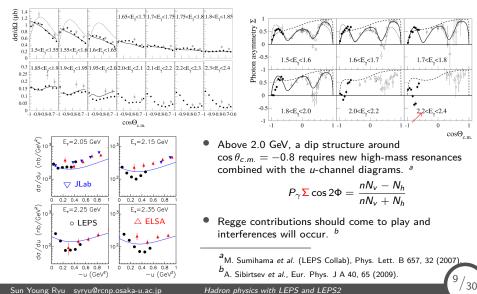

$$\gamma + N \rightarrow \begin{bmatrix} \pi \\ \eta \\ \eta' \end{bmatrix} + N \qquad \vec{\gamma} \qquad$$

• Four spin degrees of freedom with four complex amplitudes, usually given as CGLN, helicity, or transversity amplitudes:

$$\begin{split} \mathfrak{F} &= \chi_{m_{s_{f}}}^{\dagger} F_{\text{CGLN}} \chi_{m_{s_{i}}} \\ F_{\text{CGLN}} &= i \vec{\sigma} \cdot \hat{\epsilon} F_{1} + \vec{\sigma} \cdot \hat{q} \vec{\sigma} \cdot \hat{k} \times \hat{\epsilon} F_{2} + i \vec{\sigma} \cdot \hat{k} \hat{q} \cdot \hat{\epsilon} F_{3} + i \vec{\sigma} \cdot \hat{q} \hat{q} \cdot \hat{\epsilon} F_{4} \end{split}$$

• From four complex amplitudes, one can construct 16 polarization observables, which can be measured with linearly or circularly polarized photon beams, polarized targets, and recoil polarization detection: single polarization observables ($\sigma_0 = d\sigma/d\Omega$, Σ , T, P), beam-target observables (E, F, G, H), beam-recoil observables ($C_{x'}$, $C_{z'}$, $O_{x'}$, $O_{z'}$), and target-recoil observables ($T_{x'}$, $T_{z'}$, $L_{x'}$, $L_{z'}$)

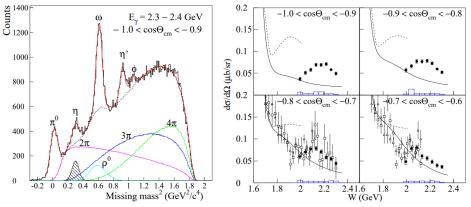
Light Baryon Spectroscopy



Sun Young Ryu syryu@rcnp.osaka-u.ac.jp

Hadron physics with LEPS and LEPS2

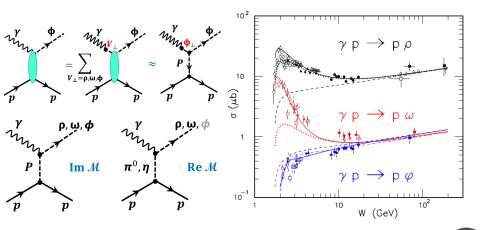
Backward π^0 Photoproduction


Differential cross sections and photon beam asymmetries for π^0 photoproduction have been measured at $E_{\gamma} = 1.5-2.4$ GeV and at the π^0 scattering angles, $-1 < \cos \theta_{c.m.} < -0.6$.

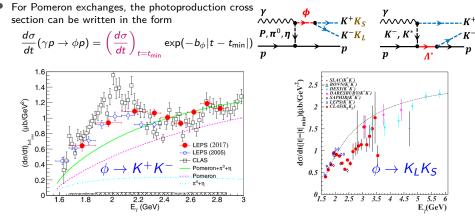
Hadron physics with LEPS and LEPS2

Backward η Photoproduction

• Backward η photoproduction off protons has been measured at $E_{\gamma} = 1.6-2.4$ GeV at the SPring-8/LEPS facility, by detecting protons scattered at forward angles.

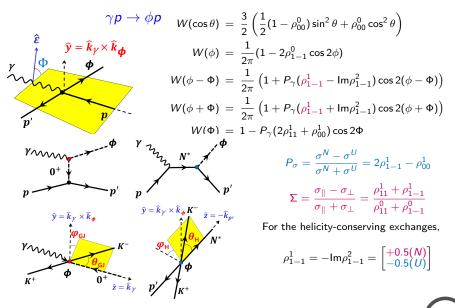


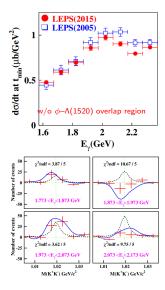
• This work provides unambiguous evidence for a bump structure above W = 2.0 GeV. No such structure is seen in η' , ω and π^0 photoproductions, which supports that this unique structure in η photoproduction is due to a baryon resonance with a large $s\overline{s}$ component.^a

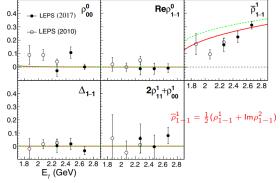

^aM. Sumihama *et al.* (LEPS Collab), Phys. Rev. C 80, 052201 (2009).

ϕ Photoproduction near Threshold

- In the vector meson dominance (VMD) model for photoproduction, a real photon can fluctuate into a virtual vector meson V = {ρ, ω, φ}, which subsequently scatters off the target proton.
- The φ meson production has the unique feature within gluon dynamics of being a result of OZI suppression due to the dominant s̄s structure.

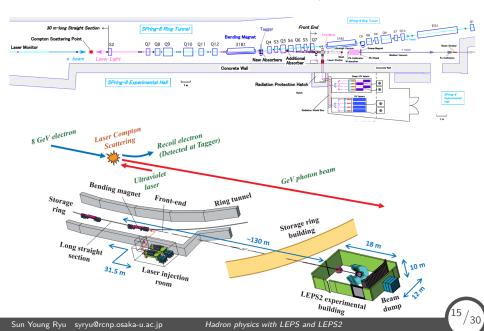

ϕ Photoproduction near Threshold


Differential cross sections for ϕ photoproduction in the reaction $\gamma p \rightarrow p\phi$ followed by $\phi \rightarrow K^+ K^{-a}$ and $K_5 K_L^{\ b}$ show some enhancement in the photon beam energy range near 2.1 GeV.

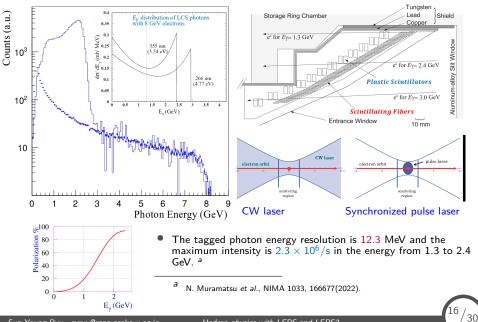

^aK. Mizutani et al. (LEPS Collab), PRC 96, 062201(R)(2017); B. Dey et al. (CLAS Collab), PRC 89, 055208(2014)
 ^bH. Seraydaryan et al. (CLAS Collab), PRC 89, 055206(2014).

Decay Angular Distribution and SDMEs

ϕ Photoproduction near Threshold

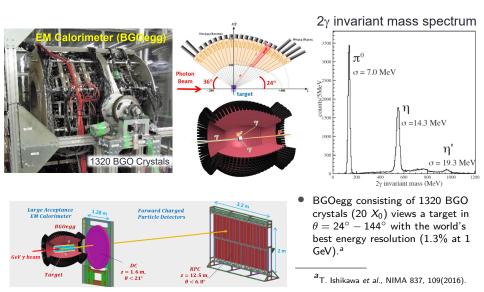


- $\overline{\rho}_{1-1}^1$ deviates largely from the model prediction in 1.97 < E_{γ} < 2.17 GeV, which reflects the contributions of N^* resonances. ^a
- The $\sqrt{s} = 2.1$ GeV bump structure was reconfirmed without the ϕ - $\Lambda(1520)$ interference region. ^b

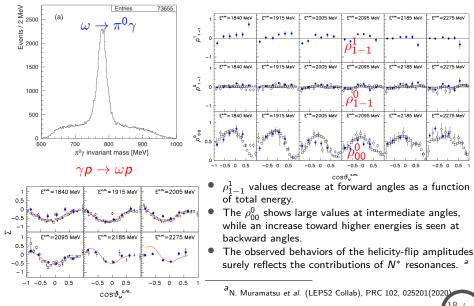

^bS.Y. Ryu et al. (LEPS Collab), PRL 116, 232001(2016).

^aK. Mizutani et al., PRC 96, 062201(R)(2017).

GeV Photon Beam at LEPS2/SPring-8

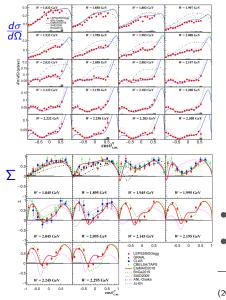


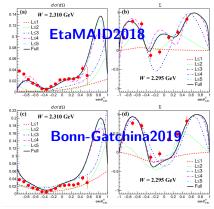
Backward Compton Scattered Photons



Sun Young Rvu svrvu@rcnp.osaka-u.ac.ip Hadron physics with LEPS and LEPS2

LEPS2 BGOegg Detector

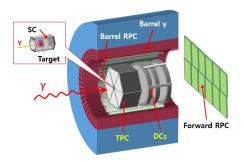

ω Photoproduction with BGOegg Detector



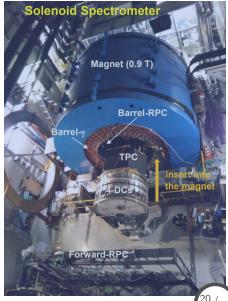
Sun Young Ryu syryu@rcnp.osaka-u.ac.jp

/ 30

η Photoproduction with BGOegg Detector

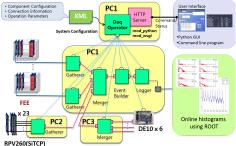

- A bump structure at W = 2.0-2.3 GeV is confirmed at extremely backward η polar angles.
- This bump structure is likely associated with high-spin resonances that couple with $s\overline{s}$ quarks. ^a

^aT. Hashimoto *et al.* (LEPS2/BGOegg Collab), PRC 106, 035201 (2022).


30

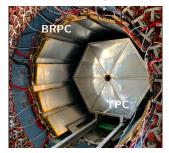
Sun Young Ryu syryu@rcnp.osaka-u.ac.jp

LEPS2 Solenoid Detector



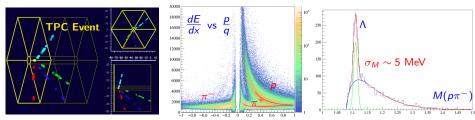
 The LEPS2 solenoid detector comprises TPC, SC, DCs, forward and barrel RPCs, Barrel Pb/Scint calorimeter (14.3 X₀), and neutron counters as well as a photon tagger placed approximately 150 m upstream from the detector.

LEPS2 DAQ System


TPC readout electronics

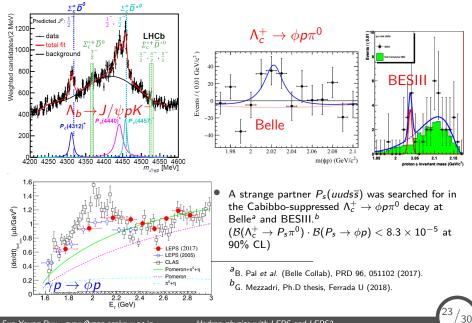
 We have developed a new, network-distributed data acquisition system based on DAQ-middleware framework.^a

^a S. Y. Ryu for LEPS2 Collab., AIP Conf. Proc. 2249, 030024 (2020).


Time Projection Chamber

- Hexagonal prism-shaped drift volume : 112 cm (corner-to-corner) × 71 cm (length).
- 24 straight pad layers grouped into 6 sections forming a hexagonal web-like structure.
- 10,830 pads with single pad size of 4.6 × 10 mm².

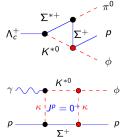
30



• A decays are successfully reconstructed with p and π^- tracks in the first dataset.^a

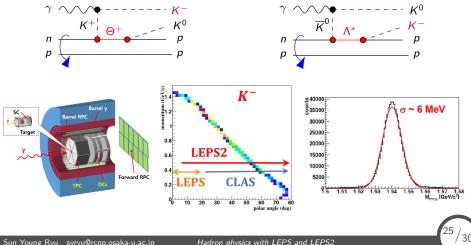
^a R. Kobayakawa for LEPS2 Collab. JPS fall meeting, 2021.

Hadron physics with LEPS and LEPS2

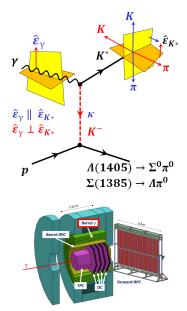

Strange Partner P_s of P_c Pentaquark States

Strange Partner of *P_c* **Pentaquark States**

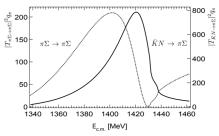
The bump structure observed in ϕ photoproduction could be regarded as a ΣK^* molecular state $(J = 3/2^-)$. Triangular singularity could also explain the bump structure with $\Sigma K^* \rightarrow \phi p.^a$



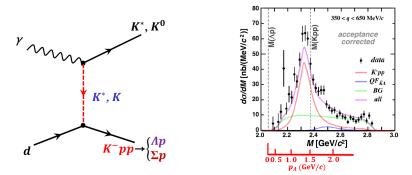
- The measured parity spin asymmetry shows that natural-parity exchange is dominant in $\gamma p \rightarrow K^{*0} \Sigma^+$ reaction. ^b
- The nature of the bump structure should be further investigated using circularly polarized photon beam and a polarized (HD) target.


^aJ-J. Xie and F-K Guo, PLB 774, 108 (2017); J. He, PRD 95, 074031(2017). ^bS.H. Hwang *et al.* (LEPS Collab.), PRL 108, 092001(2012).

Θ^+ Search at LEPS2


- We search for the $\Theta^+(S = +1, uudd\bar{s})$ via $\gamma d \to K^- K^0 pp$ reaction, followed by $\Theta^+ \rightarrow K^0 p; K^0(K_S) \rightarrow \pi^+ \pi^-.$
- All final state particles can be reconstructed using the large-acceptance LEPS2 detector, which facilitate a wider angular coverage for K^- detection.

Photoproduction of $\Lambda(1405)$ with K^{*+}


- K^{*+}(→ π⁺K⁰_S) decay plane ⊥(||) the photon beam polarization (ŝ) for unnatural-parity exchange (natural-parity exchange)
- Unnatural-parity K^- exchange selects $\Lambda(1405)$ strongly coupled to a K^-p pole .^a
- I = 0 channel $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$ can be reconstructed using Barrel- γ detector.

^a Jido et al., NPA 725, 181 (2003); T. Hyodo et al., PLB 593, 75 (2004).

Search for K^-pp nuclei at LEPS2

- J-PARC E15 reported a peak in Λp mass of ${}^{3}\text{He}(K^{-}, \Lambda p)n$ well below $K^{-}pp$ mass threshold. ^a
- K^-pp search in $\gamma d \to K^+\pi^- X$, $K_5^0 X$, and $K^{*0}X$ reactions at LEPS2. facilitating complete kinematics with a detection of K/K^* and decay products from K^-pp .
- The existence of K^-pp nuclei can also be reconfirmed with Λp scattering in the range of 0.5–2.0 GeV/*c*.

$$\gamma p \to K^+ \Lambda$$
; $\Lambda p \to (K^- pp) \to \Lambda p$

^aJ-PARC E15 Collab., Phys. Lett. B 789, 620 (2019).

Summary

- A LEPS2 facility with BGOegg and solenoid detectors has started its full operation for studying hadron spectroscopy from photoproduction using high-intensity Compton backscattered photons at SPring-8.
- Highly polarized photons are very powerful to unveil the nature of hadrons from photoproduction; N*, Δ, Λ*, Σ*, Θ⁺, P_s, K⁻pp and so on.
- The LEPS2 solenoid detector has completed its first phase of physics runs. Analysis effort of the first dataset is now underway. Please stay tuned.

