Exclusive photoproduction of excited vector mesons in the dipole picture

Roman Pasechnik
TPP, Lund University

"New Vistas in Photon Physics in Heavy-Ion Collisions" 2022 Kralkow, Poland

Challenges in VM production studies

\checkmark Quarkonia production in pp/pA, as well as high pT forward particle production in PA , traditionally are very important probes for QCD dynamics e.g. QCD factorisation, gluon resummations, higher order PT and non-PT effects, medium, CGC etc

* probe for $2 C D$ in heavy quark production
heavy quarks provide a naturally hard enough scale to study the production mechanisms in perturbative QCD (factorisation breaking, CS vs CO etc)
* probe for large-distance evolution and formation

Quarkonia are suppressed in a deconfined medium which is believed to be due to a Debye screening of the heavy quark potential (Matsui-Satz’86)
\star Quarkonia are sensitive to all the stages, from early heavy quark production to late time evolution and bound states'formation
\checkmark Charmonia are very special!
\star Cbarm quark mass scale is at the boundary between $p \mathscr{Q} C D$ and soft $\mathscr{Q} C D$
\star Specific for production and destruction mechanisms in HIC
$\checkmark \mathrm{J} / \mathrm{psi}$ puzzle: highly uncertain production and evolution in hot environment What is the dominate QCD mechanism and role of the medium? why $R_{p A}$ is close to one?

Quantitative understanding of VMs in pp/pA/AA at different energies remains a challenge

VM exclusive photo production: an overview

$$
\frac{\mathrm{d} \sigma^{\gamma p \rightarrow V p}}{\mathrm{~d} t}=\frac{1}{16 \pi}\left|\mathcal{A}^{\gamma p}\left(x, \Delta_{T}\right)\right|^{2} \quad x=\frac{M_{V}^{2}+Q^{2}}{s}
$$

$$
\begin{aligned}
& \mathcal{A}^{\gamma p}\left(x, \Delta_{T}\right)=2 i \int \mathrm{~d}^{2} \boldsymbol{r} \int_{0}^{1} \mathrm{~d} z \int \mathrm{~d}^{2} \boldsymbol{b}\left(\Psi_{V}^{*} \Psi\right) \mathrm{e}^{-i[\boldsymbol{l}-(1-z) r] \cdot \Delta_{N}} N(x, \boldsymbol{r}, \boldsymbol{b})
\end{aligned}
$$

$$
N(x, \boldsymbol{r}, \boldsymbol{b}) \equiv \operatorname{Im} \mathcal{A}_{q \bar{q}}(x, \boldsymbol{r}, \boldsymbol{b})=2[1-\operatorname{Re} S(x, \boldsymbol{r}, \boldsymbol{b})]
$$

$$
\sigma_{q \bar{q}}(x, r)=2 \int \mathrm{~d}^{2} \boldsymbol{b} N(x, \boldsymbol{r}, \boldsymbol{b})
$$

H. Kowalski, L. Motyka, and G. Watt, Phys. Rev. D74, 074016 (2006)
J. Hufner, Yu. P. Ivanov, B. Z. Kopeliovich, and A. V. Tarasov, Phys. Rev. D62, 094022 (2000), arXiv:hep-ph/0007111 [hep-ph].
J. Nemchik, N. N. Nikolaev, and B. G. Zakharov, Phys. Lett. B341, 228 (1994)

VM wave functions in the Light-Front approach

1) Go to the rest frame of the quark-antiquark $Q \bar{Q}$ system
2) Solve the Schrödinger equation (SE)

The potential in SE corresponds to the potential between both quark and antiquark
3) Boost it to the light cone (LC) frame
4) Use it for example within the color dipole framework

In case of VM, we can factorize the radial and spin-orbital part
In most cases, the spin-orbital part is omitted Absorbed into normalisation!

If we use the potential of the harmonic oscillator (HO), we can solve it analytically, and we get commonly used Gaussian LC wave function (assuming the same spin and polarization structure as the photon)

HO doesn't include the Coulomb repulsion
H. G. Dosch, T. Gousset, G. Kulzinger and H. J. Pirner, Phys. Rev. D 55 (1997) 2602.
J. R. Forshaw, R. Sandapen and G. Shaw, Phys. Rev. D 69 (2004) 094013.
J. Nemchik, N. N. Nikolaev and B. G. Zakharov, Phys. Lett. B 341 (1994) 228.
J. Nemchik, N. N. Nikolaev, E. Predazzi and B. G. Zakharov, Z. Phys. C 75 (1997) 71.

Quarkonia wave functions: radial part

The $Q \bar{Q}$ rest frame
Schrodinger equation for spatial $Q \bar{Q}$ wave function

$$
\left(-\frac{\Delta}{m_{c}}+V(r)\right) \Psi_{n l m}(\vec{r})=E_{n l} \Psi_{n l m}(\vec{r}) \quad \Psi(\vec{r})=\Psi_{n l}(r) \cdot Y_{l m}(\theta, \varphi)
$$

For references and more details see Eur.Phys.J. C79 (2019) no.6, 495;
$V_{Q \bar{Q}}(r)$ - potentials:

- Harmonic oscillator (HO)
- Cornell potential (COR)
- Logarithmic potential (LOG)
- Buchmüller-Tye (BT)
- Power-law (POW)

Boosting and Melosh spin rotation

Boosting the radial part!

..from the rest frame to the LC frame

$$
\begin{gathered}
\Psi(\vec{r}) \Rightarrow \Psi(\vec{p}) \\
M^{2}=4\left(p^{2}+m_{c}^{2}\right)=\frac{p_{T}^{2}+m_{c}^{2}}{\alpha(1-\alpha)} \\
p_{L}=(\alpha-1 / 2) M\left(p_{T}, \alpha\right)
\end{gathered}
$$

H.J. Melosh found a relation between of the spin-orbital part in the $Q \bar{Q}$ rest frame and the LC frame

Melosh spin rotation

$$
\bar{\chi}_{\mathbf{c}}=\widehat{R}\left(\alpha, \vec{p}_{T}\right) \chi_{c}, \quad \bar{\chi}_{\overline{\mathbf{c}}}=\widehat{R}\left(1-\alpha,-\vec{p}_{T}\right) \chi_{\bar{c}}
$$

$$
\widehat{R}\left(\alpha, \vec{p}_{T}\right)=\frac{m_{c}+\alpha M-i[\vec{\sigma} \times \vec{n}] \vec{p}_{T}}{\sqrt{\left(m_{c}+\alpha M\right)^{2}+p_{T}^{2}}}
$$

$$
U^{(\mu, \bar{\mu})}\left(\alpha, \vec{p}_{T}\right)=\chi_{c}^{\mu \dagger} \hat{R}^{\dagger}\left(\alpha, \vec{p}_{T}\right) \vec{\sigma} \cdot \vec{e}_{\psi} \sigma_{y} \widehat{R}^{*}\left(1-\alpha,-\vec{p}_{T}\right) \sigma_{y}^{-1} \widetilde{\chi}_{\bar{c}}^{\bar{\mu}}
$$

$$
\Psi(\vec{p}) \Rightarrow \sqrt{2} \frac{\left(p^{2}+m_{c}^{2}\right)^{3 / 4}}{\left(p_{T}^{2}+m_{c}^{2}\right)^{1 / 2}} \cdot \Psi\left(\alpha, \vec{p}_{T}\right) \equiv \Phi_{\psi}\left(\alpha, \vec{p}_{T}\right)
$$

$$
\Phi_{\psi}^{(\mu, \bar{\mu})}\left(\alpha, \vec{p}_{T}\right)=U^{(\mu, \bar{\mu})}\left(\alpha, \vec{p}_{T}\right) \cdot \Phi_{\psi}\left(\alpha, \vec{p}_{T}\right)
$$

J. Hufner, Y.P. Ivanov, B.Z. Kopeliovich, A.V. Tarasov, Phys. Rev. D 62, 094022 (2000)

Exclusive electroproduction of heavy vector mesons

- We study the effects of the Melosh spin rotation in

diffractive electroproduction

As part of the project we published the VM wave functions grid at https://hep.fjfi.cvut.cz/vm.php for

- $J / \psi, \psi(2 S), \Upsilon(1 S), \Upsilon(2 S), \Upsilon(3 S)$
- 5 different potentials

We also published grids for electroproduction cross sections with and with out spin rotation for

- 5 different dipole cross sections

Highlights of spin rotation: 1 S and 2 S charmonia cross sections

- BT potential + KST/GBW dipole cross section
- Stronger effect of the spin rotation for $\psi(2 S)$

Eur.Phys.J. C79 (2019) no.2, 154; arXiv:1812.03001
Eur.Phys.J. C79 (2019) no.6, 495; arXiv:1901.02664

Buchmuller-Tye potential

Highlights of spin rotation: $1 \mathbf{S}$ and 2 S charmonia cross sections

- BT potential + KST/GBW dipole cross section

Eur.Phys.J. C79 (2019) no.2, 154; arXiv:1812.03001
Eur.Phys.J. C79 (2019) no.6, 495; arXiv:1901.02664
Buchmuller-Tye potential

GBW model
C.Henkels, E.G.de Oliveira, RP and H.Trebien, Phys. Rev. Dıo2, no.I, Oı4024 (2020)

Highlights of spin rotation: 1S,2S,3S bottomonia

Highlights of spin rotation: $\mathbf{2 S} / \mathbf{1 S}$ and $3 \mathrm{~S} / \mathbf{1 S}$ bottomonia ratio

1S and 2S electro/photo production: uncertainties

1 S and 2 S electro/photo production: uncertainties

b-dependent partial dipole amplitude: two saturation models

$$
\begin{gathered}
\underline{\text { b-Sat model }} \\
\begin{array}{rl}
N(x, \boldsymbol{r}, \boldsymbol{b}) & =1-\exp \left(-\frac{\pi^{2}}{2 N_{c}} r^{2} \alpha_{s}\left(\mu^{2}\right) x g\left(x, \mu^{2}\right) T(b)\right) \\
\mu^{2}=4 / r^{2}+\mu_{0}^{2} & T(b)=\frac{1}{2 \pi B_{\mathrm{G}}} \mathrm{e}^{-b^{2} / 2 B_{\mathrm{G}}} \quad B_{\mathrm{G}}=4.25 \mathrm{GeV}^{-2} \\
\text { H. Kowalski and D. Teaney, Phys. Rev. D 68, } 114005
\end{array}(2003)
\end{gathered}
$$

$\underline{\text { BK model }} \quad N(x, \boldsymbol{r}, \boldsymbol{b})=\mathcal{N}(r, b, \ln (0.008 / x))$

$$
\begin{aligned}
\frac{\partial \mathcal{N}(r, b, Y)}{\partial Y}= & \int d^{2} \boldsymbol{r}_{1} K\left(r, r_{1}, r_{2}\right)\left(\mathcal{N}\left(r_{1}, b_{1}, Y\right)+\mathcal{N}\left(r_{2}, b_{2}, Y\right)-\mathcal{N}(r, b, Y)\right. \\
& \left.-\mathcal{N}\left(r_{1}, b_{1}, Y\right) \mathcal{N}\left(r_{2}, b_{2}, Y\right)\right)
\end{aligned}
$$

D. Bendova, J. Cepila, J. G. Contreras, and M. Matas, Phys. Rev. D100, 054015 (2019)

Differential cross sections: charmonia

C.Henkels, E.G.de Oliveira, RP and H.Trebien, Phys. Rev. Dio4, no.5, 054008 (2021)

Differential cross sections: bottomonia

BK model

$p P b \rightarrow \Upsilon(n S) p P b$

Coherent photoproduction off nuclear targets

C.Henkels, E.G.de Oliveira, RP and H.Trebien, Phys. Rev. Dıo4, no.5, 054008 (202I)

Gluon Wigner distribution from exclusive photoproduction
T. Altinoluk et al, PLB758, 373 (2016)

Y. Hatta, B. W. Xiao, F. Yuan, PRL II6, 2023OI (2016)

Y. Hagiwara, Y. Hatta, RP, M. Tasevsky, O. Teryaev,

PRD 96, 034009 (2017)

Dijet observables:
Proton recoil momentum: $\quad \vec{k}_{1 \perp}+\vec{k}_{2 \perp}=-\vec{\Delta}_{\perp}$

Dijet relative momentum: $\quad \vec{P}_{\perp}=\frac{1}{2}\left(\vec{k}_{2 \perp}-\vec{k}_{1 \perp}\right)$

Fourier transform of the dipole S-matrix!

$$
\frac{d \sigma}{d \vec{P}_{\perp} d \vec{\Delta}_{\perp}} \propto|\vec{M}|^{2}, \quad \vec{M}\left(\vec{P}_{\perp}, \vec{\Delta}_{\perp}\right)=\int \frac{d^{2} \vec{q}_{\perp}}{2 \pi} \frac{\vec{P}_{\perp}-\vec{q}_{\perp}}{\left(\vec{P}_{\perp}-\vec{q}_{\perp}\right)^{2}+\epsilon_{f}^{2}} S_{Y}\left(\vec{q}_{\perp}, \vec{\Delta}_{\perp}\right)
$$

for small- $Q^{2} \quad \vec{q}_{\perp} \sim \vec{P}_{\perp}$

$$
\frac{d \sigma}{d \vec{P}_{\perp} d \vec{\Delta}_{\perp}} \propto\left(S_{Y}\left(\vec{P}_{\perp}, \vec{\Delta}_{\perp}\right)\right)^{2}
$$

Elliptic Wigner distribution and dipole orientation

BK equation with SO(3) symmetry (CGC)

Gubser (20II)

Geometric
scaling!
Y. Hatta, B. W. Xiao, F. Yuan, PRL in6, 20230i (2016)
Y. Hagiwara, Y. Hatta, T. Ueda, PRD 94, 094036 (2016)

$$
W(x, \boldsymbol{b}, \boldsymbol{k})=W_{0}(x, b, k)+2 \cos 2\left(\phi_{k}-\phi_{b} W_{1}(x, b, k)+\cdots\right.
$$

E. Iancu and A. Rezaeian, PRD95, 094003 (2017)

McLerran-Venugopalan model for the dipole S-matrix

$$
S(\boldsymbol{b}, \boldsymbol{r})=\exp \left\{-N_{2 g}(\boldsymbol{b}, \boldsymbol{r})\right\}
$$

$N_{2 g}(b, r, \theta)=\mathcal{N}_{0}(b, r)+\mathcal{N}_{\theta}(b, r) \cos (2 \theta)$

Elliptic flow, gluon transversity,

Dipole orientation effects
angular correlation in DVCS etc

Dipole orientation effects VM production

Diffractive
photon/VM

Y. Hatta, B. W. Xiao, F. Yuan,

Hatta, B. W. Xiao, F. Yuan,
PRD95, iI4026 (2017)

Can only access b-profile but not kT-dependence of the gluon Wigner!

B.Z.Kopeliovich, M.Krelina

 and J.Nemchik,Phys. Rev. Dio3, no.9, 094027 (202I) of

A controversy?

Summary

\checkmark The dipole picture enables to universally explore VM photo production off proton and nuclear targets
\checkmark Proper treatment of the radial wave function and spin effects contribute to a reasonable agreement with available data on VM photo production without any adjustable parameters
$\checkmark \quad$ Predictions for differential cross sections off both nuclear and proton targets are obtained for excited (charmonia and bottomonia) states
\checkmark A controversy in the impact of dipole orientation effects on t-dependence has been spotted in the literature, and more investigations are needed

