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Challenges in VM production studies

✓  Quarkonia production in pp/pA, as well as high pT forward particle  
     production in pA, traditionally are very important probes for QCD dynamics 
     e.g. QCD factorisation, gluon resummations, higher order PT and non-PT effects, medium, CGC etc

✓  J/psi puzzle: highly uncertain production and evolution in hot environment 

     What is the dominate QCD mechanism and role of the medium? why RpA is close to one?

Quarkonia are suppressed in 

a deconfined medium which is believed

to be due to a Debye screening of the

heavy quark potential (Matsui-Satz’86)

heavy quarks provide a naturally hard

enough scale to study the production


mechanisms in perturbative QCD

(factorisation breaking, CS vs CO etc)

★   probe for QCD in heavy quark production ★   probe for large-distance evolution and formation

✓  Charmonia are very special!

★   Charm quark mass scale is at the boundary between pQCD and soft QCD
★   Specific for production and destruction mechanisms in HIC

★ Quarkonia are sensitive to all the stages, from early heavy quark production 
      to late time evolution and bound states’ formation

Quantitative understanding of VMs in pp/pA/AA at 
different energies remains a challenge
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VM exclusive photo production: an overview

transverse profile of the target gluon density that can be probed by means of the measured
di↵erential in t distributions.

The impact-parameter dependence of the gluon density in the target is an intrinsically
non-perturbative property and is often parameterised in terms of a Gaussian distribution
like it is done, for example, in the case of the so-called “bSat” model [15]. In order to get
a more accurate description of interactions between the color dipole and the target encoded
in the impact-parameter profile of the target, the corresponding amplitude can be found by
solving the Balitsky-Kovchegov (BK) evolution equation [16, 17]. It is known that the BK
equation at the next-to-leading order (NLO) is unstable due to large NLO corrections when
one integrates out the gluon emissions with small transverse momenta. So, these corrections
need to be properly resummed to all orders [18]. Besides, an additional phenomenon called
the Coulomb tails that corresponds to an unphysical growth of the amplitude at large im-
pact parameters should be taken into consideration. The latter phenomenon is found to be
connected to the creation of large daughter dipoles during the evolution, thus enabling this
problem to be cured. The BK solutions without such Coulomb tails can be found in several
recent studies, e.g. in Refs. [19, 20] this problem is absent by the use of the collinearly im-
proved kernel. In the current analysis, we apply both the “bSat” model and the BK solution
with collinearly improved kernel in the study of di↵erential quarkonia photoproduction cross
sections in UPCs for relevant experimental conditions at HERA and LHC colliders.

The paper is organised as follows. In Sect. II, we give a short description of the dif-
ferential cross section of elastic vector meson photoproduction �p ! V p o↵ the proton
target in terms of the dipole S-matrix and quarkonia LF wave functions in the framework
of potential approach. In Sect. III, we discuss the models for the impact-parameter de-
pendent partial dipole amplitude that have been used in the numerical analysis throughout
this work. Sect. IV presents the numerical results for the di↵erential cross section of the
�p ! V p process for the ground and excited quarkonia states, with J/ results successfully
describing the existing data. In Sect. V, we review the formalism to obtain the di↵erential
cross section of coherent quarkonia photoproduction o↵ nuclear targets in UPCs and show
our corresponding numerical predictions for the ground and first excited  and ⌥ states
presented in Sect. VI. At last, a brief summary of our results is given in Sect. VII.

II. ELASTIC PHOTOPRODUCTION OFF A PROTON

The advantage of studying the vector meson photoproduction is that, in order to produce
a single vector meson and nothing else in a detector, a color charge cannot be transferred to
the target, requiring that at least two gluons (in the net color-singlet state) are exchanged.
This provides an exclusive character of the process, with a particularly clean environment.
Another advantage is that only in the exclusive scattering process it is possible to measure
the total momentum transfer �T , and interpret it as the Fourier conjugate of the impact
parameter (see e.g. Ref. [21, 22]). Consequently, these processes probe not only the density
of partons, but also their spatial distribution in the transverse plane.

Considering first the proton target case, at high energies the elastic di↵ractive di↵erential
cross section for the �p ! V p scattering is found as follows [15]:

d��p!V p

dt
=

1

16⇡
|A�p(x,�T )|2 , (2.1)

where t = ��2
T ⌘ (p1 � p01)

2 is the momentum transfer squared, �T ⌘ |�| is the trans-
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verse momentum of the produced vector meson V recoiled against the target (assuming the
projectile photon momentum to be collinear i.e. carries no transverse momentum), and the
elastic production amplitude

A�p(x,�T ) =

Z
d2r

Z 1

0

dz ( ⇤
V �) Aqq̄(x, r,�) , (2.2)

is given in terms of the overlap between the transversely-polarised real photon � ! QQ̄
( �) and vector meson V ! QQ̄ LF wave functions ( � and  V , respectively). Here, the
elementary amplitude for elastic qq̄ dipole scattering Aqq̄ is related to the dipole S-matrix

Aqq̄(x, r,�) =

Z
d2b e�ib·� Aqq̄(x, r, b) = i

Z
d2b e�ib·� 2[1� S(x, r, b)] . (2.3)

and thus contains the most detailed (5-dimensional) information about the gluons density
in the target. It is directly connected to the so-called gluon Wigner distribution as was
established earlier in Ref. [23]. Even though a direct access of the elliptic gluon density
in the Wigner distribution by a measurement of the exclusive quarkonia photoproduction
is impossible, due r variable being integrated in the measured di↵erential cross section, an
access of the impact parameter profile of the target gluon density is still very relevant for
understanding the hadron or nucleus structure at very low momentum transfers.

Note, by means of the optical theorem, the imaginary part of the partial dipole amplitude
in the forward limit (�T ! 0) is related to the dipole cross section �qq̄(x, r) – a universal
ingredient whose parameterization can be extracted from a given process (typically, from
DIS) and then used for description of many other processes in ep, pp and pA collisions
[24, 25] (for a first analysis of elastic charmonia photoproduction in the dipole picture, see
e.g. Refs. [26–30]).

In the o↵-forward case, one straightforwardly rewrites the elastic amplitude in terms of
the imaginary part of the elastic qq̄ amplitude in the impact parameter representation in
the following way [15]

A�p(x,�T ) = 2i

Z
d2r

Z 1

0

dz

Z
d2b ( ⇤

V ) e
�i[b�(1�z)r]·�N(x, r, b) . (2.4)

where z is the longitudinal momentum fraction of a heavy (anti)quark in the QQ̄ dipole,
and

N(x, r, b) ⌘ ImAqq̄(x, r, b) = 2[1� ReS(x, r, b)] , (2.5)

such that the dipole cross section is defined as follows,

�qq̄(x, r) = 2

Z
d2bN(x, r, b) . (2.6)

In order to take into account the real part of the Aqq̄ amplitude, it su�ces to introduce
in Eq. (2.1) a factor that represents the ratio of the real to imaginary parts of the exclusive
photoproduction amplitude A�p as follows [31]:

A�p ) A�p

✓
1� i

⇡�

2

◆
, with � =

@ lnA�p

@ ln(1/x)
. (2.7)
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various sources and ingredients coming into the color dipole formalism. Final remarks and
conclusions are summarized in Section VI.

II. EXCLUSIVE QUARKONIA ELECTROPRODUCTION: DIPOLE PICTURE

In the framework of color dipole approach [5, 10–13], the projectile (real or virtual, with
q2 = −Q2) photon undergoes strong interactions via its Fock components containing quarks
and gluons with the target proton in the frame where the target proton is at rest. In the
dipole picture, such interactions are described by the universal dipole cross section, which
is not derivable from the first principles but, instead, is fitted to e.g. HERA data (for more
details, see below). In the case of exclusive vector meson electroproduction illustrated in
Fig. 1 (left panel), such a lowest Fock state corresponds to the QQ̄ dipole whose transverse
size r is nearly frozen in the high energy limit. Once the dipole scattering occurs, a coherent
QQ̄ state forms a vector meson by means of a projection of the QQ̄ production amplitude on
to a given LC quarkonium wave function. Let us now briefly describe the main ingredients
of the dipole formulation of this process.

γ∗ V = {QQ̄}
r

1− z

z

b

p p

(1− z)r

zr

Q̄

Q
γ∗

p

J/ψ

FIG. 1: A schematic illustration of the exclusive quarkonium electroproduction process, γ∗ p → V p,
in the dipole picture. On the left panel, the structure of the amplitude and kinematic variables in

impact parameter space are depicted while its amplitude squared for the J/ψ electroproduction is
shown on the right panel.

The forward amplitude for exclusive electroproduction of a vector meson V with mass
MV in the target rest frame is given by (see e.g. Ref. [8] and references therein)

ImAγ∗p→V p
T,L (x,Q2) =

∫

d2r

1
∫

0

dzΨ†
V (r, z)Ψγ∗

T,L
(r, z;Q2)σqq̄(x, r) , x =

M2
V +Q2

s
, (2.1)

where x is the standard Bjorken variable [19], s = Q2+W 2 is the square of the ep center-of-
mass energy (with W being the γ∗p center-of-mass energy), ΨV (r, z) is the vector meson V
wave function, Ψγ∗

T,L
(r, z;Q2) is the LC distribution (or wave) function of a transversely (T )

or longitudinally (L) polarized virtual photon for a QQ̄ fluctuation, $r is the transverse size
of the QQ̄ dipole, and z = p+Q/p

+
γ is the boost-invariant fraction of the photon momentum

p+γ = Eγ + pγ carried by a heavy quark (or anti-quark). The universal dipole cross section
σqq̄(x, r) describes the dipole scattering off the target. It is typically fitted to the precision
inclusive DIS data at HERA and then is used to describe a variety of other processes in ep
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✓
1� i

⇡�

2

◆
, with � =

@ lnA�p

@ ln(1/x)
. (2.7)

4

verse momentum of the produced vector meson V recoiled against the target (assuming the
projectile photon momentum to be collinear i.e. carries no transverse momentum), and the
elastic production amplitude

A�p(x,�T ) =

Z
d2r

Z 1

0

dz ( ⇤
V �) Aqq̄(x, r,�) , (2.2)

is given in terms of the overlap between the transversely-polarised real photon � ! QQ̄
( �) and vector meson V ! QQ̄ LF wave functions ( � and  V , respectively). Here, the
elementary amplitude for elastic qq̄ dipole scattering Aqq̄ is related to the dipole S-matrix

Aqq̄(x, r,�) =

Z
d2b e�ib·� Aqq̄(x, r, b) = i

Z
d2b e�ib·� 2[1� S(x, r, b)] . (2.3)

and thus contains the most detailed (5-dimensional) information about the gluons density
in the target. It is directly connected to the so-called gluon Wigner distribution as was
established earlier in Ref. [23]. Even though a direct access of the elliptic gluon density
in the Wigner distribution by a measurement of the exclusive quarkonia photoproduction
is impossible, due r variable being integrated in the measured di↵erential cross section, an
access of the impact parameter profile of the target gluon density is still very relevant for
understanding the hadron or nucleus structure at very low momentum transfers.

Note, by means of the optical theorem, the imaginary part of the partial dipole amplitude
in the forward limit (�T ! 0) is related to the dipole cross section �qq̄(x, r) – a universal
ingredient whose parameterization can be extracted from a given process (typically, from
DIS) and then used for description of many other processes in ep, pp and pA collisions
[24, 25] (for a first analysis of elastic charmonia photoproduction in the dipole picture, see
e.g. Refs. [26–30]).

In the o↵-forward case, one straightforwardly rewrites the elastic amplitude in terms of
the imaginary part of the elastic qq̄ amplitude in the impact parameter representation in
the following way [15]

A�p(x,�T ) = 2i

Z
d2r

Z 1

0

dz

Z
d2b ( ⇤

V ) e
�i[b�(1�z)r]·�N(x, r, b) . (2.4)

where z is the longitudinal momentum fraction of a heavy (anti)quark in the QQ̄ dipole,
and

N(x, r, b) ⌘ ImAqq̄(x, r, b) = 2[1� ReS(x, r, b)] , (2.5)

such that the dipole cross section is defined as follows,

�qq̄(x, r) = 2

Z
d2bN(x, r, b) . (2.6)

In order to take into account the real part of the Aqq̄ amplitude, it su�ces to introduce
in Eq. (2.1) a factor that represents the ratio of the real to imaginary parts of the exclusive
photoproduction amplitude A�p as follows [31]:

A�p ) A�p

✓
1� i

⇡�

2

◆
, with � =

@ lnA�p

@ ln(1/x)
. (2.7)

4

verse momentum of the produced vector meson V recoiled against the target (assuming the
projectile photon momentum to be collinear i.e. carries no transverse momentum), and the
elastic production amplitude

A�p(x,�T ) =

Z
d2r

Z 1

0

dz ( ⇤
V �) Aqq̄(x, r,�) , (2.2)

is given in terms of the overlap between the transversely-polarised real photon � ! QQ̄
( �) and vector meson V ! QQ̄ LF wave functions ( � and  V , respectively). Here, the
elementary amplitude for elastic qq̄ dipole scattering Aqq̄ is related to the dipole S-matrix

Aqq̄(x, r,�) =

Z
d2b e�ib·� Aqq̄(x, r, b) = i

Z
d2b e�ib·� 2[1� S(x, r, b)] . (2.3)

and thus contains the most detailed (5-dimensional) information about the gluons density
in the target. It is directly connected to the so-called gluon Wigner distribution as was
established earlier in Ref. [23]. Even though a direct access of the elliptic gluon density
in the Wigner distribution by a measurement of the exclusive quarkonia photoproduction
is impossible, due r variable being integrated in the measured di↵erential cross section, an
access of the impact parameter profile of the target gluon density is still very relevant for
understanding the hadron or nucleus structure at very low momentum transfers.

Note, by means of the optical theorem, the imaginary part of the partial dipole amplitude
in the forward limit (�T ! 0) is related to the dipole cross section �qq̄(x, r) – a universal
ingredient whose parameterization can be extracted from a given process (typically, from
DIS) and then used for description of many other processes in ep, pp and pA collisions
[24, 25] (for a first analysis of elastic charmonia photoproduction in the dipole picture, see
e.g. Refs. [26–30]).

In the o↵-forward case, one straightforwardly rewrites the elastic amplitude in terms of
the imaginary part of the elastic qq̄ amplitude in the impact parameter representation in
the following way [15]

A�p(x,�T ) = 2i

Z
d2r

Z 1

0

dz

Z
d2b ( ⇤

V ) e
�i[b�(1�z)r]·�N(x, r, b) . (2.4)

where z is the longitudinal momentum fraction of a heavy (anti)quark in the QQ̄ dipole,
and

N(x, r, b) ⌘ ImAqq̄(x, r, b) = 2[1� ReS(x, r, b)] , (2.5)

such that the dipole cross section is defined as follows,

�qq̄(x, r) = 2

Z
d2bN(x, r, b) . (2.6)

In order to take into account the real part of the Aqq̄ amplitude, it su�ces to introduce
in Eq. (2.1) a factor that represents the ratio of the real to imaginary parts of the exclusive
photoproduction amplitude A�p as follows [31]:

A�p ) A�p

✓
1� i

⇡�

2

◆
, with � =

@ lnA�p

@ ln(1/x)
. (2.7)

4

verse momentum of the produced vector meson V recoiled against the target (assuming the
projectile photon momentum to be collinear i.e. carries no transverse momentum), and the
elastic production amplitude

A�p(x,�T ) =

Z
d2r

Z 1

0

dz ( ⇤
V �) Aqq̄(x, r,�) , (2.2)

is given in terms of the overlap between the transversely-polarised real photon � ! QQ̄
( �) and vector meson V ! QQ̄ LF wave functions ( � and  V , respectively). Here, the
elementary amplitude for elastic qq̄ dipole scattering Aqq̄ is related to the dipole S-matrix

Aqq̄(x, r,�) =

Z
d2b e�ib·� Aqq̄(x, r, b) = i

Z
d2b e�ib·� 2[1� S(x, r, b)] . (2.3)

and thus contains the most detailed (5-dimensional) information about the gluons density
in the target. It is directly connected to the so-called gluon Wigner distribution as was
established earlier in Ref. [23]. Even though a direct access of the elliptic gluon density
in the Wigner distribution by a measurement of the exclusive quarkonia photoproduction
is impossible, due r variable being integrated in the measured di↵erential cross section, an
access of the impact parameter profile of the target gluon density is still very relevant for
understanding the hadron or nucleus structure at very low momentum transfers.

Note, by means of the optical theorem, the imaginary part of the partial dipole amplitude
in the forward limit (�T ! 0) is related to the dipole cross section �qq̄(x, r) – a universal
ingredient whose parameterization can be extracted from a given process (typically, from
DIS) and then used for description of many other processes in ep, pp and pA collisions
[24, 25] (for a first analysis of elastic charmonia photoproduction in the dipole picture, see
e.g. Refs. [26–30]).

In the o↵-forward case, one straightforwardly rewrites the elastic amplitude in terms of
the imaginary part of the elastic qq̄ amplitude in the impact parameter representation in
the following way [15]

A�p(x,�T ) = 2i

Z
d2r

Z 1

0

dz

Z
d2b ( ⇤

V ) e
�i[b�(1�z)r]·�N(x, r, b) . (2.4)

where z is the longitudinal momentum fraction of a heavy (anti)quark in the QQ̄ dipole,
and

N(x, r, b) ⌘ ImAqq̄(x, r, b) = 2[1� ReS(x, r, b)] , (2.5)

such that the dipole cross section is defined as follows,

�qq̄(x, r) = 2

Z
d2bN(x, r, b) . (2.6)

In order to take into account the real part of the Aqq̄ amplitude, it su�ces to introduce
in Eq. (2.1) a factor that represents the ratio of the real to imaginary parts of the exclusive
photoproduction amplitude A�p as follows [31]:

A�p ) A�p

✓
1� i

⇡�

2

◆
, with � =

@ lnA�p

@ ln(1/x)
. (2.7)

4

feiçoamento de Pessoal de Nı́vel Superior – Brasil (CAPES) – Finance Code 001. The work
has been performed in the framework of COST Action CA15213 “Theory of hot matter and
relativistic heavy-ion collisions” (THOR). R.P. is supported in part by the Swedish Research
Council grants, contract numbers 621-2013-4287 and 2016-05996, as well as by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 668679).

[1] H. Mäntysaari, Rept. Prog. Phys. 83, 082201 (2020), arXiv:2001.10705 [hep-ph].
[2] S. Glazov (H1), Proceedings, 36th International Symposium on Multiparticle dynamics (ISMD

2006): Paraty, Brazil, September 2-8, 2006, Braz. J. Phys. 37, 793 (2007).
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� In case of VM, we can factorize the radial and spin-orbital
part

� In most cases, the spin-orbital part is omitted (only effect 
in normalization)

� If we use the potential of the harmonic oscillator (HO), 
we can solve it analytically, and we get commonly used 
Gaussian LC wave function (assuming the same spin and 
polarization structure as the photon) 

H. G. Dosch, T. Gousset, G. Kulzinger and H. J. Pirner, Phys. Rev. D 55 (1997) 2602.
J. R. Forshaw, R. Sandapen and G. Shaw, Phys. Rev. D 69 (2004) 094013. 
J. Nemchik, N. N. Nikolaev and B. G. Zakharov, Phys. Lett. B 341 (1994) 228.
J. Nemchik, N. N. Nikolaev, E. Predazzi and B. G. Zakharov, Z. Phys. C 75 (1997) 71.
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Quarkonia wave functions: radial part
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Figure 2: The dipole cross section as function of r2
T at energies

√
s = 10, 30, 100

and 300 GeV for GBW (left) and KST (right) parameterizations.

(∝ r2
T ) for the dipole cross section is used. For the coefficient in front of r2

T we employ the

expression obtained by the first term of Taylor expansion of Eq. (9):

“r2
T ”: σq̄q(rT , s) =

σ0(s)

r2
0(s)

· r2
T . (12)

2.2 Charmonium wave functions

The spatial part of the cc̄ pair wave function satisfying the Schrödinger equation

(
−

∆

mc
+ V (r)

)
Ψnlm("r ) = Enl Ψnlm("r ) (13)

is represented in the form

Ψ("r ) = Ψnl(r) · Ylm(θ,ϕ) , (14)

where "r is 3-dimensional cc̄ separation, Ψnl(r) and Ylm(θ,ϕ) are the radial and orbital parts

of the wave function. The equation for radial Ψ(r) is solved with the help of the program

[13]. The following four potentials V (r) have been used (see Fig. 3):
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� The ܳ തܳ rest frame => SchrƂdinger equation

� ொܸ തொ ݎ - potentials:

� Harmonic oscillator (HO)
� Cornell potential (COR)
� Logarithmic potential (LOG)
� �ƵĐŚŵƺůůĞƌʹTye (BT)
� Power-law (POW)
For references and more details see Eur.Phys.J. C79 (2019) no.6, 495; 
arXiv:1901.02664
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Boosting and Melosh spin rotation
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Figure 3: Shapes of the potentials V (r) for the four parameterizations employed
in this paper. The curves for COR, LOG and POW are normalized at r = 1 fm
to the value of BT potential.

2.3 Light-cone wave functions for the bound states

As has been mentioned, the lowest Fock component |cc̄〉 in the infinite momentum frame

is not related by simple Lorentz boost to the wave function of charmonium in the rest

frame. This makes the problem of building the light-cone wave function for the lowest

|cc̄〉 component difficult, no unambiguous solution is yet known. There are only recipes

in the literature, a simple one widely used [19], is the following. One applies a Fourier
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Figure 4: The radial part of the wave function Ψnl(r) for the 1S and 2S states
calculated with four different potentials (see text).

In order to change integration variable pL to the light-cone variable α one relates them via

M , namely pL = (α−1/2)M(pT ,α). In this way the cc̄ wave function acquires a kinematical

factor

Ψ("p ) ⇒
√

2
(p2 + m2

c)
3/4

(p2
T + m2

c)
1/2

· Ψ(α, "pT ) ≡ Φψ(α, "pT ) . (19)

This procedure is used in [20] and the result is applied to calculation of the amplitudes

(1). The result is discouraging, since the ψ′ to J/ψ ratio of the photoproduction cross sections

are far too low in comparison with data. However, the oversimplified dipole cross section

σqq̄(rT ) ∝ r2
T has been used, and what is even more essential, the important ingredient of

Lorentz transformations, the Melosh spin rotation, has been left out. The spin transforma-

tion has also been left out in the recent publication [21] which repeats the calculations of

[20] with a more realistic dipole cross section which levels off at large separations. This leads

to suppression of the node-effect (less cancelation) and enhancement of Ψ′ photoproduction.
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..from the rest frame to the LC frame

Melosh spin rotation

Nevertheless, the calculated ψ′ to J/ψ ratio is smaller than the data by a factor of two.

The 2-dimensional spinors χc and χc̄ describing c and c̄ respectively in the infinite mo-

mentum frame are known to be related via the Melosh rotation [22, 19] to the spinors χ̄c

and χ̄c̄ in the rest frame:

χ
c

= R̂(α, $pT )χc ,

χ
c̄

= R̂(1 − α,−$pT )χc̄ , (20)

where the matrix R(α, $pT ) has the form:

R̂(α, $pT ) =
mc + αM − i [$σ × $n] $pT√

(mc + αM)2 + p2
T

. (21)

Since the potentials we use in section 2.2 contain no spin-orbit term, the cc̄ pair is in

S-wave. In this case spatial and spin dependences in the wave function factorize and we

arrive at the following light cone wave function of the cc̄ in the infinite momentum frame

Φ(µ,µ̄)
ψ (α, $pT ) = U (µ,µ̄)(α, $pT ) · Φψ(α, $pT ) , (22)

where

U (µ,µ̄)(α, $pT ) = χµ†
c R̂†(α, $pT )$σ · $eψ σy R̂∗(1 − α,−$pT ) σ−1

y χ̃µ̄
c̄ (23)

and χ̃c̄ is defined in (4).

Note that the wave function (22) is different from one used in [23, 24, 25] where it was

assumed that the vertex ψ → cc̄ has the structure ψµ ū γµ u like the for the photon γ∗ → cc̄.

The rest frame wave function corresponding to such a vertex contains S wave and D wave.

The weight of the latter is dictated by the structure of the vertex and cannot be justified by

any reasonable nonrelativistic potential model for the cc̄ interaction.

Now we can determine the light-cone wave function in the mixed longitudinal momentum

- transverse coordinate representation:

Φ(µ,µ̄)
ψ (α,$rT ) =

1

2 π

∫
d2$pT e−i"pT"rT Φ(µ,µ̄)

ψ (α, $pT ) . (24)
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The rest frame wave function corresponding to such a vertex contains S wave and D wave.

The weight of the latter is dictated by the structure of the vertex and cannot be justified by

any reasonable nonrelativistic potential model for the cc̄ interaction.

Now we can determine the light-cone wave function in the mixed longitudinal momentum

- transverse coordinate representation:

Φ(µ,µ̄)
ψ (α,$rT ) =

1

2 π

∫
d2$pT e−i"pT"rT Φ(µ,µ̄)

ψ (α, $pT ) . (24)

13

Nevertheless, the calculated ψ′ to J/ψ ratio is smaller than the data by a factor of two.

The 2-dimensional spinors χc and χc̄ describing c and c̄ respectively in the infinite mo-

mentum frame are known to be related via the Melosh rotation [22, 19] to the spinors χ̄c

and χ̄c̄ in the rest frame:

χ
c

= R̂(α, $pT )χc ,

χ
c̄

= R̂(1 − α,−$pT )χc̄ , (20)

where the matrix R(α, $pT ) has the form:

R̂(α, $pT ) =
mc + αM − i [$σ × $n] $pT√

(mc + αM)2 + p2
T

. (21)

Since the potentials we use in section 2.2 contain no spin-orbit term, the cc̄ pair is in

S-wave. In this case spatial and spin dependences in the wave function factorize and we

arrive at the following light cone wave function of the cc̄ in the infinite momentum frame

Φ(µ,µ̄)
ψ (α, $pT ) = U (µ,µ̄)(α, $pT ) · Φψ(α, $pT ) , (22)

where

U (µ,µ̄)(α, $pT ) = χµ†
c R̂†(α, $pT )$σ · $eψ σy R̂∗(1 − α,−$pT ) σ−1

y χ̃µ̄
c̄ (23)

and χ̃c̄ is defined in (4).

Note that the wave function (22) is different from one used in [23, 24, 25] where it was

assumed that the vertex ψ → cc̄ has the structure ψµ ū γµ u like the for the photon γ∗ → cc̄.
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Exclusive electroproduction of heavy vector mesonsExclusive electroproduction of heavy quarkonia
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� We study the effects of the Melosh spin rotation in 
diffractive electroproduction
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Highlights of spin rotation: 1S and 2S charmonia cross sections
In turn, the successful use of the KST [50] and GBW [48] dipole parametrizations o↵ the
proton target motivates us to use the same approach also for nuclear targets in UPCs.

Strictly speaking, the dipole parameterisations discussed above contain only the part of
the gluon density that increases at low-x. At large x > 0.01, however, the gluon density
in the target decreases approximately as g(x) / (1 � x)N suggested by the dimensional-
cutting rules [55–57], where N ⇠ 5 ÷ 8 depending on the hard scale of the process. A
multiplication of the saturation scale squared Q2

s(x) by such a kinematical threshold factor
(1 � x)N is often referred to as the modified dipole approach that is known to provide
a significant improvement of the Drell-Yan data description at large x (while the small-
x regime is practically una↵ected) [58, 59] (see also Ref. [60]). Along these lines, in our
numerical analysis we supplement the dipole cross section with a factor (1� x)2ns�1, where
ns is the number of the active spectator quarks for the process (we adopt ns = 4 in this
work).

E. Numerical results for �p ! V p cross sections
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FIG. 1. Integrated di↵ractive �p ! V p photoproduction cross section as a function of �p center-of-
mass energy, W , for V =  (1S) (left) and V =  (2S) (right) using the GBW dipole parametrisation
(2.13). The results are compared with the available experimental data from H1 [8], ZEUS [10],
ALICE [15] and LHCb [14] collaborations as well as from the fixed-target experiment at Fermilab
[61–63].

Let us now turn to a discussion of numerical results for the integrated di↵ractive �p ! V p
photoproduction cross sections (i.e. with the proton target), for V =  (nS),⌥(nS), n = 1, 2.
In Fig. 1, we present the dipole model results for  (1S) (left panel) and  (2S) (right panel)
cross sections as functions of �p center-of-mass energy, W . In this analysis, we have used
five di↵erent models for the interquark potential available from the literature and mentioned
earlier. We notice that for charmonia photoproduction both dipole parametrisations, GBW
and KST, discussed above in Sect. IID give very similar results so we have chosen the
GBW parametrisation for the presentation purposes here. Our results are compared to
the data available from H1 [8], ZEUS [10], ALICE [15] and LHCb [14] measurements as
well as from the fixed-target measurements at Fermilab [61–63]. One observes that all five

8

GBW model

C.Henkels, E.G.de Oliveira, RP and H.Trebien, Phys. Rev. D102, no.1, 014024 (2020)
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b-dependent partial dipole amplitude: two saturation models
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Here, ↵em = 1/137 is the fine structure constant, Nc = 3 is the number of colors in QCD, ZQ

and mQ are the electric charge and the mass of the heavy quark, respectively, J0,1 (K0) are
the (modified) Bessel functions of the first (second) kind, respectively, pT is the transverse
momentum of the produced quarkonium state, and
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It is worth to mention that there are still significant theoretical uncertainties in description
of the vector meson wave functions. Besides the approach discussed above, there are also
other attempts to model them. A very recent one [43] executes the calculations at the NLO
level in �p collisions for longitudinally polarized photons making use of the CGC framework
and proposing a wave function based upon NRQCD matrix elements [44]. Other study [45]
modifies the dipole cross section to enhance the suppression of dipoles with large separations
beyond the confinement length-scale (a correction important for small Q2). The analysis of
Ref. [46] is very similar to ours except that the boosted Gaussian has been utilized there to
construct the vector-meson wave functions.

III. PARTIAL DIPOLE AMPLITUDE

For the main purpose of scanning of the impact-parameter profile of the target nucleon
or nucleus, we need an impact-parameter dependent (or b-unintegrated) dipole cross section
that can be found in terms of the dipole S-matrix introduced in Eq. (2.3). First, we tested
seven di↵erent models available from the literature, and then we selected the two that best
describe the exclusive vector meson photoproduction data from the HERA collider, namely,
the impact parameter dipole saturation model [15] (dubbed as “bSat” in what follows) and
the model based upon a numerical solution of the Balitsky-Kovchegov (BK) equation [19].

In the first case of “bSat”, we employ the following formula
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0 is the momentum scale in the collinear gluon density xg(x, µ2),

and no non-trivial information about the relative dipole orientation is implemented. In
numerical calculations, we have used the CT14LO parameterisation [47] motivated by our
earlier analysis of integrated quarkonia photoproduction cross sections performed in Ref. [33].
This will be di↵erent from the original bSat model in which the gluon PDF is evolved up
to the scale µ2 with LO DGLAP gluon evolution neglecting its coupling to quarks, but the
numerical results will be similar enough to neglect the di↵erence. Besides, we considered a
conventional Gaussian form for the proton shape function T (b)

T (b) =
1
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e�b2/2BG , (3.2)

where the slope parameter BG = 4.25GeV�2 is found at Ref. [48].

6

b-Sat model

and

⌃(2) =
ZQ

p
Nc↵em

2⇡
p
2

2K0(mQr)

Z
dpTJ1(pT r) V (z, pT )

p2T
2

mL +mT + (1� 2z)2mT

mT (mL +mT )
.

Here, ↵em = 1/137 is the fine structure constant, Nc = 3 is the number of colors in QCD, ZQ

and mQ are the electric charge and the mass of the heavy quark, respectively, J0,1 (K0) are
the (modified) Bessel functions of the first (second) kind, respectively, pT is the transverse
momentum of the produced quarkonium state, and

mT =
q
m2

Q + p2T , mL = 2mQ

p
z(1� z) . (2.10)

It is worth to mention that there are still significant theoretical uncertainties in description
of the vector meson wave functions. Besides the approach discussed above, there are also
other attempts to model them. A very recent one [43] executes the calculations at the NLO
level in �p collisions for longitudinally polarized photons making use of the CGC framework
and proposing a wave function based upon NRQCD matrix elements [44]. Other study [45]
modifies the dipole cross section to enhance the suppression of dipoles with large separations
beyond the confinement length-scale (a correction important for small Q2). The analysis of
Ref. [46] is very similar to ours except that the boosted Gaussian has been utilized there to
construct the vector-meson wave functions.

III. PARTIAL DIPOLE AMPLITUDE

For the main purpose of scanning of the impact-parameter profile of the target nucleon
or nucleus, we need an impact-parameter dependent (or b-unintegrated) dipole cross section
that can be found in terms of the dipole S-matrix introduced in Eq. (2.3). First, we tested
seven di↵erent models available from the literature, and then we selected the two that best
describe the exclusive vector meson photoproduction data from the HERA collider, namely,
the impact parameter dipole saturation model [15] (dubbed as “bSat” in what follows) and
the model based upon a numerical solution of the Balitsky-Kovchegov (BK) equation [19].

In the first case of “bSat”, we employ the following formula

N(x, r, b) = 1� exp

✓
� ⇡2

2Nc
r2↵s(µ

2) xg(x, µ2)T (b)

◆
, (3.1)

where µ2 = 4/r2 + µ2
0 is the momentum scale in the collinear gluon density xg(x, µ2),

and no non-trivial information about the relative dipole orientation is implemented. In
numerical calculations, we have used the CT14LO parameterisation [47] motivated by our
earlier analysis of integrated quarkonia photoproduction cross sections performed in Ref. [33].
This will be di↵erent from the original bSat model in which the gluon PDF is evolved up
to the scale µ2 with LO DGLAP gluon evolution neglecting its coupling to quarks, but the
numerical results will be similar enough to neglect the di↵erence. Besides, we considered a
conventional Gaussian form for the proton shape function T (b)

T (b) =
1

2⇡BG
e�b2/2BG , (3.2)

where the slope parameter BG = 4.25GeV�2 is found at Ref. [48].

6

and

⌃(2) =
ZQ

p
Nc↵em

2⇡
p
2

2K0(mQr)

Z
dpTJ1(pT r) V (z, pT )

p2T
2

mL +mT + (1� 2z)2mT

mT (mL +mT )
.

Here, ↵em = 1/137 is the fine structure constant, Nc = 3 is the number of colors in QCD, ZQ

and mQ are the electric charge and the mass of the heavy quark, respectively, J0,1 (K0) are
the (modified) Bessel functions of the first (second) kind, respectively, pT is the transverse
momentum of the produced quarkonium state, and

mT =
q
m2

Q + p2T , mL = 2mQ

p
z(1� z) . (2.10)

It is worth to mention that there are still significant theoretical uncertainties in description
of the vector meson wave functions. Besides the approach discussed above, there are also
other attempts to model them. A very recent one [43] executes the calculations at the NLO
level in �p collisions for longitudinally polarized photons making use of the CGC framework
and proposing a wave function based upon NRQCD matrix elements [44]. Other study [45]
modifies the dipole cross section to enhance the suppression of dipoles with large separations
beyond the confinement length-scale (a correction important for small Q2). The analysis of
Ref. [46] is very similar to ours except that the boosted Gaussian has been utilized there to
construct the vector-meson wave functions.

III. PARTIAL DIPOLE AMPLITUDE

For the main purpose of scanning of the impact-parameter profile of the target nucleon
or nucleus, we need an impact-parameter dependent (or b-unintegrated) dipole cross section
that can be found in terms of the dipole S-matrix introduced in Eq. (2.3). First, we tested
seven di↵erent models available from the literature, and then we selected the two that best
describe the exclusive vector meson photoproduction data from the HERA collider, namely,
the impact parameter dipole saturation model [15] (dubbed as “bSat” in what follows) and
the model based upon a numerical solution of the Balitsky-Kovchegov (BK) equation [19].

In the first case of “bSat”, we employ the following formula

N(x, r, b) = 1� exp

✓
� ⇡2

2Nc
r2↵s(µ

2) xg(x, µ2)T (b)

◆
, (3.1)

where µ2 = 4/r2 + µ2
0 is the momentum scale in the collinear gluon density xg(x, µ2),

and no non-trivial information about the relative dipole orientation is implemented. In
numerical calculations, we have used the CT14LO parameterisation [47] motivated by our
earlier analysis of integrated quarkonia photoproduction cross sections performed in Ref. [33].
This will be di↵erent from the original bSat model in which the gluon PDF is evolved up
to the scale µ2 with LO DGLAP gluon evolution neglecting its coupling to quarks, but the
numerical results will be similar enough to neglect the di↵erence. Besides, we considered a
conventional Gaussian form for the proton shape function T (b)

T (b) =
1

2⇡BG
e�b2/2BG , (3.2)

where the slope parameter BG = 4.25GeV�2 is found at Ref. [48].

6

and

⌃(2) =
ZQ

p
Nc↵em

2⇡
p
2

2K0(mQr)

Z
dpTJ1(pT r) V (z, pT )

p2T
2

mL +mT + (1� 2z)2mT

mT (mL +mT )
.

Here, ↵em = 1/137 is the fine structure constant, Nc = 3 is the number of colors in QCD, ZQ

and mQ are the electric charge and the mass of the heavy quark, respectively, J0,1 (K0) are
the (modified) Bessel functions of the first (second) kind, respectively, pT is the transverse
momentum of the produced quarkonium state, and

mT =
q
m2

Q + p2T , mL = 2mQ

p
z(1� z) . (2.10)

It is worth to mention that there are still significant theoretical uncertainties in description
of the vector meson wave functions. Besides the approach discussed above, there are also
other attempts to model them. A very recent one [43] executes the calculations at the NLO
level in �p collisions for longitudinally polarized photons making use of the CGC framework
and proposing a wave function based upon NRQCD matrix elements [44]. Other study [45]
modifies the dipole cross section to enhance the suppression of dipoles with large separations
beyond the confinement length-scale (a correction important for small Q2). The analysis of
Ref. [46] is very similar to ours except that the boosted Gaussian has been utilized there to
construct the vector-meson wave functions.

III. PARTIAL DIPOLE AMPLITUDE

For the main purpose of scanning of the impact-parameter profile of the target nucleon
or nucleus, we need an impact-parameter dependent (or b-unintegrated) dipole cross section
that can be found in terms of the dipole S-matrix introduced in Eq. (2.3). First, we tested
seven di↵erent models available from the literature, and then we selected the two that best
describe the exclusive vector meson photoproduction data from the HERA collider, namely,
the impact parameter dipole saturation model [15] (dubbed as “bSat” in what follows) and
the model based upon a numerical solution of the Balitsky-Kovchegov (BK) equation [19].

In the first case of “bSat”, we employ the following formula

N(x, r, b) = 1� exp

✓
� ⇡2

2Nc
r2↵s(µ

2) xg(x, µ2)T (b)

◆
, (3.1)

where µ2 = 4/r2 + µ2
0 is the momentum scale in the collinear gluon density xg(x, µ2),

and no non-trivial information about the relative dipole orientation is implemented. In
numerical calculations, we have used the CT14LO parameterisation [47] motivated by our
earlier analysis of integrated quarkonia photoproduction cross sections performed in Ref. [33].
This will be di↵erent from the original bSat model in which the gluon PDF is evolved up
to the scale µ2 with LO DGLAP gluon evolution neglecting its coupling to quarks, but the
numerical results will be similar enough to neglect the di↵erence. Besides, we considered a
conventional Gaussian form for the proton shape function T (b)

T (b) =
1

2⇡BG
e�b2/2BG , (3.2)

where the slope parameter BG = 4.25GeV�2 is found at Ref. [48].

6

BK model

In the second case, the numerical solution of the BK equation is provided by Ref. [19],
where it is obtained under the assumption that the dipole partial amplitude depends only
on the absolute values of the transverse separation of the dipole r and the impact parameter
b, but does not depend on the angle between r and b similarly to the “bSat” model. In this
case, the BK equation reads

@N (r, b, Y )

@Y
=

Z
d2r1K(r, r1, r2)

⇣
N (r1, b1, Y ) +N (r2, b2, Y )�N (r, b, Y )

�N (r1, b1, Y )N (r2, b2, Y )
⌘ (3.3)

whose numerical solution provides us with the partial dipole amplitude

N(x, r, b) = N (r, b, ln(0.008/x)) (3.4)

that has been employed in our numerical analysis below. The specific main feature of
Ref. [19] solution is that it is obtained with a collinearly improved kernel K(r, r1, r2) studied
in Ref. [49] that suppresses the larger daughter dipole sizes during the evolution and thus
does not show the nonphysical Coulomb tails.

Finally, following Refs. [50–52], we also incorporate a correction relevant at large-x mul-
tiplying the dipole cross section by a factor (1 � x)2ns�1, where ns denotes the number of
spectator quarks, which was chosen to be ns = 4.

IV. RESULTS FOR �p ! V p PROCESS

Now, that we have outlined the basic dipole formalism needed for analysis of the di↵eren-
tial photoproduction observables, let us first present the numerical results for the �p ! V p
process. Note, in general the di↵erential photoproduction cross sections computed for the
proton target are very sensitive to the dipole parametrization used in the analysis. In this
work, we analysed many di↵erent b-dependent parameterisations for the partial dipole am-
plitude, and they all give very di↵erent results. We chose to present the results obtained only
with the BK solution and the “bSat” model briefly described above as those that provide
the best description of the available J/ data. We will start with the BK solution model.
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Differential cross sections: charmonia
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FIG. 1: Di↵erential cross section for  (1S) (upper curves) and  (2S) (lower curves) pho-
toproduction as a function of |t| obtained using the numerical solution of the BK equation
obtained in Ref. [19], for W = 100 GeV (left) and W = 55 GeV (right). The results are
presented for five di↵erent interquark potential models. The  (1S) results are compared to
the corresponding data from H1 Collaboration [53, 54].
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photoproduction as a function of |t| found with the the “bSat” dipole model for W = 100
GeV (left) and W = 55 GeV (right), including also the skewness e↵ect. The results are

presented for five di↵erent interquark potential models. The  (1S) results are compared to
the corresponding data from H1 Collaboration [53, 54].

fair description of the H1 data. The latter is not as good as in the case of the BK solution
though. However, since “bSat” dipole parameterisation is widely used in the literature,
in this work we chose to show the corresponding numerical results as well. A comparison
between the curves obtained with these two dipole models and the available H1 data for
 (1S) photoproduction is presented in Fig. 5, where we can see that both curves found are
mainly located within the experimental error bars for both W = 100 GeV (left) and W = 55
GeV (right), except that at small |t| and at large W the “bSat” model marginally overshoots
the data.

At last, we include Fig. 6 showing our results on the photoproduction cross section of
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V. COHERENT PHOTOPRODUCTION OFF NUCLEAR TARGETS

In photon-nucleus scattering, the di↵erential cross section for coherent quarkonia V pho-
toproduction �A ! V A o↵ a nuclear target with atomic mass A can be found as follows:
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in terms of the averaged amplitude [56]
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where ⌃T = ⌃(1)+⌃(2)@/@r, with the coe�cients found in Eq. (2.9). Following Ref. [48], the
dipole-nucleus scattering amplitude averaged over all possible configurations of the nucleons
in the target nucleus reads

hNA(x, r, b)iN = 1�
✓
1� TA(b)�qq̄(x, r)

2A

◆A

. (5.3)

This equation was obtained using a b dependent dipole amplitude parametrization, in the
same way as above. It di↵ers from other approach found in Ref. [57], where a Gaussian shape
was assumed to describe such b dependence. The functions that appear in Eq. (5.3) are the
usual (integrated) dipole cross section o↵ the proton target, �qq̄(x, r), found in Eq. (2.6),
and

TA(b) =

Z +1

�1
dz ⇢A(b, z) ,

1

A

Z
d2b TA(b) = 1 , (5.4)

i.e., the thickness function of the nucleus, given in terms of the normalised Woods-Saxon
distribution [58],

⇢A(b, z) =
N

1 + exp[ r(b,z)�c
� ]

, r(b, z) =
p
b2 + z2 . (5.5)
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FIG. 7: Di↵erential cross sections for the �Pb !  (nS)Pb process as functions of |t|, with
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[73] are compared with the recent ALICE data [12] for  (1S).

FIG. 8: Predictions for the di↵erential cross sections for the �Pb ! V Pb processes as
functions of |t|, calculated with three dipole cross section models: the numerical solution of
the BK equation for the dipole amplitude, the bSat model and the GBW parameterisation.

The results for the production of  states (left) and ⌥ states (right) are shown. Both
panels present the results at y = 0 and with

p
s = 5.02TeV.

light-front wave functions, our work relies on the potential approach. Here, a radial-wave
solution of the Schrödinger equation for a given interquark potential is first obtained in the
QQ̄ rest frame and then boosted to the infinite momentum frame while the spin-dependent
part of the wave function is computed by means of the Melosh transformation. We also
incorporate the skewness e↵ect in the partial dipole amplitude at the �p level, while in the
nuclear case the dipole cross section for an elementary dipole scattering o↵ a single nucleon
has been multiplied by such a correction factor, and not the whole �A amplitude. Besides,
the gluon shadowing e↵ect in photoproduction o↵ a heavy nucleus target has been accounted
for fully phenomenologically.
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The so-called Wigner distribution is known to provide maximally detailed information on quantum
systems describing the distribution of particles in phase space. In the case of hadron structure, the QCD
Wigner distribution [1–3], or its Fourier transform, the Generalized Transverse Momentum Dependent
Distribution (GTMD) [4–7], provides multidimensional partonic imaging of the nucleon (for a detailed
review on this topic, see e.g. Refs. [8, 9]). It gives the most comprehensive description of hadron structure
(parton tomography) and, as it is not calculable in perturbative QCD, the question of its measurement
naturally arises.

The measurement of various nonperturbative ingredients of QCD factorization (“partonometry”) is in
general a challenging problem. While spin-averaged and spin-dependent parton distributions can be stud-
ied in (inclusive) Deep Inelastic Scattering (DIS), the studies of the Transverse Momentum Dependent
Distributions (TMDs) rely mostly on semi-inclusive DIS (SIDIS), and the Generalized Parton Distri-
butions (GPDs) are extracted from the data on exclusive processes, mostly Deeply Virtual Compton
Scattering (DVCS). However, these processes are sensitive to either the transverse momentum ~q? or im-

pact parameter ~b? of partons, whereas the Wigner distribution W (x, ~q?,~b?) depends on both1. Is there
a way to phenomenologically access such detailed information on parton tomography in the nucleon?

Recently, new observables to measure gluon GTMDs in the small-x region in exclusive di↵ractive dijet
production at an electron-ion collider (EIC) have been proposed in Ref. [10] (see also a related work
[11])2. In particular, it was understood that the gluon GTMD distribution at small-x can be considered
as a Fourier transform of an impact parameter dependent forward dipole amplitude (or dipole S-matrix),
which provides access to the gluon saturation e↵ects at small-x (see e.g. Ref. [13]). Moreover, the process

is also sensitive to the characteristic azimuthal angular correlation between ~q? and ~b? governed by the
“elliptic” gluon Wigner distribution [10, 14, 15]. The actual measurement of the proposed observables
in lepton-nucleon scattering is challenging, as it requires reconstruction of full dijet kinematics vetoing
any other hadronic activity in order to reduce the backgrounds associated with the Pomeron and photon
breakup. In addition, it is mandatory to detect the forward proton to ensure exclusivity of the di↵ractive
process. While these experimental challenges are likely to be overcome at the planned EIC, the extraction
of the GTMD is further complicated by the fact that the cross section is not directly proportional to the
GTMD, but is given by its convolution integral which is di�cult to invert. It is thus worthwhile to look
for other processes in which the latter problem becomes simpler. The vast experimental data on hadronic
and nuclear collisions are now emerging from the LHC, and it would be very desirable to exploit them
for GTMD studies. We will show below that di↵ractive dijet production in ultraperipheral pA collisions
(UPCs) at the LHC and at the RHIC is a particularly important example that provides an essential
means for such studies.

In UPCs the relativistic colliding systems (such as nucleons and nuclei) pass each other at large trans-
verse distances without interacting hadronically, only electromagnetically through the emission of quasi-
real Weiszäcker-Williams (WW) photons [16, 17]. The e↵ective WW photon flux of a charged particle
is scaled as the square of its charge and thus is noticeably enhanced for heavy ions making UPCs in pA
more advantageous compared to those in pp. Besides, the WW spectrum is rather broad with the maxi-
mal photon energy in the target rest frame scaling linearly with the nuclear Lorentz factor. In addition,
UPCs in pA provide good experimental opportunities for studies of exclusive di↵ractive observables by
detecting the intact protons and possibly also ions using the LHC forward proton spectrometers (such as

1
Here, x denotes the longitudinal momentum fraction. Throughout this paper, we suppress the dependence on the skewness

parameter ⇠. In the small-x region which we are interested in, e↵ectively ⇠ ⇡ x.
2
More recently, a method to access the quark GTMDs for generic values of x in the exclusive double Drell-Yan process

has been proposed [12].

4

II. EXCLUSIVE DIFFRACTIVE DIJET PRODUCTION IN pA UPCS

The dipole gluon Wigner distribution is defined as
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where |P i is the proton state and U± is the staple-shaped Wilson line which goes to light-cone infinity
z+ = ±1 and comes back. The GTMD distribution xW (x, ~q?, ~�?) is then given by the Fourier transform
~b? ! ~�?. The key observation of Ref. [10] is that the gluon GTMD distribution at small-x is proportional
to the Fourier transform of the dipole S-matrix
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where Y ⌘ ln 1/x is the rapidity and
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in terms of the lightlike Wilson line U in the fundamental representation and the number of QCD colors
Nc = 3. Eq. (2) shows that the measurement of the GTMD distribution boils down to that of the dipole
S-matrix. In order to be sensitive to both ~q? and ~�?, it has been suggested in Ref. [10] to measure
exclusive di↵ractive dijet production in lepton-nucleon scattering in which the proton scatters elastically
with momentum transfer ~�? and the virtual photon splits into a qq̄ pair (dipole) and then hadronizes

into a dijet in the forward region with transverse momenta ~k1? and ~k2? such that ~k1? + ~k2? = �~�?.
By measuring the di↵erential cross section as a function of the relative transverse momentum of the dijet
~P? = 1
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~k2? � ~k1?) at fixed ~�?, one can get information about the ~q?-dependence of the GTMD. The

problem, however, is that the scattering amplitude ~M is given by a complicated convolution integral of
the dipole S-matrix. For the transversely polarized virtual photon, the relation is
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and Q2 is the photon virtuality. We neglect the quark mass mf .) In order to make the extraction of S
from M easier, the authors of Ref. [10] suggested looking at the small-Q2 region where the ~q?-integral
in Eq. (4) is dominated by ~q? ⇠ ~P?. In this paper, we push this idea to the extreme and consider the
photoproduction limit of small Q2 ! 0.

In the lepton-nucleon scattering, approaching the kinematical boundary Q2 ! 0 is experimentally
feasible as HERA indeed has measured the parton density functions (PDFs) in the proton down to
Q2 = 0.05 GeV2. There is, however, a more e�cient way to prepare a flux of almost real photons. This
is pA UPCs in which the nucleus is treated only as a source of WW photons. By using a large nucleus,
the smallness of the electromagnetic coupling ↵em is compensated by the atomic number squared Z2.
Moreover, since the photons are almost on shell, they only have transverse polarizations. (When Q2 6= 0,
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Refs. [31, 32].) Note in our case one should ensure exclusivity of the process such that the proton and
nucleus remain intact. This is especially important for the proton as one should detect the final proton
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Below we consider exclusive di↵ractive dijet production in UPCs and demonstrate that, in the ideal case
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FIG. 4: Demonstration of importance of the ~b-~r correlation in the partial elastic dipole amplitude (3.4) by performing
calculations of di↵erential cross sections d��p!J/ p(t)/dt (top panels) and  0(2S)-to-J/ (1S) ratio of the di↵erential cross

sections RV 0(2S)/V (1S)(W, t) = {d��p!V 0(2S)p/dt}/{d��p!V (1S)p/dt} (bottom panels) at c.m. energy W = 50 GeV (left panels)
and 200 GeV (right panels). The corresponding results based on the br-GBW dipole model (solid lines) are compared with the

case when vectors ~b and ~r are parallel (dashed lines). The charmonium wave function is determined from the BT potential.

FIG. 5: The model predictions for t-dependent di↵erential cross sections of photoproduction of di↵erent quarkonium states
at c.m. energy W = 125 (left panel) and 220 GeV (right panel). Our calculations have been performed adopting the br-GBW
model for the partial dipole amplitude taking the BT (solid lines) and Pow (dashed lines) models for c-c̄ and b-b̄ interaction
potentials.

of the node e↵ect, the ratio R 0/J/ (t) rises with t at W = 50 GeV. However, at higher W ⇠> 100 GeV this rise is
changed gradually for a more flat t-behavior of R 0/J/ (t) and R⌥ 0/⌥(t) as a result of a weaker node e↵ect at larger
energies and for heavier vector mesons, respectively. So such expected scenario is confirmed by our results based on
br-GBW and br-BGBK models and is in correspondence with analysis from Ref. [41].

Figure 6 also nicely confirms that the study of t-dependent  0(2S)/J/ (1S) ratio represents a very e↵ective tool

for ruling out various ~b-dependent models for the partial elastic dipole amplitude, especially if ~b-~r correlation is not
included properly. As an example, we discuss here a popular b-BK model where the dipole amplitude is acquired
for the case ~bk~r [27]. The corresponding predictions are plotted by dot-dashed lines. One can see that the rise of
R 0/J/ (t) is stronger at larger W and is much more intensive in comparison with the flat t-behavior obtained within

B.Z.Kopeliovich, M.Krelina 

and J.Nemchik, 


Phys. Rev. D103, no.9, 094027 (2021)

A controversy?



Summary

✓    The dipole picture enables to universally explore VM photo production 
       off proton and nuclear targets 

✓    Proper treatment of the radial wave function and spin effects contribute to 
       a reasonable agreement with available data on VM photo production 
       without any adjustable parameters 

✓    Predictions for differential cross sections off both nuclear and proton 
       targets are obtained for excited (charmonia and bottomonia) states 

✓    A controversy in the impact of dipole orientation effects on t-dependence

      has been spotted in the literature, and more investigations are needed


