Prospects for testing Low's theorem with ALICE3

Martin Völkl

Universität Heidelberg 2022-09-21

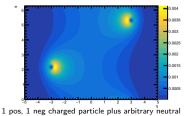
UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

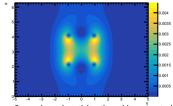
Introduction: Soft Photon Production

- For interactions with charged particles: corresponding process producing photons
- Attaching photon line to each line of charged particles (incoming or outgoing)
- Low E_{γ} :
 - only on-shell propagators contribute only consider external lines
 - $\bullet \ \ \, \text{No change in momenta} \rightarrow \ \ \, \text{blob stays the same}$
- Calculate soft photon production in relation to hadronic cross section even without calculating the process
- Soft photon production/inner bremsstrahlung/hadronic bremsstrahlung

- v+/-+ +
- Based on very fundamental principles; few uncertainties
- Soft theorems connected to fundamental conservation theorems (charge conservation)
- Limit of approximation E_γ small not simple for general process ($\omega au\ll 1,\,|ec k|d\ll 1)$

Low's theorem

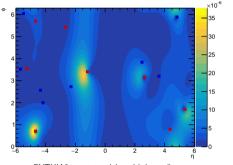

Low's Theorem connects interaction of charged particles with 4-momenta P_i with expectation value for soft photon production (with 4-momentum K):

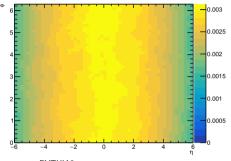

$$\frac{\mathrm{d}N^{\gamma}}{\mathrm{d}^{3}k} = \frac{\alpha}{(2\pi)^{2}} \frac{-1}{E_{\gamma}} \int \left(\mathrm{d}^{3}p_{1} \ldots \mathrm{d}^{3}p_{N}\right) \left(\sum_{\mathrm{Particle} \ i} \frac{\eta_{i}e_{i}\mathbf{P}_{i}}{\mathbf{P}_{i}\mathsf{K}}\right)^{2} \frac{\mathrm{d}N^{\mathrm{H}}}{\mathrm{d}^{3}p_{1} \ldots \mathrm{d}^{3}p_{N}}$$

- Via the square, interference terms between the particles are created
- For a single event, this means

$$\frac{d^{3}\mathrm{N}}{d|k|d\eta d\phi} = -\frac{\alpha}{(2\pi)^{2}}\cos(\vartheta/2)\sin(\vartheta/2)E_{\gamma}\sin\vartheta\left(\sum_{\mathrm{Particle}\ i}\ \frac{\eta_{i}e_{i}\mathsf{P}_{i}}{\mathsf{P}_{i}\mathsf{K}}\right)^{2} \sim \frac{1}{E_{\gamma}}$$

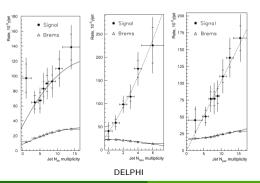
- In particular direction, always $1/E_{\gamma}$ spectrum
- Signal typically between + and particles, depletion very close to particle
- Signal estimate usually done with input from event generators

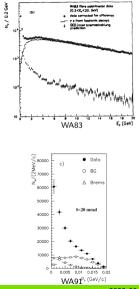



~

2 pos, 2 neg charged particles plus arbitrary neutral

PYTHIA8 event, particles with large $\beta\gamma$

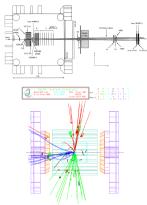



PYTHIA8 average over many events

- Signal can be estimated from initial and produced charged particles
- Depends on $\beta\gamma$, difficulties without PID and with inefficiencies
- In previous experiments: estimated using event generators
- Signal turns out to be approximately constant per pseudorapidity for fixed E_{γ} and $p_{T\gamma}$

Previous measurements of excess production

- Several measurements of soft photon production were performed previously
- Expected signal usually calculated from event generators
- $\bullet\,$ Typically an enhancement of a factor \sim 5 over the expected signal
- Typically $E_{\gamma} > 0.2 \, {
 m GeV}$



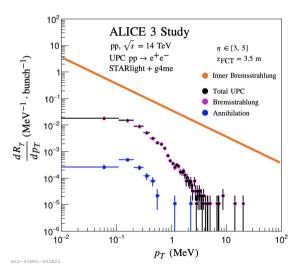
Martin Völkl Uni Heidelberg

Previous measurements of excess production (2)

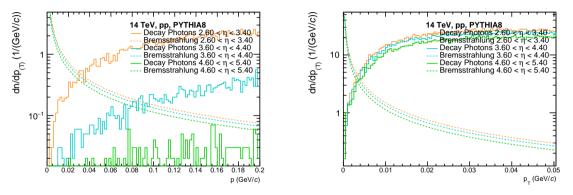
O LAVOUT FOR WASI (1992 BUN)

(from Klaus Reygers' talk at the ALICE 3 workshop)						
Experiment	Year	Collision energy	Photon pr	Photon / Brems Ratio	Detection method	Reference (click to go to paper)
π⁺р	1979	10.5 GeV	pτ < 30 MeV/c	1.25 ± 0.25	bubble chamber	Goshaw et al., Phys. Rev. Lett. 43, 1065 (1979)
K⁺p WA27, CERN	1984	70 GeV	p ₇ < 60 MeV/c	4.0 ± 0.8	bubble chamber (BEBC)	Chliapnikov et al., Phys. Lett. B 141, 276 (1984)
π⁺p CERN, EHS, NA22	1991	250 GeV	p ₇ < 40 MeV/c	6.4 ± 1.6	bubble chamber (RCBC)	Botterweck et al., Z. Phys. C 51, 541 (1991)
K⁺p CERN, EHS, NA22	1991	250 GeV	p ₇ < 40 MeV/c	6.9 ± 1.3	bubble chamber (RCBC)	Botterweck et al., Z. Phys. C 51, 541 (1991)
π-p, CERN, WA83, OMEGA	1993	280 GeV	p_T < 10 MeV/c (0.2 < E _Y < 1 GeV)	7.9 ± 1.4	calorimeter	Banerjee et al., Phys. Lett. B 305, 182 (1993)
p-Be	1993	450 GeV	p ₇ < 20 MeV/c	< 2	pair conversion, calorimeter	Antos et al., Z. Phys. C 59, 547 (1993)
p-Be, p-W	1996	18 GeV	p ₇ < 50 MeV/c	< 2.65	calorimeter	Lissauer et al Phys.Rev. C54 (1996) 1918
π-p, CERN, WA91, OMEGA	1997	280 GeV	p_T < 20 MeV/c (0.2 < E _γ < 1 GeV)	7.8 ± 1.5	pair conversion	Belogianni et al., Phys. Lett. B 408, 487 (1997)
π-p, CERN, WA91, OMEGA	2002	280 GeV	p_T < 20 MeV/c (0.2 < E _y < 1 GeV)	5.3 ± 1.0	pair conversion	Belogianni et al., Phys. Lett. B 548, 122 (2002)
pp, CERN, WA102, OMEGA	2002	450 GeV	<i>p</i> _T < 20 MeV/ <i>c</i> (0.2 < <i>E</i> _Y < 1 GeV)	4.1 ± 0.8	pair conversion	Belogianni et al., Phys. Lett. B 548, 129 (2002)
e⁺e⁻ → 2 jets CERN, DELPHI	2006	91 GeV (CM)	p_T < 80 MeV/c (0.2 < E _γ < 1 GeV)	4.0 ± 0.3 ± 1.0	pair conversion	DELPHI, Eur. Phys. J. C 47, 273 (2006)
e⁺e⁻ → μ⁺μ⁻ CERN, DELPHI	2008	91 GeV (CM)	р ₇ < 80 MeV/c	~ 1	pair conversion	DELPHI. Eur. Phys. J. C57, 499 (2008)

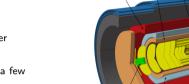
- Experiments with different setups ۲
- Somewhat different analysis strategies
- Very simple signal estimate based on very fundamental principles ... ٠
- ... which is nevertheless off by a factor ~ 5
- Also at LHC energies? And if so: why?


- For signal photons with E_{γ} a few 10 MeV
- Possible sources of background
 - Decay Photons
 - Regular bremsstrahlung in the detector material
 - Ultraperipheral collisions
 - Misidentified V0s
 - (Misidentified Dalitz decays)
 - Beam-gas interactions
 - Synchrotron radiation
 - Activated material
- Other sources probably smaller/can be suppressed

Ultraperipheral collisions

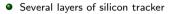

- Ultraperipheral collisions can produce e⁺e⁻-pairs, which create bremsstrahlung
- Positrons can also annihilate with material
- Backgrounds small in pp collisions, but may be relevant in Pb–Pb

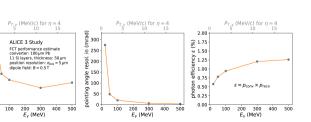
Decay Photons


- Low-energy photons difficult to measure
- E.g. photon conversion only for $E_{\gamma} > 2m_e$
- Important background: Decay from light meson decays (e.g. $\pi^0 \rightarrow \gamma \gamma$)
- Crossover, at approximately constant p_{T} , signal can be measured below
- Minimum $E_{\gamma} \rightarrow$ easier to measure at forward rapidity

Martin Völkl Uni Heidelberg

Soft Photons


Forward Conversion Tracker



ECT

Cryostat with solenoid and dipole

- Measures photons via e^+e^- -pairs from converter
- Energy from track bending in dipole field
- Tests with Geant4 suggest measurements from a few 10 MeV possible

ECal

TOF

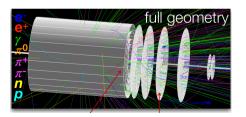
detector

25

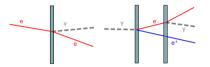
20

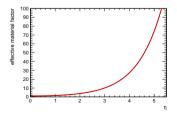
(%) 0^E/Ε (%)

Martin Völkl Uni Heidelberg

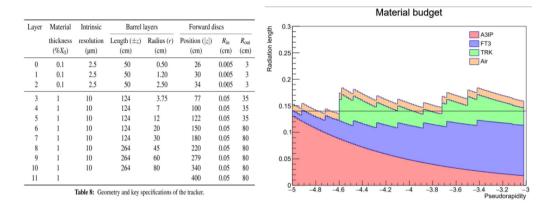

Soft Photons

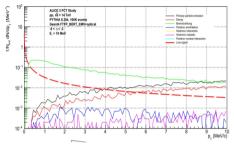
Muon absorber

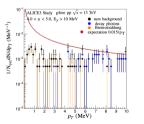

Muon

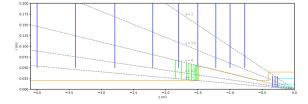

Background dependence on material

- Decay photons independent of material
- Charged electron/positron producing bremsstrahlung: Proportional to material budget
- Photon producing electrons-positron pair, these producing bremsstrahlung: Proportional to square of material budget
- π^0 -decays mostly at primary vertex same as signal
- Bremsstrahlung, photon conversion: typical angle of m_e/E , very small
- Problem: Cylindrical geometry gives $\cosh \eta$ -dependence of effective material budget large at forward rapidities ($\cosh 5 \approx 74$)
- $\bullet~$ Ideally < 10% effective material, possibly remove some material in front



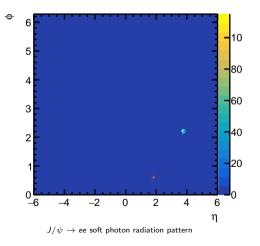


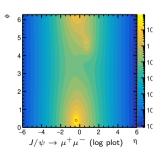


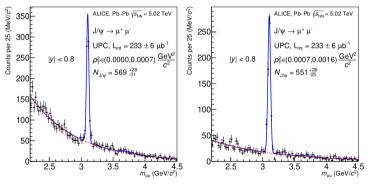

- The material budget in the standard tracker setup would be quite large
- Very thin layers, but several and at large angles
- Considerations: Remove some material in front of FCT; or use some of the layers for additional tracking

Background from bremsstrahlung

- Baseline: Material only the beampipe and Air
- Similar signal and background, same energy distribution
- Variation of beampipe shape could mitigate this decreased background
- However: Constraints from mechanical stability, induced fields requires detailed study
- Additional material from ITS3 tracking layers, support structures




۲



- J/ψ decay is separate process; radiates independently
- Can reconstruct from e^+e^- or $\mu^+\mu^-$ pair
- For two-body decay: Definite and high energy scale Low theorem assumptions more clearly fulfilled
- For boosted system: Blueshift increases scale further
- Simple signal but need to compare to background
- Signal near the tracks for electrons this is where bremsstrahlung would also be
- EM process rather than hadronic collision

- In ultraperipheral collisions we can get a clean J/ψ signal
- Allows to associate soft photons and check if they follow the expected distribution
- More contribution from ultraperipheral background events in Pb–Pb

Phys. Lett. B 817 (2021) 136280

Direct calculations of soft photon production

- For specific processes, processes with and without photon emission may be calculated
- For hadronic processes usually model needed
- Here: Tensor pomeron exchange to model $\pi\pi$ scattering
- Unexpected: While $1/E_{\gamma}$ term appears as expected E_{γ}^0 term different from Low's result
- Similar calculations may be made for $pp \rightarrow pp + \gamma$ or $pp \rightarrow pp + \pi\pi + \gamma$
- Requires charged particles measured over large rapidity
- Process without leptons reduces background
- Events can be selected via double-gap

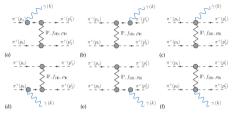
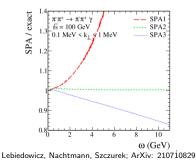
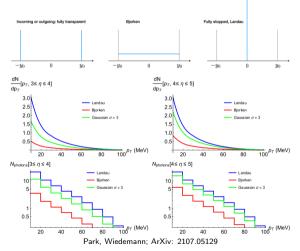
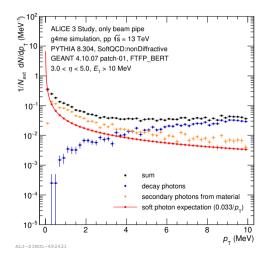




FIG. 6. Diagrams for the reaction $\pi^-\pi^+ \rightarrow \pi^-\pi^+\gamma$ with tensor-pomeron exchange.


- In Pb–Pb collisions: Large number of charges suddenly stopped
- Coherent incoming charges accelerated \rightarrow bremsstrahlung produced
- Spatial extent of system makes quantum mechanical calculation difficult
- Estimate instead via semiclassical calculation gives large photon yield
- Mostly independent of radial charge distribution for forward direction
- May allow to differentiate between different stopping scenarios
- Validity of approximation interesting question (ignores lifetime of medium, transverse momenta, quantized charges), but order of magnitude should be reasonable

Conclusions

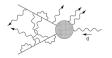
- Several measurements show deviation from expected soft photon limit in hadronic interactions
- Presents serious challenge to understanding of quantum field theory
- FCT may be capable of addressing this question
- Initially, measurement differential in *p*_T, η, multiplicity
- More differential signal shape could be estimated from measured particles
- Detector based on photon conversion in dipole field at forward rapidity feasible
- Background from material bremsstrahlung with similar $p_{\rm T}$ -shape; problematic if $X/X_0 > 10\%$
- Soft photon can provide insights in several further measurements

Appendix

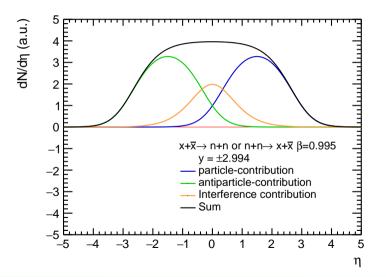
- Photon energy must be low in two places:
 - Energy removed by the photon from leg must not change cross section $(\mathbf{E}_{\gamma} \ll \mathbf{E}_{\text{particles}})$
 - In the propagator, e.g. 1/((p − k)² − m²) ≈ 1/(p² − m² − 2pk): If p² − m² ≠ 0 then 2pk must be small compared to it only then does the blob not contribute
 (E_γ ≪ off-shellness)
- In addition, the contributions must be coherent: The size of the source must be small compared to the wavelength ${\sf E}\cdot{\sf I}\ll 1$ (Low argues from multipole radiation)
- ullet Additionally: For coherent radiation, the timescale must be small compared to the frequency $E\cdot t\ll 1$
- In original paper: Elastic $2 \rightarrow 2$ scattering only natural energy scale in COM energy
- More complex for pp/PbPb collisions: Soft particle production along with hard processes

- When including single soft photon emission in scattering, cross-section diverges
- Can make finite with photon mass μ (Sudakov double logarithm):

$$\mathrm{d}\sigma(p
ightarrow p'+\gamma(k)) \mathop{pprox}_{-q^2
ightarrow\infty} \sigma(p
ightarrow p')\cdot rac{lpha}{\pi}\lograc{-q^2}{\mu^2}\lograc{-q^2}{m^2}$$


• Similar divergence from vertex correction:

$$\mathrm{d}\sigma(p
ightarrow p')_{\mathrm{corr}}pprox \sigma(p
ightarrow p')\cdot \left(1-rac{lpha}{\pi}\lograc{-q^2}{\mu^2}\lograc{-q^2}{m^2}
ight)$$


- Interpretation: Cannot be experimentally distinguished for very low photon energies sum of effects is finite
- Add up higher orders of corrections divergencies still cancel (*Bloch-Nordsiek theorem*)
- Probability distribution of number of photons in energy range follows Poisson law interpretation of emission probability divergence

- Upper propagator has $P = (E^*, 0, p_T, E^*)$
- Lower Propagator has $P = (-E^*, 0, p_T, E^*)$ (extra momentum needs to be exchanged between incoming particles)
- Thus $p^2 pprox p_{\mathrm{T}}^2$ in both cases
- kp term for forward going photon gives $\pm E_{\gamma}E^* p_{T}k_t E_{\gamma}E^*$
- The propagators give approximately: $\frac{1}{p_{T}^{2}+4E_{\gamma}E^{*}}$ and $\frac{1}{p_{T}^{2}-2p_{T}k_{t}}$
- ullet With $p_{\mathrm{T}}pprox E^*$, this leads to the conditions $E_\gamma \ll p_{\mathrm{T}}$ and $k_t \ll p_{\mathrm{T}}$
- The first condition means, that here the new scale is actually the relevant one
- However: The contribution from attaching to the second propagator should always be larger
- Is the dominance of the 1/E term really the correct condition at all?