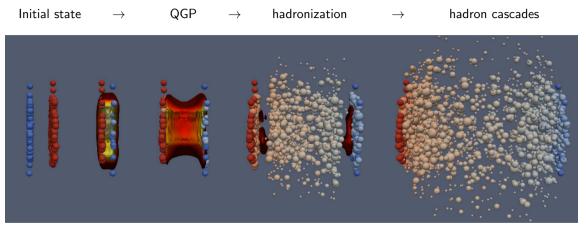

New Vistas in Photon Physics in Heavy-Ion Collisions

Electromagnetic probes in ALICE

Mike Sas


CERN

Sep 22, 2022

Heavy-ion collisions

Over the whole evolution we have production of photons! From **direct**(prompt, pre-equilibrium, thermal, fragmentation) to **decay** photons $(\pi^0, \eta, \omega, ...)$ **This talk:** focus on photon reconstruction and neutral meson production in ALICE

Mike Sas (CERN)

Electromagnetic probes in ALICE

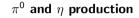
Sep 22, 2022

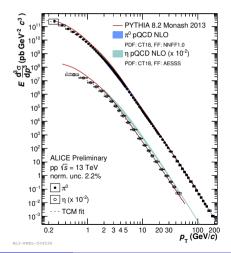
Signatures of the QGP

• Modified particle production Particles are produced via

$$\sigma_{h_1h_2 \rightarrow x} = f_i^{h_1}(x_1, Q^2) f_j^{h_2}(x_2, Q^2) \otimes \sigma^{ij \rightarrow k}(x_1 p_1, x_2 p_2, Q^2) \otimes D_{k \rightarrow x}(z, Q^2)$$

• Energy loss Particles lose energy by traversing the medium


$$R_{\rm AA} = \frac{dN^{\rm AA}/dp_{\rm T}}{< T_{\rm AA} > d\sigma^{\rm pp}/dp_{\rm T}}$$


• Anisotropic flow

Spatial anisotropy of the produced system leads to a momentum anisotropy

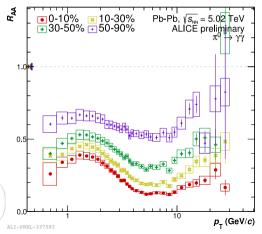
$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_t dp_t dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\varphi - \Psi_R))\right)$$

Signatures of the QGP

• **Modified particle production** Particles are produced via

$$\sigma_{h_1h_2 \rightarrow x} = t_i^{h_1}(x_1, Q^2) t_j^{h_2}(x_2, Q^2) \otimes \sigma^{ij \rightarrow k}(x_1p_1, x_2p_2, Q^2) \otimes D_{k \rightarrow x}(z, Q^2)$$

• Energy loss Particles lose energy by traversing the medium


$$R_{\mathrm{AA}} = rac{d\mathcal{N}^{\mathrm{AA}}/dp_{\mathrm{T}}}{<\mathcal{T}_{\mathrm{AA}}>d\sigma^{\mathrm{pp}}/dp_{\mathrm{T}}}$$

• Anisotropic flow

Spatial anisotropy of the produced system leads to a momentum anisotropy

$$E\frac{d^3N}{d^3\rho} = \frac{1}{2\pi} \frac{d^2N}{\rho_t d\rho_t dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\varphi - \Psi_R))\right)$$

π^0 energy loss in Pb–Pb collisions

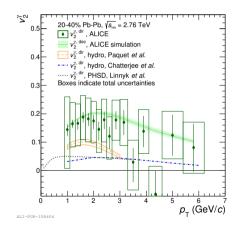
Signatures of the QGP

• Modified particle production Particles are produced via

 $\sigma_{h_1h_2 \rightarrow x} = t_i^{h_1}(x_1, Q^2) t_j^{h_2}(x_2, Q^2) \otimes \sigma^{ij \rightarrow k}(x_1p_1, x_2p_2, Q^2) \otimes D_{k \rightarrow x}(z, Q^2)$

• Energy loss

Particles lose energy by traversing the medium


 $R_{\mathrm{AA}} = rac{dN^{\mathrm{AA}}/dp_{\mathrm{T}}}{< T_{\mathrm{AA}} > d\sigma^{\mathrm{pp}}/dp_{\mathrm{T}}}$

Anisotropic flow

Spatial anisotropy of the produced system leads to a momentum anisotropy

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_t dp_t dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\varphi - \Psi_R))\right)$$

Direct photon flow in Pb-Pb collisions

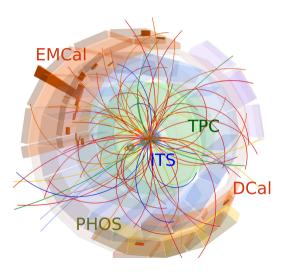
My big questions in heavy-ion physics

- What are the different particle production mechanisms across different system sizes?
- How does the Quark Gluon Plasma form, evolve, and transition again into hadronic matter?
- Can we find the onset of the QGP? \rightarrow Is there a QGP droplet formed in small systems?

ppp-PbPb-PbImage: Physical system of the system

Measuring photons with the ALICE detector

Photon Conversion Method (PCM)

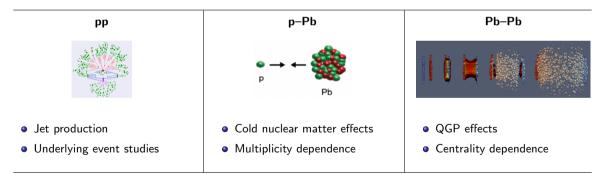

- $\bullet\,$ ITS and TPC, conversion probability $\sim 8\%$
- $|\eta| <$ 0.9 and 0 $^{\circ} < arphi <$ 360 $^{\circ}$
- $E_\gamma > 100$ MeV, $E_{\pi^0} > 300$ MeV

PHOS calorimeter

- PbWO₄ crystals (cell size 2.2 cm \times 2.2 cm)
- $|\eta| < 0.12$ and $250^\circ < arphi < 320^\circ$
- $E_\gamma > 200$ MeV, $E_{\pi^0} > 400$ MeV

EMCal calorimeter

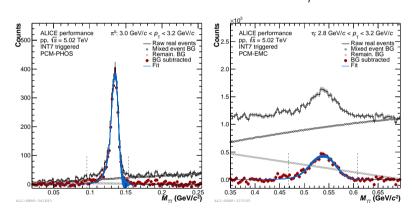
- Pb-scintillator towers (cell size 6 cm x 6 cm)
- EMCal: $|\eta| <$ 0.7, 80 $^\circ < \varphi <$ 187 $^\circ$
- DCal: 0.22 $< |\eta| <$ 0.7, 260° $< \varphi <$ 320°
- DCal: $|\eta| <$ 0.7, 320 $^\circ < arphi <$ 327 $^\circ$
- $E_\gamma >$ 700 MeV, $E_{\pi^0} >$ 1.4 GeV



Neutral meson production

Why measure neutral mesons?

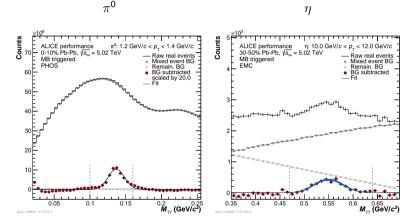
- $\pi^{\mathbf{0}} \rightarrow \gamma \gamma, \quad \eta \rightarrow \gamma \gamma, \quad \omega \rightarrow \pi^{\mathbf{0}} \gamma, \quad \dots$
 - $\bullet\,$ Straightforward identification $(\mathit{M}_{\rm inv}) \rightarrow$ study the particle production mechanisms
 - Main background for $\gamma_{\rm direct} \rightarrow$ precise neutral meson measurements lead to precise $\gamma_{\rm direct}$ measurements



Analysis strategy:

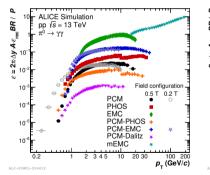
Reconstruct the photons

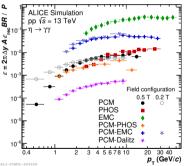
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods
- More differential studies


 π^0

n

Analysis strategy:

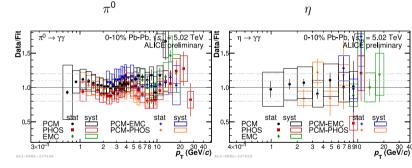

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency acceptance, feed-down from secondaries
- Combine the different reconstruction methods
- More differential studies



Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods
- More differential studies

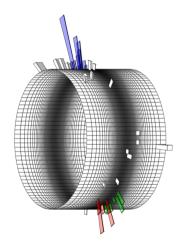
 π^0



 η

Analysis strategy:

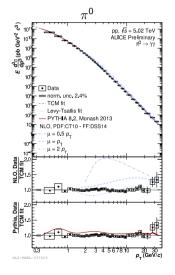
- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods
- More differential studies

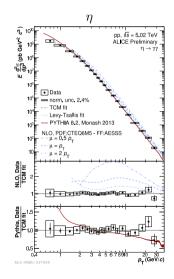


Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods
- More differential studies

- vs. event multiplicity
- $\bullet\,$ vs. Sphericity: $0 < {\it S}_{\rm T} < 1$
 - Pencil-like: $S_{\mathrm{T}} pprox 0$
 - Spherical: $S_{
 m T}pprox 1$
- In-jet production
 - Reconstruct neutral mesons inside charged jets
 - Algorithm: anti-k_t,
 - $R=0.4,~E>10~{
 m GeV}$



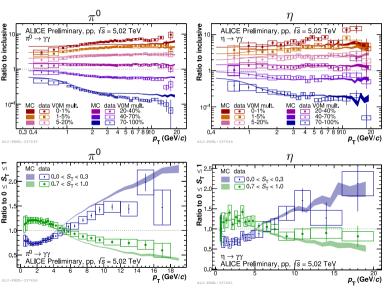

Neutral mesons in pp collisions

Main reasons for study:

- Fragmentation
- Contribution underlying event
- Main background for $\gamma_{\rm direct}$

Neutral mesons in pp collisions

Main reasons for study:


- Fragmentation
- Contribution underlying event
- Main background for $\gamma_{\rm direct}$

More differential studies:

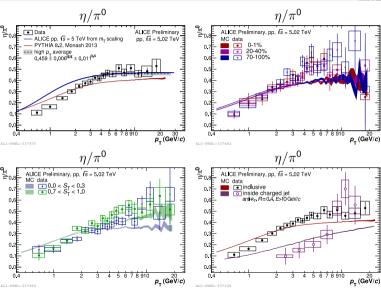
- vs. event multiplicity
- ullet vs. event shape: Sphericity S_{T}
- In-jet production

Comparisons to predictions:

- PYTHIA overpredicts π⁰, except for high multiplicity
- PYTHIA overpredicts π⁰ pencil-like events, underpredicts spherical events
- η/π^0 significantly modified for the in-jet production Mike Sas (CERN)

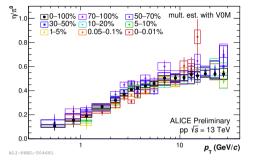
Neutral mesons in pp collisions

Main reasons for study:

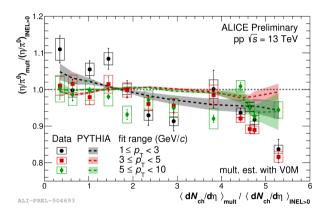

- Fragmentation
- Contribution underlying event
- Main background for $\gamma_{\rm direct}$

More differential studies:

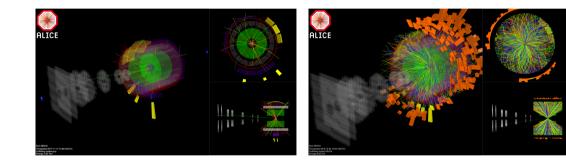
- vs. event multiplicity
- ullet vs. event shape: Sphericity $S_{
 m T}$
- In-jet production


Comparisons to predictions:

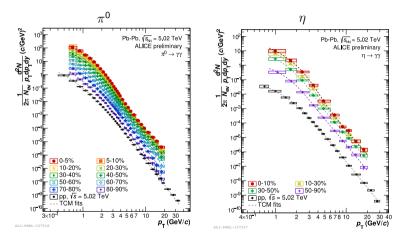
- PYTHIA overpredicts π⁰, except for high multiplicity
- PYTHIA overpredicts π⁰ pencil-like events, underpredicts spherical events
- η/π^0 significantly modified for the in-jet production Mike Sos (CERN)



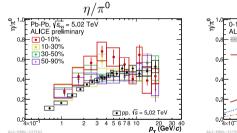
New surprising result in pp collisions at 13 TeV

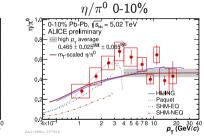


- Indication of an ordering of η/π^0 ratio from low to high multiplicity
- Fits of the double ratio, for a given range in p_T , show a decreasing trend with increasing $dN_{\rm ch}/d\eta$
- Stronger effect in data compared to predictions in PYTHIA



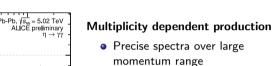
From pp to Pb–Pb collisions...

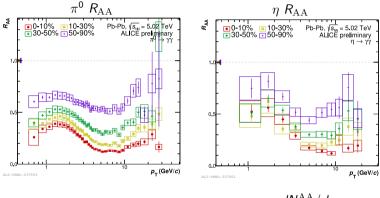




Multiplicity dependent production

- Precise spectra over large momentum range
- Main background for direct photon analysis
- η/π^0 shows significant modification for non-peripheral collisions
- *R*_{AA} shows strong suppression for central collisions

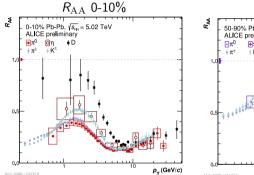




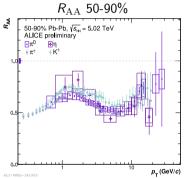
Multiplicity dependent production

- Precise spectra over large momentum range
- Main background for direct photon analysis
- η/π^0 shows significant modification for non-peripheral collisions
- *R*_{AA} shows strong suppression for central collisions

- Main background for direct photon analysis
- η/π^0 shows significant modification for non-peripheral collisions
- *R*_{AA} shows strong suppression for central collisions



Nuclear modification factor:


$$R_{
m AA} = rac{dN^{
m AA}/dp_{
m T}}{< T_{
m AA} > d\sigma^{
m pp}/dp_{
m T}}$$

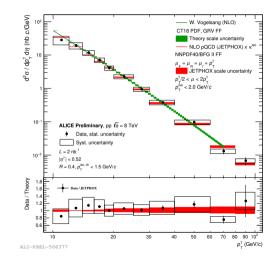
Nuclear modification factor:

Multiplicity dependent production

- Precise spectra over large momentum range
- Main background for direct photon analysis
- η/π^0 shows significant modification for non-peripheral collisions
- *R*_{AA} shows strong suppression for central collisions

$$R_{\mathrm{AA}} = rac{d N^{\mathrm{AA}}/dp_{\mathrm{T}}}{< T_{\mathrm{AA}} > d\sigma^{\mathrm{pp}}/dp_{\mathrm{T}}}$$

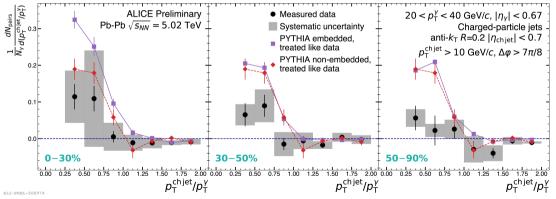
Prompt photon (and jet) production


Prompt photon production in pp collisions

- Challenging measurement, done via charged isolation of the (calorimeter) photons
- Important input for proton PDFs, test of pQCD (LO to NLO to NNLO)
- The basis for many and more complicated analyses:
 - in pp: reconstruct the other outgoing leg, quark/gluon jets, investigate NLO production
 - in pPb: provide strong constraints for nuclear PDF and cold nuclear matter effects
 - in PbPb: extremely insightful probe, next slide

What is next?

• FoCal: more forward → lower *x*, huge reduction of uncertainties on the gluon PDF.



Isolated photon - jet measurements in Pb-Pb collisions

Powerful probe: photon escapes the medium unaffected \rightarrow measure absolute energy loss of the jet!

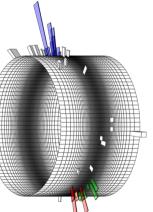
Current most advanced analysis in heavy-ion collisions in ALICE:

Mike Sas (CERN)

Neutral mesons:

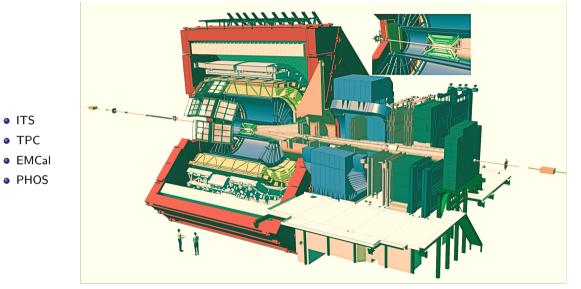
- Benchmark for all photon analyses in ALICE
- Information on particle production mechanisms using detailed comparisons to model calculations
- Decay photon background for direct photon measurements

Prompt photons:


- Probing the proton and nuclear PDFs, as well as testing pQCD
- First isolated photon jet analysis performed

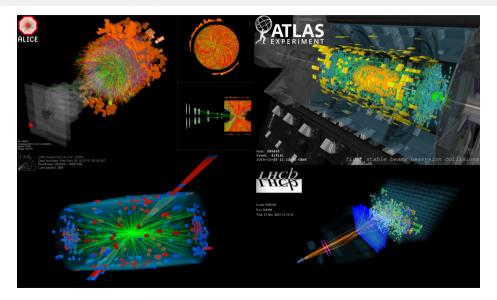
What is next?

- Suild a consistent picture for light neutral meson production
- **②** Direct photons \rightarrow under which conditions do we measure an excess of low $p_{\rm T}$ direct photons?
- Investigate jet quenching phenomena via gamma-jet measurements



Backup

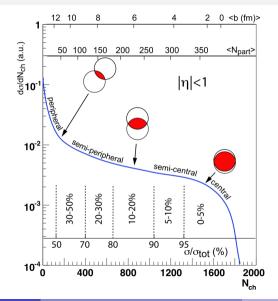
The ALICE detector


Mike Sas (CERN)

Electromagnetic probes in ALICE

Sep 22, 2022

Backup – all event displays


Mike Sas (CERN)

Electromagnetic probes in ALICE

Sep 22, 2022

Backup – centrality

Mike Sas (CERN)

Sep 22, 2022

Direct photon production sources

Definitions:

- Inclusive photons: photons from any source
- **Direct photons:** photons *not* from hadronic decays
- Decay photons: photons from hadronic decays
- $\gamma_{incl} = \gamma_{direct} + \gamma_{decay}$

Sources of direct photons

In all collision systems:

- prompt photons
 - dominant at high $p_{\rm T}$
 - calculable within NLO pQCD

Additional sources in AA collisions:

- Thermal photons
 - Scattering of thermalized particles
- Pre-equilibrium photons
 - Production from the glasma phase
- Jet-Medium interactions
 - Hard partons scattering on QGP constituents

