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Outline

® Motivation: why study photon-photon physics in heavy collisions?

® How can we model Yy collisions 1n a heavy 10n environment?

® What generators are available and how do they differ?



Motivation

® A ‘standard’ heavy 1on collisions looks like this:
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® But not the only possibility...



® Candidate “light-by-light’ scattering event: \Qv::/

Pb GO

Candidate Event:
Light-by-Light Scattering
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® How does this come about?



® [n ‘standard’ heavy collision, large number of nucleons 1n imitial state

QCD particle production enhanced and multiplicity can be very high.
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® [n ‘standard’ heavy collision, large number of nucleons 1n imitial state

QCD particle production enhanced and multiplicity can be very high.
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® [n ‘standard’ heavy collision, large number of nucleons 1n imitial state

QCD particle production enhanced and multiplicity can be very high.
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® However if colliding 1ons suthciently separated in impact parameter

(‘ultraperipheral’) does have to be the case:




® Photon-initiated production naturally leads to this clean final-state:

* Long range QED interaction. Q
* Colour singlet exchange. Q

® Moreover heavy 1ons have large number (2) of protons —> Cross section

enhanced by / 4

® Basic 1dea: effectively acts as a 7Yy collider, and with enhanced cross section

due to large Z ofions. -
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® Some examples...

* ‘Light-by-light’ scattering vy — v .

+ Rare loop-induced process in the SM. First
direct observation in LHC PbPb collisions!

+ Sensitive to new particles in the loop and

BSM “axion-like’ resonances.

Existing constraints from JHEP 12 (2017) 044
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* T lepton pair production and the

lepton anomalous magnetic moment.

+ 7% enhanced rate —> significant Yy — T

signal.

+ High precision determination of

cross section allows constraints on

g-2 and hence BSM.
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Modelling 77y production in heavy ions



® How do we model photon-initiated production in heavy ion collisions?

® Consider simpler case of lepton-lepton collisions:
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® Applying standard QED Feynman rules, cross section given by:
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® Applying standard QED Feynman rules, cross section given by:
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® Applying standard QED Feynman rules, cross section given by:

Phose spaca |
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® Applying standard QED Feynman rules, cross section given by:
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® Aside: what would happen for e.g. charged (spinless) pions?
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® Aside: what would happen for e.g. charged (spinless) pions?
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® Now: what happens if we replace the leptons with heavy ions?




® Answer: cross section exactly as before, but

with suitably modified vp = YA vertex. S,

e L (s ) <
y 2
Q:L o Needs modification!
QT) L (e 1) -



® For long enough photon wavelength (low enough Q?) ion looks point-like:
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® But as we decrease wavelength (increase ()° ) probe internal ion structure:

Ion charge density



® What does 1on charge density look like?

/P((:) ? p

\ R

‘Skin thickness’
® Common & accurate to use Woods- (7“) _ P0
Saxon parameterisation: P 1+ exp (’I“ — R) / d’
. - 32 4(2) = & Charge radius
N.Q F o :D\ -j(k ‘-/Pr

® Key point: the parameters of the charge density
are determined with sub-percent level precision

from wealth of e-A scattering datal @
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® What does this form factor look like? = [&"—) = S & Q:

*x Low (Q? : constant (~ Z)
* Higher Q°: falls off as substructure probed.

FQ)/z
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® So we have: 0
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® Becomes:
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® With form factor given as before. Is that 1t?
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® Answer: no! We must account for possibility of inelastic ion-1on

interactions 1in addition to this.
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® Answer: no! We must account for possibility of inelastic ion-1on

interactions 1in addition to this.
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® Need to include survival factor: probability of no additional inelastic

10n-10n 1nteractions.
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® How do we calculate survival factor? Simplest if we consider collision
In terms of 1on-10n impact parameter.
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® Basic 1dea: if 10ns overlap then they will interact inelastically.
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® Mathematically, achieve this by going to impact parameter space, 1.e.

taking Fourier Transform.

® Writing schematically:
VS ey By s NPSix
i(&ﬂ. \ ( zm F(@ﬂ\\ _{

Q’
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® Mathematically, achieve this by going to impact parameter space, 1.e.

taking Fourier Transform.

® Writing schematically:

T
S = g&lz‘LAizlh lM(bL,le“\\
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® Mathematically, achieve this by going to impact parameter space, 1.e.

taking Fourier Transform.

® Writing schematically:

T
S = S‘ATLZU—CL_Lz‘LL ‘M(Zq,,z,_l,,\\

® We can write this as integral over 1on impact parameters:
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® To first approximation, we then simply require:
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® That 1s, only integrate over impact \

region where: z

b.l.. 7 QA( + QAL oy . ’S) 12

holds! S,
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® [n more detail, condition is not discrete - some overlap can occur.

Schematically:
7T /d%ud%m \M(gluEQL---)IQG_QAlAQ(gu_EQL)

G—QAl Ag (b1 —b21) : survival factor - probability for no additional particle

production at impact parameter b, = \51 | — by 1| . Roughly:

e~ 420 0) x f(by — Ra, — Ra,)

but not exact! \
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Ion-10n survival factor

® |n more , ,
| Qpas(by) = / by 1 d2by, T (b, )Ts (bos) Ay (b1 — by1 + Doy )
detail, we have:

where: Ta(b)) = /dz pa(r) = /dz (pu(r) + p,(r)) , 1S transverse nucleon density.

Apn(b1) = 2(1 — e~®(®1)/2) : nucleon-nucleon scattering amplitude.

1.e. schematically given in terms of integrating individual nucleon-nucleon

scatterings over the overlap area of the 10ns.
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® Result for Pb-Pb: 1 N

0.9 -
0.8 +
0.7 +
0.6 -
0.9 +
0.4 -
0.3 -
0.2 -
0.1 -

Pb-Pb ——

—> expect larger suppression vs.
simple b; > R4, + R4, cut, as
QCD has finite range.

)
WY

o /d2b1¢d252L M (by, ,ba, ... 2o Panaa (B —P2)
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® How significant 1s the survival factor? How much does it reduce cross

section by?

[ 2y, d2by, [M(By, by, ...)|2em A an (01 b2, )

S? —
[ d2by  d2by, |M (b1, ,ba, ...)|?
F@Y/z -
Ph ——
o 0.8 o
® Key point: ion-photon form VO ~3/R~ 0.1 G .
. ~ ~ U. xC
factor F/(Q?) steeply falling at "
higher Q. 041
0.2
0L
e Higher Q? = lower impact oot ooor ool Ton T
Q2
parameter b o \
— low b, region already . ’\
suppressed by elastic photon-ion Y N
Interaction. WL \,
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® Have a look at ratio: [°do®PA/ [2°do™PA, PhPb

O—(bJ_ > b(j_llt) 0o | é VSNN = 5.02 TeV, My > 10 GeV ——
O(bJ- > O) 0.8 |
0.7 +
~ 80% of cross 0.6
section lies outside 0.5 |
by > Ra, + Ra, 0.4 |

034 10 5, 20 30 40
2RA b_]_ [fm]

® Flastic photon-photon production is a special case: quasi-real photon
corresponds to large average 1on-1on impact parameter = outside range of

QCD interactions between 1ons!

oD di reci r /
cpending on precise process S2 ~ 07 — 09

kinematics have:
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® What about uncertainties?

!
u\ v -

° Naively might assume 1nelastic 1on-1on interactions has large uncertainties -

requires knowledge of non-perturbative QCD/nuclear physics.

—0 b
® However, not the case: € AlAz(L) ]]]]]]]] o e
majority of interaction 0.9 | l
0 Pb-Pb —
occurs for S del 1
07| mode
by > R, + Ra, 0.6 - independent;
0.5 | |
where S? ~ 1 0.4 | 1
independent of 0.3 |- :
. 0.2 | model dependent |
QCD modelling. o P
0 ......... [ S Lo Loy
0 5 10 2R 15 20 25 30

— Uncertainty on S % small, at % level.
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® Other effects?

® Survival factor not constant: depends on process/kinematics.

— fdelLdszL‘M(glLaE2L---)’26_9A1A2(51¢_52¢)

(S%) = I
fd2b1J_d2b2J_’M(le_,bQJ_...)lz
1 b1 < q1
R 2 N R
<SZ> _ fd2Q1¢dQQQL‘MmC.S (Q1¢7QQL°“)|2

J d2by, d%by, |M(G1, G2, )]

)

Process

T ~ n(z1)n(z2)V(yy = X)

Kinematics

® NB: this process dependence is often (incorrectly) omitted in literature
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® [For example, consider

dimuon production in PbPb.

® Survival factor ~ 0.7-0.8 at
low mass, but lower at high

Imass.

® Some (mild) dependence on

rapidity.
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* I'inal remark: 1ssue discussed 1n detail in recent paper: arXiv:2104.13392.

e Survival factor due to hadron-hadron
interactions - expressed ~ as a cut on

the hadron-hadron impact parameter:

52(bJ_) ~ H(bJ_ — QT‘A)

e However, in some MCs an additional cut on the dilepton-hadron impact

parameter 1s imposed: b1 2 > Ry

 This 1s unphysical: no lepton-hadron QCD interaction. HO QED

interactions small and not to be included 1n this way.

* Indeed recent ATLLAS data on dimuon production in PbPb distavours such a

cut.
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Ion Dissociation

e Assume interaction is peripheral - no QCD 1on-10n interactions. Can still

have inelastic photon-ion interaction.

 How to include this? Suitably modified form factor:

9 ) @EK:_

F ) FA(QY)

* But for inelastic emission photon no longer

feels coherent charge Z of 1on = suppressed a

T
by factor of Z. 7

=) L
—> % level correction, and with broader Q2

distribution. X“%‘
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® In fact this is not the dominant source of 10on dissociation for ultra-peripheral

1on-10n collisions.

® This comes from addition 10n-10n photon exchanges. Can in particular excite

1on into higher energy state: ‘Giant Dipole Resonance’.

Oy GDR
A-resonance
o, mb e
400 |- C Y 208p
Nucleon M Nucleon ,_-p ﬂi!ﬁh -
threshold thfessot?old excitations 200 N iy i1 ] 111
| ‘.“,.:" By H]EIHEH'}HH }HJIJ
Bound | 0 | | I
states
10 20 30
E,, MeV
10° 10! 10 103 E,, MeV
= =
—EE—— O ———
J WS >
5 L 2L
= C = (
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e GDR excitation assumed to happen independently of photon-photon cross

section:

o N j&z\:_‘_ é;(hs) ' RA% A% (b)

e Total probability sums to unity = if MC excludes this effect 2 P ~ \

will get rate correct. Av

* However some distributions (e.g. dilepton acoplanarity) can be sensitive.

* In addition, can distinguish experimentally by measuring decay neutron in

‘Zero Degree Calorimeters’ (ZDCs).
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Higher order QED effects

e Lepton pair production: the Z% enhancement of elastic photon-ion interaction

implies that additional 1on-lepton QED exchanges no necessarily negligible.

% e Size of eftfect no settled matter:

| differing studies give differing results,
from < 1% to ~ 10%.
W. Zha and Z. Tang, (2021), 2103.04605.
K. Hencken, E.A. Kuraev, V. Serbo, Phys.Rev.C 75 (2007) 034903...

e Additional lepton pair production also not neligible:

e Studies suggest ~ 50% events
'+-/ accompanied by additional eT e pairs.
| | e Strongly peak at v. low energy, so
impact depends on detail of
=

experimental veto.
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What are heavy ion collisions good for?

e At lower masses, Z 4 enhancement wins: PbPb larger effective luminosity

than PPpP-

* However PbPb rate sharply falling with m- : larger m.,, = larger z, =

larger average photon Q° and ion will not remain intact.

1 x 1034

1 x 1033
1 x 1032:
1 % 103! |
1 % 10% |
1 % 102 |
1 % 1028 |

1 % 1027 |

1 x 1026

dLe —2.—1 —1

i [em™?s71Gev] -
? PbPh, L =6 x 1027 cm~2s1, \/s = 5.52 TeV ——
pp, L =2 X 1034 Cm_25_1, \/g =14 TeV —— :
3 pp, RP 220 m - --- |
pp, RP 220 + 420 m ----- |

10 100 71000
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Aside: photoproduction

e Photon-photon collisions not the only process of interest: production of

strongly interacting objects via photoproduction also possible.
gLy g 00) & P P

* [nvolves QCD interaction = sensitive to nuclear structure, saturation

effects...
® Photon emission on one side = ultraperipheral interaction still possible.
e Can also consider pA collisions.

e Will not discuss in detail here (time), but worth bearing in mind!

'\7&60
>3/ - -

w
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MCs on the Market
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® Principle MCs on the market: ) ¢ SuperChiC

» QCD-induced CEP.
® A MC event generator for CEP » Photoproduction.

processes. Common platform for: » Photon-photon induced CEP.

® For pp, pA and AA collisions. Weighted/unweighted events (LHE,
HEPMC) available- can interface to Pythia/HERWIG etc as required.

® [n heavy ions, currently implemented

SuperChic 4 - A Monte Carlo for Central Exclusive and Photon-Initiated Production

of most relevance:

o HEis SuperChic is a Fonran base e Carl nt generator for exclusive and photon-i ted produc n proton
and heavy ion collisions g fS d d odel f tates are implemented, in most cases hspm
e Code correlato swhere relevant, and a fu ully differential tre of the ft UI'VIV al factor is given. Arbitrary user-
[ ] e References defin d histograms and cuts may be made ,as weII gh ed e n the HEPEVT HEPMC nd LHE
formats. For further infol rmation see the user manual.
» Lepton pairs
o .
f,/\.z 1,
| = 3

» Light-by-light scattering. e
» ALPs.

Alist of references can be round here and the code is available here.

Comments to Lucian Harland-Lang < lucian.harland-lang (at) physics.ox.ac.uk >.

» Monopoles.

» Vector meson photoproduction. https://superchic.hepforge.org

® Currently only elastic production implemented: no dissociation.
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* Starlight ® Dedicated MC for heavy ion collisions.

lepton pairs

® Range of two-photon processes

implemented:
vector

mesons

® As well as vector meson photoproduction.

Two-Photon Channels

Particle Jetset ID
e*e” pair 11
pty pair 13
T pair 15
T+ pair, polarized decay 10015*
oY pair 33
a,(1320) decayed by PYTHIA 115

n decayed by PYTHIA 221
fo(1270) decayed by PYTHIA 225
n' decayed by PYTHIA 331
fo(1525) = K*K(50%),K°K°(50%) 335
N decayed by PYTHIA 441
fo(980) decayed by PYTHIA 9010221

® Nuclear breakup 1s included - both single and multiple neutron emission.

® But unphysical b, > R4 cut always applied.

® Process dependence of survival factor not included.

https://starlight.hepforge.org
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* gamma'UPC ® New MC for photon-photon production in

heavy 10on ultra-peripheral collisions (UPCs).

Yy o ete
vy = 177

YY =YY

Yy = To

¥y = (02, (bb)o2

. . vy = XYZ
arbltrary vy — X process can be simulated, e.g.: vy — VM VM

® Makes use of MadGraph: in principle any

vy > W"W~, 77, Zy, - -
vy > H
vy — HH

Yy — It
yy - 0, vy, HH ™
vy = a,p, MM, G

® Currently only elastic production implemented: no dissociation.

® Process dependence of survival factor not included.

https://hshao.web.cern.ch/hshao/gammaupc.html
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— Selection of MCs publicly available that model photon-photon

production in heavy 1on collisions.

o All broadly use the same underlying theory:

(YNJA’ZJ—(LZLJ,O\XC}\DLL ()\PSKO‘)X

2 Ay

. *(@f\ \ (i» F(@‘\\\ —{

t

' 0&(&—.,)' (Z“" F(Oﬁ) " }'— /d2b1j‘d2b2L’M(b1L7b2L )‘ QAlAQ(blL bQJ‘)
o

Qr

Mo ) é@é

but with (important) differences in implementation/processes generated.

% Full treatment of survival factor. * Jon dissoclation

* Unphysical b; > R4 cut.

* Automated process generation.

*...
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Where do we stand?

® Measurements of lepton pair production broadly agree with Superchic/

Starlight predictions, but not entirely:

* Unphysical b, > R4 cut
distfavoured by differential data.

® But tendency for SuperChic
predictions to undershoot dimuon
data (better for electrons).

ATLAS data [24]
o [,LLb] 34.1 £ 0.8
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Light-by-Light Scattering

® MC prediction compared with ATLLAS data on LbyL scattering:
ofqg = 120 = 17 (stat.) £ 13 (syst.) £ 4 (lumi.) nb.

® SuperChic central prediction: 78 nb, 1.e. now below the data. Differentially:

= I ATLAS ]
O, g Pb+Pb s\ =5.02TeV |
Pb PH% - ¢ Data, 2.2 nb™
'_'; 10E [ ] Syst. ® Stat. |
c - £222 SuperChic 3.0 ]
s :
b"_ B _
©
1 = =
Pb Pb(*)
1 0_1 =1 | | | | | | | | | | | | | | | | | | | | | | | —

5 10 15 20 25 30
ATLAS, JHEP 03 (2021)243 m,, [GeV]
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Outlook

® Basic theory for modelling two-photon interactions in heavy 1on collisions

well established.
® Range of MCs on the market that implement this.

® But none so far are complete:

% Full treatment of survival factor.

% Inclusion of 10n dissociation.

* Higher order QED effects.

® To do high precision physics in heavy 1on collisions including all of this well

be key: more work to do!

Thank you for listening
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