Ultra-Peripheral Collisions at RHIC and future opportunities

Kong Tu BNL 05.23.2022

5/23/22

Forward QCD at KU

Almost exactly 10 years ago, I asked M. Murray:

"What is the most exciting physics in your research?"

He said,

"Ah ha... The proton is so complex and so fascinating..." and went on for about an hour.

July 4th, 2012 Building 40, CERN

an ``observer`` in the lab

an ``observer`` in the lab

Momentum

Momentum

Momentum

5/23/22

5/23/22

Forward QCD at KU

Diffractive Vector-Meson (VM)

A sensitive process to gluons

DESY, Hamburg, Germany

(HERA - 6.3 km in circumference)

Diffractive Vector-Meson (VM)

A sensitive process to gluons

Why is it a powerful probe?

 \succ Exclusive probes with little bkg.

> Well-defined kinematics.

Cross sections are sensitive to: i) gluon density and ii) its spatial distribution.

H1 and ZEUS publications about VM at HERA

H1 Topic	Journal	ZEUS Topic	Journal
Exclusive $\pi^+\pi^-$ and ρ^0 in PHP Exclusive ρ^0 with Leading <i>n</i> in PHP Elastic and p-diss J/ψ in PHP Diffractive ρ^0 and ϕ in DIS Diffractive PHP of ρ^0 with large <i>t</i> Elastic J/ψ in PHP and DIS Diffractive PHP of J/ψ with large <i>t</i> Diffractive PHP of $\psi(2S)$ Helicity structure of ρ^0 in DIS Elastic ϕ in DIS Elastic ϕ^0 in DIS Elastic ρ^0 in DIS Elastic ρ^0 and Υ in PHP Elastic ρ^0 and Elastic ϕ in DIS Elastic and Inelastic J/ψ in PHP P-diss. ρ^0 and Elastic ϕ^0 in DIS Elastic ρ^0 and J/ψ at large Q^2 Elastic Rho0 in PHP	Eur.Phys.J.C80 (2020), 1189 Eur.Phys.J.C76 (2016) 1, 41 Eur.Phys.J.C73 (2013) 2466 JHEP05 (2010) 032 Phys.Lett.B 638 (2006) 422 Eur.Phys.J.C46 (2006) 585 Phys Lett B568 (2003) 205 Phys.Lett.B541 (2002) 251 Phys.Lett.B543 (2000) 360 Phys.Lett.B483 (2000) 23 Eur.Phys.J.C13 (2000) 371 Phys.Lett.B421 (1998) 385 Z.Phys.C75 (1997) 607 Nucl.Phys.B472 (1996) 3 Nucl.Phys.B468 (1996) 3 Nucl.Phys.B463 (1996) 3	$\begin{split} R(\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)} \text{ in DIS} \\ \text{Exclusive Electroproduction of } 2\pi \\ \Upsilon(1S) \text{ in PHP } (t\text{-dependence}) \\ \text{P-dissociative } J/\psi \text{ in PHP at large } t \\ \text{Exclusive PHP of } \Upsilon \text{ Mesons} \\ \text{Exclusive } \rho^0 \text{ in DIS} \\ \text{Exclusive } \phi^0 \text{ in DIS} \\ \text{Exclusive } J/\psi \text{ in PHP at large } t \\ \text{Exclusive } J/\psi \text{ in DIS} \\ \text{P-dissociative VM in PHP at large } t \\ \text{Exclusive PHP of } J/\psi \text{ mesons} \\ \text{Exclusive PHP of } J/\psi \text{ mesons} \\ \text{Exclusive } \rho^0 \text{ an } J/\psi \text{ in DIS} \\ \text{Diffractive PHP of VM at large } t \\ \text{Spin-Density ME of Exclusive } \rho^0 \text{ in DIS} \\ \text{Exclusive } \rho^0 \text{ an } J/\psi \text{ in DIS} \\ \text{Elastic } \Upsilon \text{ Photoproduction} \\ \text{Elastic and } p\text{-Dissociative } \rho^0 \text{ in PHP} \\ \text{Elastic } J/\psi \text{ in PHP} \\ \text{Elastic } \rho^0 \text{ in PHP} \\ \text{Plastic } \rho^0 \text{ in PHP} \\ \text{Elastic } \rho^0 \text{ in DIS} \\ \end{array}$	Nucl. Phys. B 909 (2016) 934 Eur.Phys.J. C 72 (2012) 1869 Phys.Lett. B 708 (2012) 14 JHEP 05 (2010) 085 Phys. Lett. B 680 (2009) 4 PMC Physics A 1, 6 Nucl. Phys. B 718 (2005) 3 Nucl. Phys. B 695 (2004) 3 Eur. Phys. J. C 26 (2003) 389 Eur. Phys. J. C 26 (2003) 389 Eur. Phys. J. C 24 (2002) 345 Phys. Lett. B 487 (2000) 273 Eur. Phys. J. C 14 (2000) 213 Eur. Phys. J. C 12 (2000) 393 Eur. Phys. J. C 12 (2000) 393 Eur. Phys. J. C 2 (1998) 432 Eur. Phys. J. C 2 (1998) 247 Z. Phys. C 75 (1997) 215 Z. Phys. C 73 (1996) 73 Phys. Lett. B 377 (1996) 259 Z. Phys. C 69 (1995) 39 Phys. Lett. B 356 (1995) 601

Measured are: ρ , ρ' , ω , ϕ , J/ψ , $\psi(2S)$, Υ in EL and PD channels and for $0 < Q^2 < 100 \text{GeV}^2$ More that 5000 references; a couple of new "preliminary" results and ongoing analyses. \Rightarrow Too much to cover in one talk.

See a summary <u>talk</u> by S. Levonian

Why is it a powerful probe?

- Exclusive probes with little bkg.
- > Well-defined kinematics.
- Cross sections are sensitive to: i) gluon density and ii) its spatial distribution.

Why is it a powerful probe?

> Exclusive probes with little bkg.

- > Well-defined kinematics.
- Cross sections are sensitive to: i) gluon density and ii) its spatial distribution.

A big question: What happens going from a free nucleon to a nucleus?

One question, two perspectives

Color Glass Condensate (CGC)

Dipole-target scattering with small-x evolution equation + saturation scale Q_s

Gluon saturation

One question, two perspectives

Color Glass Condensate (CGC) Dipole-target scattering with small-x evolution equation + saturation scale Q_s

Gluon saturation

Leading Twist Approximation (LTA) Combination of Gribov-Glauber theory, QCD factorization, and HERA diffractive data

L. Frankfrut,, V. Guzey, M. Strikman (Physics Reports 512 (2012) 255-393)

Nuclear shadowing

One question, two perspectives

Color Glass Condensate (CGC) Dipole-target scattering with small-x evolution equation + saturation scale Q_s

ln x

Leading Twist Approximation (LTA) Combination of Gribov-Glauber theory, QCD factorization, and HERA diffractive data

L. Frankfrut,, V. Guzey, M. Strikman (Physics Reports 512 (2012) 255-393)

Gluon saturation

Nuclear shadowing

More different or more similar?

How to study the high-energy gluon dynamics

Ultra-Peripheral Collisions Program

Top RHIC energy of AuAu = 200 GeV

A very versatile program with different species, energy, and polarization. Sensitive to a wide range of initial-state physics

Two approaches

Experimental approaches for understanding the problem

- 1) Go to a simple nuclear system that (certainly) has neither Saturation nor Shadowing effect. Two models should converge.
- 2) Go to the largest nuclear system that has most *Saturation* and/or *Shadowing* effect but find an observable that separates them the most.

We learn from 1) similarities and 2) differences

Approach 1). UPC J/ψ in deuteron

Trigger:

- 1. No ZDC requirement (this is important).
- 2. Back-to-back calorimeter tower trigger (BEMC).
- 3. Low event activity (multiplicities, BBC, etc..)

Using ZDC to detect nuclear breakup – tagging forward nucleon in exclusive events.

Approach 1). UPC J/ψ in deuteron

Results

- ✓ Correcting the photon flux from gold nucleus, reporting γd cross section.
- ✓ Neutron-tagged data at low -t, expectation of incoherent deuteron breakup.
- ✓ High -t is limited by ZDC acceptance. This shows the importance of the ZDC acceptance.

Model data comparison

- $\checkmark\,$ A good baseline system to test the CGC and LTA.
- ✓ Saturation model describes the data slightly better → Favors nucleon fluctuations in the CGC

Deuteron breakup

• CGC and LTA uses the same *d* wavefunction – AV18, with nucleon/cross section fluctuations. \checkmark CGC has a smaller χ^2/dof

A standing issue: why the two models differ by a lot?

Approach 2 1.5). UPC J/ψ in gold

UPC J/ ψ in AuAu at 200 GeV

- > Kinematics: $W_{\gamma N} \sim 17-25$ GeV, x ~ 0.01-0.03. Complementary to LHC
- Observation: distinctive coherent peak with long incoherent tail*.
- Sartre (saturation) with hot-spot fluctuations describe the data well.
- > Shadowing? Will be available soon.

Approach 2 1.5). UPC J/ψ in gold

(Recap the ALICE result at 5 TeV PbPb)

Separating coherent and incoherent - a big experimental challenge (See S. Klein's talk at EIC)

Approach 2 1.5). UPC J/ψ in gold

(Recap the ALICE result at 5 TeV PbPb)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 p_T² (GeV/c)²

Both models capture the core physics

Double ratio – an ultimate test?

DIS measurement

1. Saturation model:

2. Shadowing model:

$$\left[\frac{d\sigma_{\rm diff}/dM_x^2}{\sigma_{\rm tot}}\right]_{\rm eAu} \leqslant \left[\frac{d\sigma_{\rm diff}/dM_x^2}{\sigma_{\rm tot}}\right]_{\rm ep}$$

 Q^2 provides a hard scale \rightarrow clear different expectation from the two models

Double ratio – an ultimate test?

EIC White Paper

A slice of phase space in M_x in photoproduction limit

Saturation

vs Shadowing

Where is the hard scale? Provided by J/ψ , e.g., charm quarks

Double ratio – an ultimate test?

EIC White Paper

A slice of phase space in M_x in photoproduction limit

Saturation

vs Shadowing

Where is the hard scale? Provided by J/ψ , e.g., charm quarks

RHIC Upcoming runs 2023-2025

UPC photoprodution (photo-nucleus collisions) Au+Au vs *p*+Au

 $\frac{\sigma_{J/\psi}^{\text{exclusive}} / \sigma_{J/\psi}^{\text{inclusive}}|_{\text{Au}}}{\sigma_{J/\psi}^{\text{exclusive}} / \sigma_{J/\psi}^{\text{inclusive}}|_{\text{p}}}$ Model simulations in progress

ZT, 2022]

A potential *qualitative* different prediction for this double ratio!

Summary

- UPC VM program at RHIC has been extremely interesting towards understanding the nuclear gluonic structure – <u>from light to heavy nucleus</u>.
- One big question, two perspectives (gluon saturation vs nuclear shadowing)
 - Theoretical understandings are *greatly* needed towards incoherent production, nuclear breakups, and *cross validation/comparison among models*, etc.
 - Experimental approach needs to be more definitive and differentiative, e.g., double ratio of VM (J/psi) production.
- Many other physics and details were not shown, e.g., |t| distribution (a big topic), polarized proton target, etc.
- Upcoming RHIC runs 2023-2025 (*p*+*p*, *p*+Au, and Au+Au) are exciting!