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What is special about BFKL? What is it?

2
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1975-1978: Baltisky, Fadin, Kuraev, 
Lipatov: study of QCD scattering 
amplitudes in the limit of high center of 
mass energies , s s ≫ − t, mi

Actually:  gauge theory + 
Higgs mechanism (infrared 
regularization)

SU(2)

Methodology:  
- perturbation theory → studied 

scattering of gluons (and also 
quarks) 

- sum up all terms in the perturbative 
series  i.e. rearrange 
perturbative series 

(αs ln s)n
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1975-1978: Baltisky, Fadin, Kuraev, 
Lipatov: study of QCD scattering 
amplitudes in the limit of high center of 
mass energies , s s ≫ − t, mi

Result No 1: 
Elastic scattering amplitude

𝒜gg→gg(s, t) = 𝒜(0)
gg→gg(s, t) ⋅ sω(t,ϵ)

Here: 
-   = gluon Regge trajectory; right 

now know up to 2 loop 
- It is IR divergent (regulator ) 
- Reggeization of the gluon

ω(t, ϵ)

ϵ



Extension to multi-particle production
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s

In Multi-Regge-Kinematics s ≫ si ≫ − ti, mj

s2

s3

s4

s5

…
sn

s1

𝒜gg→ng = 𝒜(0)
gg→ng ⋅ sω(t1,ϵ)

1 ⋅ sω(t2,ϵ)
2 … ⋅ sω(tn,ϵ)

n

Result: 

Production through gauge invariant Lipatov vertex :Cμ

𝒜gg→ng = sΓ(q1)
1
q2

1
Cμ(q1, q2, k1)ϵμ(k1)

1
q2

2
Cμ(q2, q3, k2)ϵμ(k2)…Γ(qn)



Why this is remarkable?

5

- not only a correction to external legs 
(collinear radiation) 

- Not only a soft correction 

- Need to “break up” scattering amplitudes 
for such resummation → deal with internal 
off-shell states (“reggeized gluons”) 



Why this is remarkable?
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- not only a correction to external legs 
(collinear radiation) 

- Not only a soft correction 

- Need to “break up” scattering amplitudes 
for such resummation → deal with internal 
off-shell states (“reggeized gluons”) 

- confirmed by exact calculations (e.g. 
anomalous DGLAP dimension to 3-loop 
etc., N=4 SYM amplitudes etc., exact 
QCD scattering amplitudes) 

- Reveals beautiful mathematical 
structure (conformal symmetry, 
integrability) in certain setups



Phenomenology
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Observe cross-sections, not amplitudes …. dσ = ∑
n

|𝒜2→n |2 dΦ(n)

- Yields perturbative, hard, or BFKL Pomeron 
-  Predicts in principle a power-like rise of the total cross-section  
- In general more complicated: 

σ ∼ sλ

Pomeron = t-channel exchange with quantum 
numbers of the vacuum; responsible for the rise of 
the total QCD cross-section



Phenomenology
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Observe cross-sections, not amplitudes …. dσ = ∑
n

|𝒜2→n |2 dΦ(n)

- Yields perturbative, hard, or BFKL Pomeron 
-  Predicts in principle a power-like rise of the total cross-section  
- In general more complicated: 

σ ∼ sλ

σAB(s, QA, QB) = ∫
d2ka

π ∫
d2kb

π
ΦA(ka, QA) fBFKL(ln s, ka, kb) ΦB(kb, QB)

 universal BFKL Green’s functionfBFKL(ln s, ka, kb)

: impact factors = describe coupling of BFKL Green’s function to external scattering particlesΦI(k, Q)

Pomeron = t-channel exchange with quantum 
numbers of the vacuum; responsible for the rise of 
the total QCD cross-section



(potential) Issues with this expression
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σAB(s, QA, QB) = ∫
d2ka

π ∫
d2kb

π
ΦA(ka, QA) fBFKL(ln s, ka, kb) ΦB(kb, QB)

- expression derived in perturbation theory → need some hard scale  

- expression derived in perturbation theory → small , yet integrated over all 
transverse momenta 
→ not necessarily a problem (do the same in loop calculations, but  can 
lead to complications with Landau pole of running coupling etc.;  
Appears at NLO …  
→ diffusion in transverse momentum (“Bartels’s cigar”)  

- expression derived in perturbation theory → it’s the dominant term at any order in 
perturbation theory; not necessarily true, once summed up

Qa, Qb ≫ ΛQCD

αs(μ)

β0 ln(μ2/k2)

 possible etc. αss2αsω0 ≫ sαsω0



BFKL Pomeron in conjugate Mellin space
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σAB(s, QA, QB) = ∫
d2ka

π ∫
d2kb

π
ΦA(ka, QA) fBFKL(ln s, ka, kb) ΦB(kb, QB)

Similar to moments for DGLAP evolution, Fourier transform: 
convolutions in transverse momenta turn into  products for conjugate 
Mellin space

σAB(s, QA, QB) = ∫
1/2+i∞

1/2−i∞

1
QA

2 dγ
2πi ( Q2

A

Q2
B )

γ

ΦA(γ)ΦB(γ)sχ(γ)(1 + α2
s ln(s)f(γ) + …)

With  BFKL eigenvalueχ(γ) =
αsNc

π
χ0(γ) + ( αsNc

π )
2

χ1(γ) + …



Hard vs. Soft Pomeron
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Approximate solution (saddle point approximation 

limit ): ᾱs ln s → ∞, ᾱs =
αsNc

π
σAB ∼ sᾱs2.77259 ≃ s0.52, αs = 0.2

- Idea: existence of 2 Pomerons  (soft with  and hard with  

- Hard Pomeron in above approximation problematic:   

• Intercept is very large  

• HERA: intercept increases with hard scale; seems to indicate the opposite 

• BFKL wrong?

sλ λ ≃ 0.1 λ ≃ 0.5



Complete description:
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Data: [H1 & ZEUS collab. 0911.0884]  
Theory: [MH, Salas, Sabio Vera; 
1209.1353; 1301.5283] 

λ(Q2) = ⟨d ln F2(x, Q2)
d ln 1/x ⟩

x

Effective Pomeron intercept in DIS x = Q2/s

- Description uses complete Mellin 
integral + NLO corrections + collinear 
resummation of NLO BFKL + BLM scale 
setting for running coupling 

- Tendency even there for LO BFKL with 
fixed couplingNote: this is expect: BFKL and DGLAP agree in the 

double log approximation



Unitarity & the BFKL Pomeron
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- Non-perturbative Froissart theorem: total QCD cross-section grows 
asymptotically at most as  

- Derived from unitarity (and finite range of strong interactions?)
σtot ≤ c0 ln2 s



Unitarity & the BFKL Pomeron
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- Non-perturbative Froissart theorem: total QCD cross-section grows 
asymptotically at most as  

- Derived from unitarity (and finite range of strong interactions?)
σtot ≤ c0 ln2 s

Quite ironically, the original BFKL deviation uses heavily unitarity as well ….   
- But naturally  etc 
- Keeping track of ’s reveals other terms which belong to multiple reggeized 

gluon exchange (Pomeron = “bound state” of 2 reggeized gluons);  
- Yields so-called Triple Pomeron Vertex → non-linear term in BK equation 

ln(−s) = ln(s) − iπ ≃ ln(s)
iπ
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- Non-perturbative Froissart theorem: total QCD cross-section grows 
asymptotically at most as  

- Derived from unitarity (and finite range of strong interactions?)
σtot ≤ c0 ln2 s

Quite ironically, the original BFKL deviation uses heavily unitarity as well ….   
- But naturally  etc 
- Keeping track of ’s reveals other terms which belong to multiple reggeized 

gluon exchange (Pomeron = “bound state” of 2 reggeized gluons);  
- Yields so-called Triple Pomeron Vertex → non-linear term in BK equation 

ln(−s) = ln(s) − iπ ≃ ln(s)
iπ

How can this help? Schematically  

With ,  
multiple (Pomeron) exchange can yield something like 

z = sλ σ ∼ c1z − c2z2 + c3z3 − c4z4 + …

 subleasing in , but lead 
to unitarization of the result
ci>1 αs



An illustrative example: dipole models

12

Lipatov (some DESY seminar 2009): “Exponential is a very nice 
function but it is not always the correct function”

Cross-section of a color dipole (quark 
-antiquark pair with transverse separation  in 
configuration space)

r

Perturbative result:               

power-like growth of cross-section

σlin.
qq̄ = σ0r2Q2

0 x−λ = σ0
r2Q2

s (x)
4

, x = Q2/s, Q2
s = Q2

0 x−λ

γ
∗



An illustrative example: dipole models

12

Lipatov (some DESY seminar 2009): “Exponential is a very nice 
function but it is not always the correct function”

Cross-section of a color dipole (quark 
-antiquark pair with transverse separation  in 
configuration space)

r

Perturbative result:               

power-like growth of cross-section

σlin.
qq̄ = σ0r2Q2

0 x−λ = σ0
r2Q2

s (x)
4

, x = Q2/s, Q2
s = Q2

0 x−λ

Unitarized version: σqq̄ = σ0 (1 − e−r2Q2
s (x)/4) = σ0 ∑

k

(−1)k+1

k! ( r2Q2
s (x)
4 )

k

Exponential (=eikonal) correct in QED, most likely not in QCD → a model (here 
GBW model)

[Golec-Biernat, Wüsthoff, 1998-1999]

γ
∗
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s(Y)saturation

region

Λ2
QCD

αs <<  1αs ~ 1

BK/JIMWLK

DGLAP

BFKL

BK evolution for dipole  
amplitude N(x,r)∈ [0,1]  

[related to gluon distribution]

in the transition region towards high and saturated gluon densities.

To fully access this question, we first recapitulate which possible impact large gluon den-
sities could have on the observable. First of all, the presence of high density e↵ects cannot be
seen directly at the level of the observable. The scattering amplitude Eq. (5) depends only
on the dipole amplitude, which itself can be expressed as the correlator of two Wilson lines
which resum the gluonic field of the proton, see e.g. [46]. Even though the dipole amplitude
resums the interaction of the qq̄-dipole with an in principle infinite number of gluons, the
gluons couple to the qq̄-dipole like a single gluon; the “reggeize” in the language of [47] and
therefore appear like a single gluon. At the level of our phenomenological study, this property
reveals itself through Eq. (9), which relates the dipole cross-section to the unintegrated gluon
density. To make multiple re-scattering of partons on the target field visible, it would be
necessary to resolve the hadronic final state of the dissociated photon, see e.g. [48, 49]. This
not the case for photo-production of vector mesons. The only place where one could expect
a signal for the presence of saturation e↵ects is therefore the x-dependence of the underlying
gluon distributions. As an immediate consequence, any framework which is based on a direct
fit of the x-dependence at the J/ scale (such as collinear parton distribution functions)
does not exclude presence of saturation e↵ects; it merely demonstrates the ability to fit the
resulting x-dependence of the underlying gluon distribution. While this initial x-distribution
can be evolved through DGLAP evolution to events with higher hard scales, such events
are generally characterized by larger values of x (x⌥ > 2.28 · 10�5 vs. xJ/ > 2.99 · 10�6

in the current case). Taking further into account that DGLAP evolution is known to shift
large x input to lower x, it is therefore save to say that the mere ability of DGLAP fits to
accommodate low x J/ photo-production data, does not exclude the potential presence of
sizable non-linear e↵ects for the data points at highest W -values.

Instead of DGLAP evolution, a suitable benchmark to establish presence/absence of gluon
saturation is provided by linear NLO BFKL evolution, such as the HSS gluon. While the
HSS gluon provides a very good description of both ⌥ and J/ photo-production data,
the following observation can be made: Recalling the particularly solution of NLO BFKL
evolution used for the HSS-fit, one finds at the at level of the dipole cross-section two terms
d

dN(x, r)

d ln 1

x

=

Z
d2r1K(r, r1) [N(x, r1) +N(x, r2)�N(x, r)�N(x, r1)N(x, r2)]

r2 = |r � r1|

��p(x) =
1

BD(x)

Z 1

0

drW (r)�qq̄(x, r)

�̂(HSS)

qq̄ (x, r) = �̂(dom.)

qq̄ (x, r) + �̂(corr.)

qq̄ (x, r)

�̂(corr.)

qq̄ (x, r) = �↵2

s ln

✓
1

x

◆
�̂(1)

qq̄ (x, r)

7

kernel calculated 
in pQCD

linear BFKL evolution = subset of 
complete BK

non-linear term 
relevant for N~1 
 (=high density)

Complete picture: non-linear QCD evolution

Derivation: assumes presence of strong color field  + 
use of renormalization group wrt. Rapidity cut-off

A+ ∼ 1/g

[Gribov, Levin, Ryskin; 1983] 
[McLerran, Venugopalan; 1993] 
[Balitsky, 1995], [Kovchegov, 1997] 
[Jalilian-Marian,Iancu, McLerran, Weigert, Leonidov, Konvex, 
1996-2000]
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Complete picture: non-linear QCD evolution

- linear terms (LO BFKL): power-like growth 
- Non-linear term: bring growth to hold (  is 

solution) 
- Transition between linear & non-linear regime 

characterized by saturation scale , growing with 
energy

N = 1

Qs(x)

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

r[GeV-1 ]

N
(x
,r
)

Towards low x



How to provide evidence for such physics?
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• Observables with 1 hard scale  → construct dimensionless 
function which scales with saturation scale 

 
Can search for such scaling pattern e.g. [Praszalowicz, Stebel, 
2013] 

• Imprints of the saturation scale in transverse momentum spectra 
(e.g. decorrelation of back-to-back dijets/dihadrons) 

• Investigate dependence of cross-sections on center-of-mass energy 
Serves both as further tests of BFKL evolution 
+search for deviations from BFKL at highest center of mass 
energies

M

f(M2, x) = g(M2/Q2
s (x))



photo induced exclusive photo-production of J/𝛹s and Ψ(2s)

J/Ψ,Υ

e, p, Pb

W 2

t

q

p

• hard scale: charm mass 
(small, but perturbative) 

• reach up to x≳.5･10-6 

• perturbative cross-check: 
ϒ (b-mass) 

• measured at LHC (LHCb, 
ALICE, CMS) & HERA (H1, 
ZEUS) 

• Enormous range in center 
of-mass energies



Introduction

DGLAP vs. saturation (II)

log(1/x)

fit HERA + LHC data

g
0

@x =
M2

V
W 2

1

A

log(xg(x))
evolve to higher scales e.g. M⌥

at Q0 ' MJ/ 
= fit x dependence

I J/ ! ⌥ ' evolution 2.4 GeV2 ! 22.4 GeV2

I high density e↵ects die away in collinear limit
I DGLAP unstable at ultra-small x and small scales ...
I convinced: pdf studies highly valuable ! constrain pdf’s at

ultra-small x
I useful benchmark for saturation searches (?)

Martin Hentschinski (UDLAP) BFKL & the growth of the VM Xsec. 04/04/1017 5 / 30
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Important: not a contest with DGLAP evolution - ask different questions

DGLAP

low x

• fit x-dependence + evolve from J/𝛹 (2.4 GeV2) to ϒ (22.4 GeV2)  
• DGLAP shifts large x input (low scales) to low x (high scales)  

+  higher twist dies away fast in evolution 
→ constrain pdfs, but don’t learn about saturation (easily overseen) and BFKL (fitted)

DGLAP: 



What did we find so far?
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Can BFKL fit [MH, Salas, Sabio Vera; 1209.1353; 1301.5283] describe  and  data? YES. J/Ψ Υ
[Bautista, Fernando Tellez, MH; 1607.05203]  
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At highest , BFKL fit 
unstable (NLO>LO) 

W

• still describe  
production  
→ perturbative cross-
check  

• not true for high 
precision HERA data 

Υ

10 50 100 500 1000
1

10

100

1000

BUT:  
• resulting growth too strong for  

production 
• classical sign for onset of high 

density effects/transition towards 
saturated regime?

J/Ψ



Next step:
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- Refined wave function + include  + renormalization scale 
uncertainties 

- Cannot really distinguish between linear vs nonlinear 
- Note: normalization is fitted. [MH, E. Padron Molina, 2021]

Ψ(2s)
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50 100 500 1000
1
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Shown: linear NLO BFKL (HSS) [MH, Salas, Sabio Vera; 1209.1353; 1301.5283]   
and non-linear BK (KS)  [Kutak, Sapeta; 1205.5035]



Observation:
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- very similar energy dependence predicted by linear and non-linear 
QCD evolution for total photo-production  cross-section of  
and  

- But differs for the ratio 

J/Ψ
Ψ(2s)

σ(J/Ψ)/σ(Ψ(2s))

50 100 500 1000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

- non-linear KS gluon (subject to BK 
evolution): growing ratio 

- Linear HSS gluon (subject to NLO 
BFKL evolution): approximately 
constant ratio 

- also: unstable fixed scale HSS gives 
decaying ratio: related to enhanced 
IR contribution for the  Ψ(2s)
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What causes the difference for  and ?Ψ(2s) J/Ψ

ϕ1 s (r, z=0.5)
ϕ2 s (r, z=0.5)

0 1 2 3 4 5 6 7

0.00

0.05

0.10

0.15

r [GeV-1 ]

- Node of the 2s state  
- Makes this state (somehow counter-intuitively) more 

perturbative (cancellation) 
- Noted before [J. Nemchik, N.N. Nikolaev, E. Predazzi, B.G. 

Zakharov V.R. Zoller; J. Exp. Theor. Phys. 86, 1054 (1998)] 
and [Cepila, Nemchik, Krelina, Pasechnik; 1901.02664]

Here: 
- Gaussian model, next slide: numerical solution 

to Schrödinger equation etc. 
- In common: position of node somehow 

constraint through charm mass



Wave function overlap for  and ?Ψ(2s) J/Ψ
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• Need to produce VM from photon 
• Reduces size of node, but enhanced, once multiplied with 
dipole cross-section

Buchmüller-Tye Potential:  Coulomb-like behavior at small  and 
a string-like behavior at large  [Buchmüller, Tye; PRD24, 132 
(1981)]

r
r

Here: use wave function overlap as provided by  
[M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila;  1812.03001; 
1901.02664] 

0.01 0.10 1 10

0.0000

0.0002

0.0004

0.0006

harmonic oscillator (HO): U(r) =
mQ

2
ω2r2

0.01 0.10 1 10

0.0000

0.0002

0.0004

0.0006

•includes relativistic spin rotation effects + (more) 
realistic  potential 

•Obtained from numerical solution to non-
relativistic Schrödinger equation & boosted 

•Also seen for simple boasted Gaussian

cc̄

https://arxiv.org/abs/1812.03001
https://arxiv.org/abs/1901.02664


The role of the node for slope  where  λ σqq̄ ∼ x−λ
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Towards smaller x

���� ���� ���� ���� � �

���

���

���

���

���

�/��

- small, but relevant where linear and 
non-linear differ 

- Recall: slope of linear GBW = a line at 
0.248
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- DGLAP improved saturation model [Bartels, Golec-
Biernat, Kowalski; hep-ph/0203258], fit [Golec-Biernat, 
Sapeta; 1711.11360] (GBW in backup) 

- Complete vs. linearized version; issue: uncertainties …. 

- Need for data (low energy to fix normalization, high 
energy to see which scenario is realized)



Perturbative dipole build on conventional PDF
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- here:  

- Use NNPDF NLO fit with NLO small x 
resummation 

- Non-trivial energy dependence + does not 
really describe cross-section (within our 
framework, misses of course NLO corrections etc) 

- Ratio of cross-sections is approximately 
constant with center of mass energy 

σlin
qq̄ (x, r) =

αs(μ(r))π2

3
r2xg(x, μ(r))

W50 100 500 1000
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Conclusion
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• Energy dependence of exclusive vector meson production (charmonium, 
bottomium) is a good place to investigate QCD high energy evolution  

• Both learn about BFKL and to search for signs of non-linear effects 

• There is a chance to learn something from the ratio of  and  about 
the relevance of non-linear effects and/or the size of the saturation scale [study 
in progress]

Ψ(2s) J/Ψ
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BFKL & exclusive Vector Mesons

Good description of cominbed HERA [MH, Salas, Sabio Vera; 1209.1353; 1301.5283]
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Figure 3: Study of the dependence of F2(x, Q2) on x using the LO photon
impact factor (solid lines) and the kinematically improved one (dashed lines).
Q2 runs from 1.2 to 120 GeV2.

7

data: [H1 & ZEUS collab. 0911.0884]

Martin Hentschinski (UDLAP) Forward physics & small x gluon 23/05/2017 19 / 43

linear low x evolution as benchmark →requires precision 
(updated version desirable, work has started; not expected too soon)

use: HSS NLO BFKL fit [MH, Salas, Sabio Vera; 1209.1353; 1301.5283] 

• uses NLO BFKL kernel  
[Fadin, Lipatov; PLB 429 (1998) 127]  
+ resummation of 
collinear logarithms 

• initial kT distribution 
from fit to combined 
HERA data
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Pomeron intercept



• based on unified (leading order) 
DGLAP+BFKL framework [Kwiecínski, 
Martin, Stasto, PRD 56(1997) 3991]  

• combined with leading order BK 
evolution [Kutak, Kwiecinski;hep-ph/0303209][Kutak, 
Stasto; hep-ph/0408117] 

• initial conditions: fit to combined 
HERA data  

• both non-linear and linear version 
available (= non-linearity 
switched off)

gluon with non-linear terms: KS gluon
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Figure 3: The proton structure function F2(x,Q2) from the fit of our framework, in its linear
and nonlinear variant, to the combined data from HERA [26] as a function of x for the Q2 range
from 1.5 to 400 GeV2 (with the vertical offsets of 0.2).

The corresponding equation for the unintegrated gluon density reads [27, 45]

φp(x, k
2) = φ(0)

p (x, k2)

+
αs(k2)Nc

π
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)

φp(x, l
2)

]

, (3.1)

where z = x/x′ (see Fig. 2 for explanation of the variables). For convenience, we omit the g
subscript in the unintegrated gluon density symbol and keep only the subscript denoting the

5

[Kutak, Sapeta; 1205.5035]

[H1 & ZEUS collab. 0911.0884] 



how to compare to experiment?

The outline of this letter is as follows: In Sec. 2 we provide details of our theoretical
description, Sec. 3 is dedicated to a discussion of the large perturbative corrections of the
NLO BFKL gluon in the large W region while in Sec. 4 we present our conclusions.

2 Energy dependence of the photo-production cross-section

We study the process 1 �(q) + p(p) ! V (q0) + p(p0) where V = J/ ,⌥(1S) and � denotes a
quasi-real photon with virtuality Q ! 0; W 2 = (q+ p)2 is the squared center-of-mass energy
of the �(q)+p(p) collision. The x value probed in such a collision is obtained as x ' M2

V /W
2

with MV the mass of the vector meson. With the momentum transfer t = (q � q0)2, the
di↵erential cross-section for the exclusive production of a vector meson can be written in the
following form

d�

dt
(�p ! V p)

����
t=0

=
1

16⇡

��A�p!V p(W 2, t = 0)
��2 , (1)

where A(W 2, t) denotes the scattering amplitude for the reaction �p ! V p for color singlet
exchange in the t-channel, with an overall factor W 2 already extracted. For a more detailed
discussion of the kinematics we refer to [25].
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✓
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◆
· =mA�p!V p(x, t = 0)

2.1 The theoretical setup of our study

In the following we determine the total photo-production cross-section, based on an inclusive
gluon distribution. This is possible following a two step procedure, frequently employed in
the literature: First one determines the di↵erential cross-section at zero momentum transfer
t = 0 (which can be expressed in terms of the inclusive gluon distribution); in a second step
the t-dependence is modeled which then allows us to relate the di↵erential cross-section at
t = 0 to the integrated cross-section. Here we follow the prescription given in [21,22], where
an exponential drop-o↵ with |t|, � ⇠ exp [�|t|BD(W )] is used with an energy dependent t
slope parameter BD, as motivated by Regge theory,

BD(W ) =


b0 + 4↵0 ln

W

W0

�
GeV�2. (2)

1
Besides HERA data we also use the LHC p-p and Pb-p data where highly boosted p and Pb respectively

become a source of photons leading to Ultra Peripheral Collisions

3

a) analytic properties of scattering amplitude → real part

Following [21, 22], we use for the numerical values ↵0 = 0.06 GeV�2, W0 = 90 GeV and

bJ/ 
0

= 4.9 GeV�2 in the case of the J/ , while b⌥
0

= 4.63 GeV�2 for ⌥ production. The
total cross-section for vector meson production is therefore obtained as

��p!V p(W 2) =
1

BD(W )

d�

dt
(�p ! V p)

����
t=0

. (3)

The uncertainty introduced by the modeling of the t-dependence mainly a↵ects the overall
normalization of the cross-section with a mild logarithmic dependence on the energy. To
determine the scattering amplitude, we first note that the dominant contribution is provided
by its imaginary part. Corrections due to the real part of the scattering amplitude can be
estimated using dispersion relations, in particular

<eA(W 2, t)

=mA(W 2, t)
= tan

�⇡

2
, with �(x) =

d ln=mA(x, t)

d ln 1/x
. (4)

As noted in [25,30], the dependence of the slope parameter � on energy W provides a sizable
correction to the W dependence of the complete cross-section. We therefore do not assume
� = const., but instead determine the slope � directly from the W -dependent imaginary part
of the scattering amplitude. The latter is obtained from [17,18]

=mA�p!V p
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Z
d2r

Z
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Z
1

0

dz

4⇡
( ⇤

V )T N (x, r, b) (5)

where N (x, r, b) is the dipole amplitude and T denotes transverse polarization of the quasi-
real photon. Here
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êfeNc
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�
, (6)

with ✏2 = m2

f for real photons. Furthermore r =
p
r2, while f = c, b denotes the flavor of the

heavy quark and êf = 2/3, �1/3. For the scalar parts of the wave functions �T,L(r, z), we
employ the boosted Gaussian wave-functions with the Brodsky-Huang-Lepage prescription
[31]. For the ground state vector meson (1s) the scalar function �T (r, z), has the following
general form [18,32],

�1s
T,L(r, z) = NT,Lz(1� z) exp
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The free parameters NT and R1s of this model have been determined in various studies from
the wave function normalization and the decay width of the vector mesons. In the following
we use the values found in [14] ( J/ ) and [16] ( ⌥). The parameters are summarized in
Tab. 1. In the forward limit t = 0, one further has,

2

Z
d2bN (x, r, b) = �qq̄(x, r) . (8)

where �qq̄ denotes the inclusive dipole cross-section which is related to the unintegrated gluon
density F through [33]

�qq̄(x, r) =
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⌘
↵sF(x,k2) . (9)

4

with intercept

The outline of this letter is as follows: In Sec. 2 we provide details of our theoretical
description, Sec. 3 is dedicated to a discussion of the large perturbative corrections of the
NLO BFKL gluon in the large W region while in Sec. 4 we present our conclusions.

2 Energy dependence of the photo-production cross-section

We study the process 1 �(q) + p(p) ! V (q0) + p(p0) where V = J/ ,⌥(1S) and � denotes a
quasi-real photon with virtuality Q ! 0; W 2 = (q+ p)2 is the squared center-of-mass energy
of the �(q)+p(p) collision. The x value probed in such a collision is obtained as x ' M2

V /W
2

with MV the mass of the vector meson. With the momentum transfer t = (q � q0)2, the
di↵erential cross-section for the exclusive production of a vector meson can be written in the
following form
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=
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where A(W 2, t) denotes the scattering amplitude for the reaction �p ! V p for color singlet
exchange in the t-channel, with an overall factor W 2 already extracted. For a more detailed
discussion of the kinematics we refer to [25].
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2.1 The theoretical setup of our study

In the following we determine the total photo-production cross-section, based on an inclusive
gluon distribution. This is possible following a two step procedure, frequently employed in
the literature: First one determines the di↵erential cross-section at zero momentum transfer
t = 0 (which can be expressed in terms of the inclusive gluon distribution); in a second step
the t-dependence is modeled which then allows us to relate the di↵erential cross-section at
t = 0 to the integrated cross-section. Here we follow the prescription given in [21,22], where
an exponential drop-o↵ with |t|, � ⇠ exp [�|t|BD(W )] is used with an energy dependent t
slope parameter BD, as motivated by Regge theory,
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Besides HERA data we also use the LHC p-p and Pb-p data where highly boosted p and Pb respectively

become a source of photons leading to Ultra Peripheral Collisions
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b) differential Xsection at t=0:

c) from experiment:

Following [21, 22], we use for the numerical values ↵0 = 0.06 GeV�2, W0 = 90 GeV and

bJ/ 
0

= 4.9 GeV�2 in the case of the J/ , while b⌥
0

= 4.63 GeV�2 for ⌥ production. The
total cross-section for vector meson production is therefore obtained as
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. (3)

The uncertainty introduced by the modeling of the t-dependence mainly a↵ects the overall
normalization of the cross-section with a mild logarithmic dependence on the energy. To
determine the scattering amplitude, we first note that the dominant contribution is provided
by its imaginary part. Corrections due to the real part of the scattering amplitude can be
estimated using dispersion relations, in particular
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As noted in [25,30], the dependence of the slope parameter � on energy W provides a sizable
correction to the W dependence of the complete cross-section. We therefore do not assume
� = const., but instead determine the slope � directly from the W -dependent imaginary part
of the scattering amplitude. The latter is obtained from [17,18]
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with ✏2 = m2

f for real photons. Furthermore r =
p
r2, while f = c, b denotes the flavor of the

heavy quark and êf = 2/3, �1/3. For the scalar parts of the wave functions �T,L(r, z), we
employ the boosted Gaussian wave-functions with the Brodsky-Huang-Lepage prescription
[31]. For the ground state vector meson (1s) the scalar function �T (r, z), has the following
general form [18,32],

�1s
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The free parameters NT and R1s of this model have been determined in various studies from
the wave function normalization and the decay width of the vector mesons. In the following
we use the values found in [14] ( J/ ) and [16] ( ⌥). The parameters are summarized in
Tab. 1. In the forward limit t = 0, one further has,
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Following [21, 22], we use for the numerical values ↵0 = 0.06 GeV�2, W0 = 90 GeV and

bJ/ 
0

= 4.9 GeV�2 in the case of the J/ , while b⌥
0

= 4.63 GeV�2 for ⌥ production. The
total cross-section for vector meson production is therefore obtained as
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The uncertainty introduced by the modeling of the t-dependence mainly a↵ects the overall
normalization of the cross-section with a mild logarithmic dependence on the energy. To
determine the scattering amplitude, we first note that the dominant contribution is provided
by its imaginary part. Corrections due to the real part of the scattering amplitude can be
estimated using dispersion relations, in particular
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As noted in [25,30], the dependence of the slope parameter � on energy W provides a sizable
correction to the W dependence of the complete cross-section. We therefore do not assume
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with ✏2 = m2

f for real photons. Furthermore r =
p
r2, while f = c, b denotes the flavor of the

heavy quark and êf = 2/3, �1/3. For the scalar parts of the wave functions �T,L(r, z), we
employ the boosted Gaussian wave-functions with the Brodsky-Huang-Lepage prescription
[31]. For the ground state vector meson (1s) the scalar function �T (r, z), has the following
general form [18,32],
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The free parameters NT and R1s of this model have been determined in various studies from
the wave function normalization and the decay width of the vector mesons. In the following
we use the values found in [14] ( J/ ) and [16] ( ⌥). The parameters are summarized in
Tab. 1. In the forward limit t = 0, one further has,
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(sort of standard procedure for comparing inclusive gluon to exclusive data)

The outline of this letter is as follows: In Sec. 2 we provide details of our theoretical
description, Sec. 3 is dedicated to a discussion of the large perturbative corrections of the
NLO BFKL gluon in the large W region while in Sec. 4 we present our conclusions.

2 Energy dependence of the photo-production cross-section

We study the process 1 �(q) + p(p) ! V (q0) + p(p0) where V = J/ ,⌥(1S) and � denotes a
quasi-real photon with virtuality Q ! 0; W 2 = (q+ p)2 is the squared center-of-mass energy
of the �(q)+p(p) collision. The x value probed in such a collision is obtained as x ' M2

V /W
2

with MV the mass of the vector meson. With the momentum transfer t = (q � q0)2, the
di↵erential cross-section for the exclusive production of a vector meson can be written in the
following form

d�
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(�p ! V p)
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=
1

16⇡

��A�p!V p(W 2, t = 0)
��2 , (1)

where A(W 2, t) denotes the scattering amplitude for the reaction �p ! V p for color singlet
exchange in the t-channel, with an overall factor W 2 already extracted. For a more detailed
discussion of the kinematics we refer to [25].
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2.1 The theoretical setup of our study

In the following we determine the total photo-production cross-section, based on an inclusive
gluon distribution. This is possible following a two step procedure, frequently employed in
the literature: First one determines the di↵erential cross-section at zero momentum transfer
t = 0 (which can be expressed in terms of the inclusive gluon distribution); in a second step
the t-dependence is modeled which then allows us to relate the di↵erential cross-section at
t = 0 to the integrated cross-section. Here we follow the prescription given in [21,22], where
an exponential drop-o↵ with |t|, � ⇠ exp [�|t|BD(W )] is used with an energy dependent t
slope parameter BD, as motivated by Regge theory,

BD(W ) =


b0 + 4↵0 ln

W

W0

�
GeV�2. (2)

1
Besides HERA data we also use the LHC p-p and Pb-p data where highly boosted p and Pb respectively

become a source of photons leading to Ultra Peripheral Collisions

3

weak energy dependence from 
slope parameter

extracted from data
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GBW model: [Golec-Biernat, Wusthoff, hep-ph/9807513]  

 with saturation scale  

linearized version:  

σqq̄(x, r) = σ0 (1 − exp(−
r2Q2

s (x)
4 ) Q2

s (x) = Q2
0 ( x

x0 )
λ

σlin.
qq̄ (x, r) = σ0

r2Q2
s (x)
4

Very clear for the GBW model

recent fit [Golec-Biernat, Sapeta, 1711.11360] to combined HERA data with   
and  

Q2 ≤ 10GeV2

χ2/Ndof = 352/219 = 1.61 σ0[mb] λ x0/10−4

27.43±0.35 0.248±0.002 0.40±0.04
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ℑm𝒜lin.(x) ∼ Q2
s (x) ⋅ ∫ dr…

with an energy dependent t slope parameter BD,

BD(W ) =


b0 + 4↵0 ln

W

W0

�
GeV�2. (3)

The total cross-section for vector meson production is therefore obtained as

��p!V p(W 2) =
1

BD(W )

d�

dt
(�p ! V p)

����
t=0

. (4)

The uncertainty introduced through the modeling of the t-dependence mainly a↵ects the
overall normalization of the cross-section with a mild logarithmic dependence on the energy.
To determine the scattering amplitude, we first note that the dominant contribution is pro-
vided by its imaginary part. Corrections due to the real part of the scattering amplitude can
be estimated using dispersion relations, in particular

<eA(W 2, t)

=mA(W 2, t)
= tan

�⇡

2
, with �(x) =

d ln=mA(x, t)

d ln 1/x
. (5)

As noted in [22], the dependence of the slope parameter � on energy W provides a sizable
correction to the W dependence of the complete cross-section. We therefore do not assume
� =const., but instead determine the slope � directly from the W -dependent imaginary part
of the scattering amplitude. To determine the latter, we go beyond the Gaussian model for
the light-cone wave function of the vector mesons and use instead a re-fined description which
includes relativistic spin-rotation e↵ects. The imaginary part of the scattering amplitude is
then in the forward limit obtained as [34–36]

=mAT (W
2, t = 0) =

Z
d2r

2

4�qq̄
✓
M2

V

W 2
, r

◆
⌃
(1)

T (r) +
d�qq̄

⇣
M2

V
W 2 , r

⌘

dr
⌃
(2)

T (r)

3

5 , (6)

with r = |r|. The functions ⌃
(1,2)
T describe the transition of a transverse polarized photon

into a vector meson V and are given by [35]

⌃
(i)
T (r) = êf

r
↵e.m.Nc

2⇡2
K0(mfr)⌅

(i)(r), i = 1, 2 (7)

where

⌅(1)(r) =

1Z

0

dz

Z
d2p

2⇡
eip·r

m2

T +mTmL � 2p2T z(1� z)

mT +mL
 V (z, |p|),

⌅(2)(r) =

1Z

0

dz

Z
d2p

2⇡
eip·r|p|m

2

T +mTmL � 2p2z(1� z)

2mT (mT +mL)
 V (z, |p|), (8)

and êf = 2/3 is the charge of the charm quark while ↵e.m. the electromagnetic fine structure
constant; Nc = 3 denotes the number of colors and K0 is a Bessel function of the second
kind. Finally, with mf the mass of the charm quark, we have

m2

T = m2

f + p2 m2

L = 4m2

fz(1� z), (9)

4

Recall:

The outline of this letter is as follows: In Sec. 2 we provide details of our theoretical
description, Sec. 3 is dedicated to a discussion of the large perturbative corrections of the
NLO BFKL gluon in the large W region while in Sec. 4 we present our conclusions.

2 Energy dependence of the photo-production cross-section

We study the process 1 �(q) + p(p) ! V (q0) + p(p0) where V = J/ ,⌥(1S) and � denotes a
quasi-real photon with virtuality Q ! 0; W 2 = (q+ p)2 is the squared center-of-mass energy
of the �(q)+p(p) collision. The x value probed in such a collision is obtained as x ' M2

V /W
2

with MV the mass of the vector meson. With the momentum transfer t = (q � q0)2, the
di↵erential cross-section for the exclusive production of a vector meson can be written in the
following form

d�

dt
(�p ! V p)

����
t=0

=
1

16⇡

��A�p!V p(W 2, t = 0)
��2 , (1)

where A(W 2, t) denotes the scattering amplitude for the reaction �p ! V p for color singlet
exchange in the t-channel, with an overall factor W 2 already extracted. For a more detailed
discussion of the kinematics we refer to [25].

A�p!V p(x, t = 0) =

✓
i+ tan

�(x)⇡

2

◆
·
Z

drW (r)

✓
i+ tan

�(x)⇡

2

◆
·
Z

drW (r)�qq̄(x, r)

⇠ e�BD(x)|t|

=mA�p!V p(x, t = 0) =

Z 1

0

drW (r)�qq̄(x, r)

A�p!V p(x, t = 0) =

✓
i+ tan

�(x)⇡

2

◆
· =mA�p!V p(x, t = 0)

2.1 The theoretical setup of our study

In the following we determine the total photo-production cross-section, based on an inclusive
gluon distribution. This is possible following a two step procedure, frequently employed in
the literature: First one determines the di↵erential cross-section at zero momentum transfer
t = 0 (which can be expressed in terms of the inclusive gluon distribution); in a second step
the t-dependence is modeled which then allows us to relate the di↵erential cross-section at
t = 0 to the integrated cross-section. Here we follow the prescription given in [21,22], where
an exponential drop-o↵ with |t|, � ⇠ exp [�|t|BD(W )] is used with an energy dependent t
slope parameter BD, as motivated by Regge theory,

BD(W ) =


b0 + 4↵0 ln

W

W0

�
GeV�2. (2)

1
Besides HERA data we also use the LHC p-p and Pb-p data where highly boosted p and Pb respectively

become a source of photons leading to Ultra Peripheral Collisions

3

Following [21, 22], we use for the numerical values ↵0 = 0.06 GeV�2, W0 = 90 GeV and

bJ/ 
0

= 4.9 GeV�2 in the case of the J/ , while b⌥
0

= 4.63 GeV�2 for ⌥ production. The
total cross-section for vector meson production is therefore obtained as

��p!V p(W 2) =
1

BD(W )

d�

dt
(�p ! V p)

����
t=0

. (3)

The uncertainty introduced by the modeling of the t-dependence mainly a↵ects the overall
normalization of the cross-section with a mild logarithmic dependence on the energy. To
determine the scattering amplitude, we first note that the dominant contribution is provided
by its imaginary part. Corrections due to the real part of the scattering amplitude can be
estimated using dispersion relations, in particular

<eA(W 2, t)

=mA(W 2, t)
= tan

�⇡

2
, with �(x) =

d ln=mA(x, t)

d ln 1/x
. (4)

d�

dt
(�p ! V p) = e�BD(W )·|t| · d�

dt
(�p ! V p)

����
t=0

(5)

As noted in [25,30], the dependence of the slope parameter � on energy W provides a sizable
correction to the W dependence of the complete cross-section. We therefore do not assume
� = const., but instead determine the slope � directly from the W -dependent imaginary part
of the scattering amplitude. The latter is obtained from [17,18]

=mA�p!V p
T (W, t = 0) = 2

Z
d2r

Z
d2b

Z
1

0

dz

4⇡
( ⇤

V )T N (x, r, b) (6)

where N (x, r, b) is the dipole amplitude and T denotes transverse polarization of the quasi-
real photon. Here

( ⇤
V )T (r, z) =

êfeNc

⇡z(1� z)

⇢
m2

fK0(✏r)�T (r, z)�
⇥
z2 + (1� z)2

⇤
✏K1(✏r)@r�T (r, z)

�
, (7)

with ✏2 = m2

f for real photons. Furthermore r =
p
r2, while f = c, b denotes the flavor of the

heavy quark and êf = 2/3, �1/3. For the scalar parts of the wave functions �T,L(r, z), we
employ the boosted Gaussian wave-functions with the Brodsky-Huang-Lepage prescription
[31]. For the ground state vector meson (1s) the scalar function �T (r, z), has the following
general form [18,32],

�1s
T,L(r, z) = NT,Lz(1� z) exp

 
�

m2

fR2

1s

8z(1� z)
� 2z(1� z)r2

R2

1s

+
m2

fR2

1s

2

!
. (8)

The free parameters NT and R1s of this model have been determined in various studies from
the wave function normalization and the decay width of the vector mesons. In the following
we use the values found in [14] ( J/ ) and [16] ( ⌥). The parameters are summarized in
Tab. 1. In the forward limit t = 0, one further has,

2

Z
d2bN (x, r, b) = �qq̄(x, r) . (9)

4

Cross-section:

•  cancels for the 
ratio 

•Ratio constant with energy for linear 
GBW

Qs(x) = Qs(M2
V /W2)

From scattering amplitude:

And

For LINEAR GBW

Complete GBW: non-trivial r-
dependence → different 
energy dependence for 
different VM

σGBW
qq̄ (x, r) = σ0 (1 − exp(−

r2Q2
s (x)
4 )
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The ratio: GBW model

50 100 500 1000
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- for linear model -dependence in    we have   =const. 

- Non-trivial -dependence for complete GBW model → rise of the ratio

x Q2
s (x) = Q2

0 ( x
x0 )

λ
d ln σqq̄

ln 1/x
= λ

r

Towards smaller x

���� ���� ���� ���� � �

���

���

���

���

���

�/��

-dependence of the “slope”   r
d ln σqq̄

ln 1/x



A less trivial model: The DGLAP improved saturation model
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[Bartels, Golec-Biernat, Kowalski; hep-ph/0203258]

Essentially the GBW model with DGLAP evolution

Fit mb σ0[mb] Ag λg C µ2
0[GeV2] χ2/Ndof

[28] − 22.40 1.35 0.079 0.38 1.73 2.02

[28] 4.6 22.70 1.23 0.080 0.35 1.60 2.43

1 − 22.60 ± 0.26 1.18 ± 0.15 0.11 ± 0.03 0.29 ± 0.05 1.85± 0.20 536/382=1.40

2 4.6 22.93 ± 0.27 1.07 ± 0.13 0.11 ± 0.03 0.27 ± 0.04 1.74± 0.16 578/382=1.51

Table 3. The results of the fits to the HERA data for Q2 ≤ 650GeV2 with Np = 387 points, using
the dipole cross section (2.9) with the scale (2.17). The quark masses ml = 0 and mc = 1.3GeV.
χ2/Ndof computed with the parameters from [28] and the scale (2.10) are given in the first two
rows. The parameters of Fit 2 are used for further analysis.

2.2 Fits with the DGLAP improved saturation model

The DGLAP improved saturation model [27, 28] implements the dipole cross section given

by

σdip(r, x) = σ0

{

1− exp

(

−
π2r2 αs(µ2)xg(x, µ2)

3σ0

)}

, (2.9)

where g(x, µ2) is the gluon distributions taken at the scale

µ2 =
C

r2
+ µ2

0 . (2.10)

The gluon distribution is evolved with the DGLAP evolution equations truncated to the

gluonic sector,

∂g(x, µ2)

∂ lnµ2
=

αs(µ2)

2π

∫ 1

x

dz

z
Pgg(x) g(x/z, µ

2) , (2.11)

from the initial condition

xg(x,Q2
0) = Ag x

−λg (1− x)5.6 , (2.12)

taken at the scale Q0 = 1GeV. The choice of the power 5.6, which regulates the large-x

behaviour, is motivated by global fits to DIS data with the LO DGLAP equations, see

[27, 28] for more details. The splitting function Pgg contains real and virtual terms with

the number of active quark flavours nf in the latter one

Pqq(z) = 2Nc

(

z

(1− z)+
+

1− z

z
+ z(1− z)

)

+ δ(1 − z)
11CA − 4nfTR

6
(2.13)

with CA = Nc = 3 and TR = 1/2. In the leading order strong coupling constant we set

ΛQCD = 300MeV. Thus, the model has five parameters to fit: σ0, Ag,λg, C and µ2
0.

The dipole cross section (2.9) has the property of colour transparency and tends to the

perturbative QCD result in the limit r → 0. Indeed, for small dipoles, the scale µ2 ≈ C/r2

and the dipole cross section is proportional to r2 with the logarithmic modifications due

to the scale dependence of the gluon distribution [45],

σdip ≈
π2

3
r2αs(C/r2)xg(x,C/r2) . (2.14)

– 6 –

Factorization scale originally: 

Fit mb σ0[mb] Ag λg C µ2
0[GeV2] χ2/Ndof

[28] − 22.40 1.35 0.079 0.38 1.73 2.02

[28] 4.6 22.70 1.23 0.080 0.35 1.60 2.43

1 − 22.60 ± 0.26 1.18 ± 0.15 0.11 ± 0.03 0.29 ± 0.05 1.85± 0.20 536/382=1.40

2 4.6 22.93 ± 0.27 1.07 ± 0.13 0.11 ± 0.03 0.27 ± 0.04 1.74± 0.16 578/382=1.51

Table 3. The results of the fits to the HERA data for Q2 ≤ 650GeV2 with Np = 387 points, using
the dipole cross section (2.9) with the scale (2.17). The quark masses ml = 0 and mc = 1.3GeV.
χ2/Ndof computed with the parameters from [28] and the scale (2.10) are given in the first two
rows. The parameters of Fit 2 are used for further analysis.

2.2 Fits with the DGLAP improved saturation model

The DGLAP improved saturation model [27, 28] implements the dipole cross section given

by

σdip(r, x) = σ0

{

1− exp

(

−
π2r2 αs(µ2)xg(x, µ2)

3σ0

)}

, (2.9)

where g(x, µ2) is the gluon distributions taken at the scale

µ2 =
C

r2
+ µ2

0 . (2.10)

The gluon distribution is evolved with the DGLAP evolution equations truncated to the

gluonic sector,

∂g(x, µ2)

∂ lnµ2
=

αs(µ2)

2π

∫ 1

x

dz

z
Pgg(x) g(x/z, µ

2) , (2.11)

from the initial condition

xg(x,Q2
0) = Ag x

−λg (1− x)5.6 , (2.12)

taken at the scale Q0 = 1GeV. The choice of the power 5.6, which regulates the large-x

behaviour, is motivated by global fits to DIS data with the LO DGLAP equations, see

[27, 28] for more details. The splitting function Pgg contains real and virtual terms with

the number of active quark flavours nf in the latter one

Pqq(z) = 2Nc

(

z

(1− z)+
+

1− z

z
+ z(1− z)

)

+ δ(1 − z)
11CA − 4nfTR

6
(2.13)

with CA = Nc = 3 and TR = 1/2. In the leading order strong coupling constant we set

ΛQCD = 300MeV. Thus, the model has five parameters to fit: σ0, Ag,λg, C and µ2
0.

The dipole cross section (2.9) has the property of colour transparency and tends to the

perturbative QCD result in the limit r → 0. Indeed, for small dipoles, the scale µ2 ≈ C/r2

and the dipole cross section is proportional to r2 with the logarithmic modifications due

to the scale dependence of the gluon distribution [45],

σdip ≈
π2

3
r2αs(C/r2)xg(x,C/r2) . (2.14)

– 6 –

Recent fit:

DGLAP improved model
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Figure 2. Dipole cross section (2.9) for the scale (2.17) with the parameters from Fit 2 in Table 3
(dashed lines) as a function r (left plot) and rQs (right plot) for x = 10−6, . . . , 10−2 (curves from
left to right, respectively). The solid lines, corresponding to Eq. (2.15), merge into one solid line
in the right plot due to geometric scaling with the saturation scale (2.16). For rQs ≥ 1, also the
dashed curves merge due to geometric scaling in the dipole cross section (2.9) in this region.

These additional logarithms allow better fits to the data for large values of Q2. In the limit

of large dipoles µ2 ≈ µ2
0, which leads to

σdip ≈ σ0

{

1− exp

(

−
π2r2 αs(µ2

0)xg(x, µ
2
0)

3σ0

)}

. (2.15)

Thus, at large r, we find the GBW form of the dipole cross section with the saturation

scale

Q2
s(x) =

4π2

3σ0
αs(µ

2
0)xg(x, µ

2
0) , (2.16)

with the x dependence given by the gluon distribution taken at the scale µ2
0. Geometric

scaling is strictly valid for (2.15), which is not the case for small dipoles when an additional

r dependence is introduced in the dipole cross section (2.9) through the scale (2.10).

The above features of the dipole cross section can also be obtained for a slightly

different choice of the scale µ,

µ2 =
µ2
0

1− exp(−µ2
0 r

2/C)
, (2.17)

which interpolates smoothly between the C/r2 behaviour for small r and the constant

behaviour, µ2 = µ2
0, for r → ∞. The fit quality is better for such a choice, thus in the

forthcoming, we present the results of the fits with the above scale.

The results of the fits are presented in Table 3. The parabolic errors of the fit param-

eters are given by MINOS from the MINUIT package. We no longer restrict the data to

– 7 –

[Golec-Biernat, Sapeta; 1711.11360]

In common:  
- for large dipole sizes , 

 
- Otherwise 

r
μ → μ0

∼ C/r2

Saturation scale becomes -dependent → includes correct DGLAP limit for small r r
Complementary to BFKL/BK study
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- Difference between  and  at relative large dipole size  
- Full non-linear model: non-trivial -dependence in this region 
- Linear model with factorization scale frozen at large dipole size , there is not much happening 
→ constant ratio 

- Trivial for GBW model; also seen for BFKL vs BK (QCD low x evolution) 
- Prediction depends on VM wave function = the position of the node

J/Ψ Ψ(2s) r
x

r

Towards smaller x
Towards smaller x

“Slope" for complete BGK "Slope" for linear BGK λ =
d ln σqq̄

ln 1/x


