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• Mueller-Tang jet process

• Balitsky, Fadin, Kuraev, Lipatov (BFKL) resummation

• Mueller-Tang jet experiment set-up

• Analyses at Tevatron and LHC

• NLO impact factor(IF) and Factorization-Breaking

• NLO IF phenomenology



Introduction

Mueller-Tang process

Dijet event with large rapidity separation(∆y & 3−4) and, in between, a gap with
no radiation

p1 + p2 → j1 + j2 + gap

Original observable definition valid only in first approximation and differs from experiment set up
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Colliding partons deviate slightly after the interaction and hadronize into a forward and a backward jets.

• Large (pseudo)-rapidity ↔ very small
scattering angles

• 2 → 2 elastic scattering with no more
radiation

• Jets are back-to-back in transverse
plane

When ∆y ≡ Y ∼ log(ŝ/t)� 1 onset of
high energy limit
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BFKL approach

High energy limit of QCD

QCD in the high energy limit s � −t � ΛQCD shows qualitative new behaviors:
Large coefficients log(ŝ/t) ∼ Y appear in selected scattering amplitude as result of loop or phase space integrations.

The energy dependece may suppress or enhance a scattering amplitude instead of others:

σ ∼ A log s/t + B cost(s) + C(s/t)−1 . . .

log(s/t) factors appear in conjunction with specific color structures:

• (8) ∈ t

α2
s

s

α3
s log s/t

real

α4
s log s/t

virt.

α4
s log

2 s/t

real

• (1) ∈
α4
s

α5
s log s/t α5

s

Octet dominates over singlet (α2
s � α4

s ) but radiates everywhere

Clearly, α4
s log s > α4

s and αn
s log s > αn

s ; what about α2
s log s > α1

s ?
The appearance of large coefficients endanger the convergence of the perturbative series.
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BFKL approach

BFKL

The high-energy limit of QCD is understood under the Balitsky-Fadin-Kuraev-Lipatov framework

kn

k1

k2

LL Gluon-ladder diagrams

The powers of logs grow with the approximation order. Effective expansion parameter becomes αs log s/t

BFKL defines αs log s/t = 1 then α2
s log2 s/t ' αs log s/t

New hierarchy resumming an infine series of diagram to all orders of perturbation theory.
Radiative corrections of order n to the partonic cross sections

dσ̂ ' α
n
s logn

(
s

−t

)
σ

(0)

︸ ︷︷ ︸
Leading Log approx.(LL)

+ α
n
s logn−1

(
s
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)
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(1)

︸ ︷︷ ︸
Next-to-Leading Log (NLL)

+ . . .

Structure of BFKL cross-section:
Convolution between gluonic Green function and h.c. (GGF) and impact factors (IFs)

G
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dσ̂

dJ1dJ2d2k
=

∫
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`
′

1,2Φ(`1,2, k; J1)G(`1, `
′
1, k,Y )G(`2, `

′
2, k,Y )Φ(`′1,2, k; J2)

• GGF is universal, process independent.

• GGF is color singlet

• IFs connect external probe with GGF ladder

• IFs are process dependent

Radiative corrections affect both GGF and IF
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Observable Definition

Mueller Tang jets

• No radiation into the rapidity gap suggests the color-singlet ex-
change contributes substantially to the jet-gap-jet cross section.

• The BFKL predictions for these processes have been studied at
LL accuracy and partially at NLL order

• Complete the NLL phenomenology analysis including the NLO

impact factors. [Nucl. Phys. B887, 309 (2014), Nucl.Phys. B889, 549 (2014),

PLB 735,168 (2014)].

∆φ

y−1 +1

−5.2<yjet <−1.5 +1.5<yjet <+5.2

gap

jet jet

• Fixed rapidity gap |η| < 1, no charged particles and no photons
or neutral hadrons with pT > 0.2 GeV.

• Dijet events. At least 2 hard-jets pjet
T > 40 GeV and |ηjet | > 1.5

• Jet radius Rjet = 0.4 and anti-kt jet algorithm.
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Observable Definition Color singlet excess

CMS and D0 analyses

7 TeV [EPJC 78,242 (2018)]

• Charged-particle multiplicity in the gap region be-
tween the tagged jets compared to PYTHIA and
HERWIG predictions.

• HERWIG 6: include contributions from color sin-
glet exchange (CSE), based on BFKL at LL.

• PYTHIA 6: inclusive dijets (tune Z2∗), no-CSE.

[O. Kepka, C. Marquet, C. Royon Phys.Rev. D83.034036 (2011)]

• Fraction of jet-gap-jet events vs inclusive dijets measured by D0
Coll. [Phys.Lett. B440 189 (1998)] well reproduced by BFKL estimates. NLL order
correction are necessary

• Ratio R = NLL∗BFKL
NLOQCD

of jet-gap-jet events to inclusive dijet events as a function of pt .

• NLL∗ ∼ NLL (forward) Green Func. + collinear improvement. No NLO Imp. Factors

• Normalization fixed by gap survival probability |S|2 = 0.1.
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Observable Definition Color singlet excess

CMS analysis 13 TeV

CMS Analysis by C.Baldenegro’s [arxiv:2102.06945]
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Unexpected rise in ∆ηjj and little dependence from pTJ
.

• Comparisons to Royon, Marquet, Kepka (RMK) model based on BFKL NLL calculations + LO impact factors [PRD83.034036], and

survival probability |S|2 = 0.1.

• RMK model predicts a decreasing fraction with increasing ∆ηjj , in disagreement with the trend observed in data.

• Better agreement to data for fCSE vs pTJ .
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Violation of BFKL factorization

Can MT at NL fit into BFKL frame?

BFKL factorization:

• GGF: all log(s/t) terms must reproduce GGF

• IF: No left over log(s/t) in the IFs while IR singularities must cancel or be
reabsorbed

NLO IF topology:

• Two partons from each IF

• Deviation from back-to-back config.

=V NLO =

LO

V irtual corr.

+ + +

Real corr. (quark − quark) Real corr. (quark − gluon)

V v.c.
V r.c.(gq)V r.c.(qq)

x

x(1− z)

xz
x

x(1− z)

xz

Pgq(z) ≈ 1
z as z → 0Jet

Jet

z → 0

Φlog =

∫
dzPgq(z) . . .∝ Y

• Central emission incurs in no dynamical suppression

• The suppression enforced by the gap requirement reduces
the size of the violating term
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Results

gluon vs quark at LL vs NLO

Comparing LL GGF and LO IF vs LL GGF and NLO IF

0

2

4

6

8

10

12

14

16

18

20

3 4 5 6 7 8 9

Y

σ0 × dσLL

dY

σ0 × dσLL+NLO

dY

σ0 = 10−5

NLO are large and negative
The horizontal bars correspond to bin width

FD, CR (KansasUni) QCD at high energy 5/23/22 9 / 29



Results

Log vs Total

Comparing Log enhanced term vs total NLO corrections:
ygap = 0 vs ygap = 2
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The gap requirement affects the logs term a lot!
The impact on the total NLO correction is limited
The other well-behaved terms do not need the gap to not emit in central rapidity region
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Results

Azimuthal difference

Azimuthal difference distribution quark/C 2
a /C

2
f induced vs gluon induced
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Strongly peaked around back-to-back configuration
Cannot explain 13 TeV rise towards small ∆φ
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Results

logs enhanced term dependence upon the gap energy
threshold and its relative size.

Eth Dependence of logs Enhanced Con�g.
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Fortunately, the size of the logs term is small compared
to the total NLO contribution
How an eventual resummation of these terms affect their
relative weights?

What next?
• Brodsky-Lepage-Mackenzie (BLM). Set optimal

coupling scale(often larger)

• Resummation logs?

• log Eth resummation? [Forshaw,Kyrieleis,Seymour;2005]

• Prevent particles into the central rapidity region
imposing a upper-bound on the invariant mass of
the outgoing partons

FD, CR (KansasUni) QCD at high energy 5/23/22 12 / 29



Conclusions

Conclusions

• QCD predictions even in the perturbative regimes are not fully understood (semi-hard regimes).

• BFKL NLL corrections are large and must be taken into account.

• BFKL predictions for Mueller-Tang fail to reproduce the data

• The observable definition is not compatible with the high-energy factorization

• Solve the BFKL expansion instability: BLM?, DoubleLogs?, Change observable definition?

• Not only jets: Drell-yang pairs, ρ and J/ψ ...
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Backup

Backup
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Backup

BFKL equation

Recursive integral equation in the form of a Green function equation called BFKL equation.
The ladder diagrams are resummed to all order by iterating the Gluon Green function G .

G(k, k′) = δ2(k− k′) +

∫
d2`K(k, `)G(`, k′)

G is universal (process independent)

= +

k

k′

q− k

q− k′

k q− k

︸ ︷︷ ︸

δ(k−k′)

G

G

G

G

G(k, k′, q,Y ) =

+i∞∫
−i∞

dω

2πi
eYω

∑
n∈Z

1
2

+i∞∫
1
2
−i∞

dγ

2π i

Eγ,n(k)E∗γ,n(k ′)

ω − ᾱsχ(γ, n)
eYω =

(
sx1x2

−t

)ω

En,ν ∝

 2F1

(
a(n, ν), b(n, ν), c, z(k, k′, q)

)
, non-forward, Gauss hypergeometric func.

|k|− 1
2

+iνe inθ, forward limit q → 0.

FD, CR (KansasUni) QCD at high energy 5/23/22 15 / 29



Backup Theoretical picture

NLO impact factors

Several non trivial modifications to the theoretical description needed to accommodate the NLO corrections to
the impact factors (IF).

→
G G G G

NLO impact factors have yet to be implemented for
phenomenology studies to complete the NLO calcu-
lation (BFKL@NLL + impact factors@NLO).
Efforts by D. Colferai, F. Deganutti, C. Royon, T.
Raben on this direction (private communication),
and by U. of Munster coll. (M. Klasen, J. Salomon,
P. Gonzlez, M. Kampshoff).

Non-factorizable. NLO impact factors connect the Gluon Green functions over the “cut”

dσ̂

dJ1dJ2d2q
=|A(Y , q)|2 ⇔ Va(k1, k2, J1, q)⊗ G(k1, k

′
1, q,Y )⊗ G(k2, k

′
2, q,Y )⊗ Vb(k′1, k

′
2, J2, q),

A(Y , q) ∼ Va(q)Vb(q)

∫
d2kd2k′G(k, k′, q,Y ) ⇔ Ḡ

(
Y , q,

k

k′

)
∝

n even∑
n

∫
dν

[ k∗ h̄−2

k′h−2 2F1

(
k

k′

)
2F1

(
k′∗

k∗

)
+{1↔ 2}

]
.

• From squared amplitude to multiple convolution between the the jet vertices and the GGFs.

• LO vertices are c-numbers and can be factorized out of the convolution.

• Average of GGF over the reggeon momenta is remarkably simple.

A(Y , q) ∼ A(Y , q = 0)
4

q2

(
2F1 for large conf. spins using ball-arithmetic c-library https://arblib.org

)
FD, CR (KansasUni) QCD at high energy 5/23/22 16 / 29



Backup Theoretical picture

Previous fits and analysis

Fraction of jet-gap-jet events vs inclusive dijets measured by D0 Coll. [Phys.Lett. B440 189 (1998)] well reproduced by BFKL
estimates. NLL order correction are necessary

[O. Kepka, C. Marquet, C. Royon Phys.Rev. D83.034036 (2011)]

• Ratio R = NLL∗BFKL
NLOQCD of jet-gap-jet events to inclu-

sive dijet events as a function of pt .

• NLL∗ ∼ NLL (forward) Green Func. + collinear
improvement. No NLO Imp. Factors

• Normalization fixed by gap survival probability
|S|2 = 0.1.

[R. Enberg, G. Ingelman, L. Motyka Phys.Lett.B524,273 (2002)]

• NLL∗ BFKL predictions + soft rescattering cor-
rections (EIM models) describe many features of
the data (not so good for other observables).

• Different implementations of underlying event:

Gap survival probability (S),

Multiple interactions (MI),

Soft colour interactions (SCI).
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Calculation strategy

non-forward Gluon Green Function

The decision to keep just the pure NL contribution brings some simplification

dσ̂

dJ1dJ2d2q
=

∫
d2k1d

2k2V
NLO (k1, k2, q; J1)×∫

d2k′1G(k1, k
′

1, q,Y )︸ ︷︷ ︸
G(k1,q,Y )

∫
d2k′2G(k2, k

′
2, q,Y )︸ ︷︷ ︸

G(k2,q,Y )

V LO (J2, q)

V NLO

GLL GLL

q− k1 q− k2
k1 k2

Ḡ(x1x2, q,∆θ,
k

k′
) ∝

m even∑
m

∫
dν

[
k∗ h̄−2k′h−2

2F1

(
1−h, 2−h, 2;− k

k′

)
2F1

(
1−h̄, 2−h̄, 2;−k

′∗

k∗

)
+ {1↔2}

]
.

• Integrand is highly oscillatory and slowly falling with ν. h = 1+n
2 + iν

• Fast and reliable evaluation of 2F1(a, b, c; z) and for large Im(a, b) notoriously difficult.

• To avoid numerical cancellations for large conformal spin even quadruple precision not
enough.
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Calculation strategy

incorporating NLO impact factor

A full NLL/O calculation is within reach. NLO MT im-
pact factors recently calculated [1406.5625,1409.6704].
Very complicated! (not in a factorizable form!)

But...only certain combinations of jet vertex and Green’s
function approximation orders contribute effectively to
the NL order of the cross section. The most compli-
cated combinations can be discarded because they are
subleading.

Va

Vb

G G

q− k1

q− k′
1 q− k′

2

q− k2
k1

k′
1

k2

k′
2

+ +

NLO

LO

LL LL

q− k1

q− k′
1

q− k′
2

q− k2k1

k′
1

k2

k′
2

LO

NLO

LL LL

q− k1

q− k′
1

q− k′
2

q− k2k1

k′
1

k2

k′
2

LO

LO

NLL NLL

q− k1

q− k′
1

q− k′
2

q− k2k1

k′
1

k2

k′
2

• GGF NLL + LO vertices. For this special case the general formula for the cross section can be expressed in
a much simpler form because LL vertices are idependent from the reggeon momenta.
• GGF LL + LO vertex + NLO vertex. The non trivial dependence of the NLO jet vertex from the reggeon

momenta introduces an important complication.
• GGF LL + both NLO vertices. Discarded because subleading.

DGLAP suppressed at large Y → Good window into BFKL effects.
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Calculation strategy NLO Imp. Factor and BFKL Factorization Breaking

NLO jet vertex

Peculiar characteristics of the NLO the jet vertex.

• The non trivial dependence from the reggeon momenta prevents the applicability
of the mentioned simplification imposing the use of the general formula.

• Up to two partons can be emitted by the same vertex. Whether they are collinear enough to form the same
jet or not depends on the choice of the jet reconstruction algorithm. (1) The two partons form the same jet
or (2) one of the two has energy lower than the calorimeter threshold and so it is not detected.

• The soft parton emission in the prohibited region alter the alignment between the forward and the backward
jet. The survival of the rapidity gap is assured imposing constraints to the additional parton emission. Jets
not back to back anymore

σ̂(q,Y )→ σ̂(kJ1 , kJ2 , θJ2,J2 ,Y )

The additional soft emission is needed to assure the cancellation of the infrared divergences.
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Calculation strategy

Numerical analysis

The decision to keep just the pure NL contribution brings some simplification

dσ̂

dJ1dJ2d2q
=

∫
d2k1d

2k2V
1(k1, k2, q; J1)×∫

d2k′1G(k1, k
′

1, q,Y )︸ ︷︷ ︸
G(k1,q,Y )

∫
d2k′2G(k2, k

′
2, q,Y )︸ ︷︷ ︸

G(k2,q,Y )

V 0(J2, q)

V NLO

GLL GLL

q− k1 q− k2
k1 k2

• Large increase in computation time due to the high-dimensional multiple integration.

The full form of the eigenfunction in momentum space is known [Bartels, Braun, Colferai, Vacca].

• The momentum dependence of the eigenfunction is expressed through hypergeometric functions in a region
of parameter very sensible to numerical fluctuations. 2F1(a, b; c, z), a− b ∈ Z−
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Calculation strategy

Numerical analysis

• Calculation of the partonic cross section.
(1) Ḡ as a grid of its parameters {ki , qj , θl ,Ym}. It involves a numerical
integration over ν and a sum over n for each set of the parameters.
(2) Partonic cross section as the interpolation of Ḡ grids and the NLO
vertex. qj

Yl

qj+1

Yl+1
σ̂(kJ1

,kJ2
,θJ1,J2

,Y )

dkJdY
∝∑V (k1i , k2j , θ1n , θ2m , J)Ḡ(k1i , qr , θ1n ,Yl)Ḡ(k2j , qr , θ2m ,Yl)

• Dressing of the initial state and final state hadronization by Herwig

(1) Proton-proton scattering dσpp→JGJ

dx1dx2dq
∝∑a,b fa(x1, kJ1 )fb(x2, kJ2 )σ̂(kJ1 , kJ2 , θJ1,J2 ,Y )

(2) Fitting of the cross section and its substitution by a sum of analytic functions of the fitting parameters.
(3) Hadronization from the proto-jet to the detector with a matching procedure to remove the double
counted diagrams. The error avoided by this subtraction is predicted to be of NL order.
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Calculation strategy

BFKL

Balitsky, Fadin, Kuraev, Lipatov (BFKL) were the first to consider the Regge limit of QCD.
The large logs come from the integration over the longitudinal momentum fraction bounded by the outermost
partons.
Sudakov parametrization ki = zip

+ + z̄ip
− + k, p+ = pa√

2
, p− = pb√

2

pa p1

pb p2
k2

k1
p3

On shell conditions → (k1, k2, z1), z̄1 = k1/s, z̄2 = q/z1s.
Positive energies E > 0→ 1 > z1 > z2 > 0.∫

dΠ3 ∝
∫ 1

z2

dz1

z1

∫
dz2δ(z2 − k2/s) = log(

s

s0
)

Changing s0 leaves the LL unaltered.

The amplitude is independent from the longitudinal fractions:

• Eikonal approximation −ig ū(pa − k1)γµu(pa) ' −2igpµa .
• k1 → z1p

+ + k2, k1 → z̄2p
− + k2 → k2

1 = (z1p
+, 0, k1)2 → 1

k2
1
' − 1

k2
1
.

For s � t the predominant contribution comes from the strongly ordered region
1� z1 � z2 � 0→ y1 � y3 � y2. yi = log( zi

√
s

|ki | ).
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Mueller-Tang jets at LL

LL approximation: LO vertex

G

q− k′

q− k

k

k′

= + . . .+

︸ ︷︷ ︸
G(0)(k,q)

k q− k

At LL accuracy the Gluon green function
G resumms to all orders of perturbation
theory the ladder diagrams composed
by s-channel gluons connected to t-channel
reggeizzed gluons through the Lipatov vertex.
The normalization of the Gluon
Green function fixes the jet vertex leading order.

lim
Y→0

G(k, k′, q,Y ) = G(k, k′, q, 0) =
δ2(k− k′)

k2(q− k)2
.

At this order, apart for the jet distribution function S that fixes the jet momentum, the jet vertex is a simple
color factors (c-number)

Va(x , q, xJ , kJ) = S0
J (x , q; xJ , kJ)h0

a ,

h0
a = C 2

q/g
α2
s

N2
c − 1

, S
(0)
J = xδ2(kJ − q)δ(xJ − x).

The independence of the LO vertices from the reggeon momenta allow for considerable simplification.
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Mueller-Tang jets at LL

details of NLO impact factor

Details of NLO impact factor

dV̂ (1)(x, k, l1, l2; xJ , kJ ; MX,max, s0)

dJ
=

= v(0)
q

αs

2π

[
S

(2)
J

(k, x) ·
[
−
β0

4

ln

 l21

µ2

 + ln

 (l1 − k)2

µ2

 + {1 ↔ 2}

 − 20

3

 − 8Cf

+
Ca

2

[{ 3

2k2

l
2
1 ln

 (l1 − k)2

l2
1

 + (l1 − k)2 ln

 l21

(l1 − k)2

 − 4|l1||l1 − k|φ1 sinφ1


−

3

2

ln

 l21

k2

 + ln

 (l1 − k)2

k2

 − ln

 l21

k2

 ln

 (l1 − k)2

s0

− ln

 (l1 − k)2

k2

 ln

 l21

s0

 − 2φ2
1 + {1 ↔ 2}

}
+ 2π2 +

14

3

]]

+

∫ 1

z0

dz

 ln
λ2

µ2
F

S
(2)
J

(k, zx)

[
Pqq (z) +

C2
a

C2
f

Pgq (z)

]
+

(1 − z)

1 −
2

z

C2
a

C2
f

 + 2(1 + z2)

(
ln(1 − z)

1 − z

)
+

 S
(2)
J

(k, zx) + 4S
(2)
J

(k, x)


+

∫ 1

0
dz

∫ d2q

π

[
Pqq (z)Θ

M̂2
X,max −

(p − zk)2

z(1 − z)

Θ

( |q|
1 − z

− λ
)

×
k2

q2(p − zk)2
S

(3)
J

(p, q, (1 − z)x, x)+Θ

M̂2
X,max −

∆2

z(1 − z)

 S
(3)
J

(p, q, zx, x)Pgq (z)

×

 Ca

Cf

[J1(q, k, l1, z) + J1(q, k, l2, z)] +
C2
a

C2
f

J2(q, k, l1, l2)Θ(p2 − λ2)


]]

FD, CR (KansasUni) QCD at high energy 5/23/22 25 / 29



Mueller-Tang jets at LL

NLO impact factors

In general the cross section for these processes is given as a multiple convolution between the the jet vertices and the GGFs.

dσ̂

dJ1dJ2d2q
=

∫
d2k1d

2k′1d
2k2d

2k′2Va(k1, k2,J1, q)×

G(k1, k
′

1, q,Y )G(k2, k
′

2, q,Y )Vb(k′1, k
′

2,J2, q), J = {kJ , xJ }.
Jet Functions for NLO impact factor

J1(q, k, l, z) =
1

2

k2

(q − k)2

 (1 − z)2

(q − zk)2
−

1

q2

 − 1

4

1

(q − l)2

 (l − z · k)2

(q − zk)2
−

l2

q2


−

1

4

1

(q − k + l)2

 (l − (1 − z)k)2

(q − zk)2
−

(l − k)2

q2

 ;

J2(q, k, l1, l2) =
1

4

[
l21

(q − k)2(q − k + l1)2
+

(k − l1)2

(q − k)2(q − l1)2

+
l22

(q − k)2(q − k + l2)2
+

(k − l2)2

(q − k)2(q − l2)2
−

1

2

( (l1 − l2)2

(q − l1)2(q − l2)2

+
(k − l1 − l2)2

(q − k + l1)2(q − l2)2
+

(k − l1 − l2)2

(q − k + l2)2(q − l1)2
+

(l1 − l2)2

(q − k + l1)2(q − k + l2)2

)]
.
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Mueller-Tang jets at LL LO vertex

LL approximation: Non forward gluon Green function

The GGF is given by the Mellin transform of the function fω which is the solution of the BFKL equation. The
solution of the non forward BFKL equation is more naturally expressed in the impact parameter space.

G(k, k′, q,Y ) =

∫ +i inf

−i inf

dω

2πi
eYωfω(k, k′, q)

fω(ρ1, ρ2, ρ
′
1, ρ
′
2) =

1

(2π)6

+ inf∑
n=− inf

∫ +inf

− inf

dν
Rnν

ω − ω(n, ν)
E∗nν(ρ′1, ρ

′
2)Enν(ρ1, ρ2)

Enν(ρ1, ρ2) =

(
ρ1 − ρ2

ρ1ρ2

)h (
ρ∗1 − ρ∗2
ρ∗1ρ
∗
2

)h̄

︸ ︷︷ ︸
Lipatov term

−
(

1

ρ2

)h (
1

ρ∗2

)h̄

−
(−1

ρ1

)h (−1

ρ∗1

)h̄

︸ ︷︷ ︸
Mueller-Tang correction

Enν are the eigenfunctions in the impact parameter space.
The GGF in momentum space is recovered applying a Fourier transformation to the eigenfunctions.

Ẽnν(k, q) =

∫
d2r1d

2r2

(2π)4
Enν(ρ1, ρ2)e i(k·r1+(q−k)·r2)
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Mueller-Tang jets at LL LO vertex

Mueller Navelet jets at NLL

At NLL the approximation is refined including the terms ∝ αn
s log(n−1)( s

−t
).

• Larger variety of Feynman diagrams give rise to a much more complex
iterating structure

• LL order diagrams evaluated in a broader kinematic domain
Up to two partons are close in rapidity (Quasi-MRK).

y ′1 � y1 � · · · � yi ' yi+1 � · · · � yn � y ′2

The jet vertex gets its part of the radiative corrections

V (kJ , xj , k) = V (0)(kJ , xj , k) + αsV
(1)(kJ , xj , k)

• NL corrections to the jet vertex calculated by Bartels, Colferai and Vacca (BCV).

• QMRK → up to two outgoing parton per vertex
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BFKL approach

BFKL resummation

Balitsky, Fadin, Kuraev, Lipatov (BFKL) considered the Regge limit of QCD.

+=Γ

=Γ + +

+ + +

Diagrams enhanced by log1 s/t grouped according to the number of lines cut by Cutkosky.

• real corrections collected into the Lipatox vertex Γµνρ .

• virtual corrections contribute to the gluon reggeization.
t-channel gluon propagators acquire a power dependence:

1

t
→ 1

t

(
1 + ε(t) log

( s
t

)
+
ε2(t)

2
log2 ( s

t

)
+ . . .

)
=

1

t

(
s

t

)ε(t)

At LL simple repeating structure:

• Ladder diagrams: t-channel Reggeized gluons connected to s-channel gluons
via the Lipatov vertex.

• Multi-Regge Kinematics: gluon emission strongly ordered
y1 � y2 � · · · � yn, Y = log(ŝ/t)

k1

k2

ki

ki+1

kn

kn+1

ki − q

ki+1 − q
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