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Back to the basics!
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Where we are:

Elastic leptron scattering determined the nucleon’s charge & magnetism
distributions in sphere with 〈rch〉 ≈ 0.84 fm

Largest fraction of energy in proton (x) carried by 3 valence quarks (2u,d),
but very small fraction of proton spin

Nucleons additional dynamically generated quark-antiquark pairs & gluons
carrying low fraction of energy

Quark & gluon longitudinal momentum fractions well mapped out

Nucleon spin & mass have large contributions from quark-gluon dynamics,
described by QCD
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How did we learn this?
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[FOCAL LOI]

Deep Inelastic Scattering (DIS)

Q2 = s · x · y
s center-of-mass energy squared

Q2 resolution power

x the fraction of the nucleon’s
momentum carried by the struck
quark (0 < x < 1)

y inelasticity

As a probe, electron beams provide unmatched precision of the
electromagnetic interaction

Direct, model independent determination of parton kinematics and
spin of physics processes at the leading order

Additional information obtained indirectly from hadron-collider
measurements
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What we don’t know yet
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The 3D distributions of sea quarks & gluons
and their spins in nucleon

How do the nucleon mass & spin emerge from
them and their interactions?

The details of interactions of color-charged
quarks and gluons with a nuclear medium

How are nuclear bindings and hadronic states
created from quark, gluons and their
interactions?

How does a dense nuclear environment affect
the quarks and gluons and their interactions?

The gluon density in nuclei

Is there a Color Glass Condensate?
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The Electron Ion Collider
[EIC CDR]General Facts

Location: Brookhaven National Laboratory

Projected Budget: ≈ $2.4 billion

Start date: ≈ 2031

Machine parameters for EIC
Center-of-mass energy: 20 - 140 GeV

I electrons: 2.5 - 18 GeV
I protons: 40- 275 GeV (ions: Z/A× Ep )

Luminosity: 1034 cm−2 s−1

Polarization: up to 70% (electron & ion)

Ion species: p → U

Detectors:
I full coverage: 2
I fixed target: 0
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EIC vs HERA
[EIC CDR]

[HERA proposal]

EIC

HERA

Machine parameters
Center-of-mass energy: 20 - 140 (218) GeV

I electrons: 2.5 - 18 (27.5) GeV
I protons: 40- 275 (920) GeV (ions: Z/A× Ep )

Luminosity: 1034 (1031) cm−2 s−1

Polarization: up to 70% (electron & ion) (only electron)

Ion species: p → U (A > 1 only in fixed target)

Detectors:
I full coverage: 2 (2)
I fixed target: 0 (2 - limited far-forward coverage)
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EIC vs HERA
[EIC CDR]

[HERA proposal]

EIC

HERA

Machine parameters
Center-of-mass energy: 20 - 140 (218) GeV

I electrons: 2.5 - 18 (27.5) GeV
I protons: 40- 275 (920) GeV (ions: Z/A× Ep )

Luminosity: 1034 (1031) cm−2 s−1

Polarization: up to 70% (electron & ion) (only electron)

Ion species: p → U (A > 1 only in fixed target)

Detectors:
I full coverage: 2 (2)
I fixed target: 0 (2 - limited far-forward coverage)

EIC will have:
lower energy

broader energy range

higher luminisity

+ Hadron polarization

+ Nuclear beams

+ Modern detector(s)
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How to access partons at EIC
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Neutral current (SI)DIS

Charged current DIS

Jets

Neutral current (SI)DIS
Detect scattered lepton (DIS) in coincidence with
identified hadrons (SIDIS)

I measure correlation between different hadrons as
fct. of pT, z , η

I needs FF to correlate hadron type with parton

Charged current DIS - W-exchange

direct access to the quark flavor no FF –
complementary to SIDIS

Jets

best observable to access parton kinematics

tag partons through the sub-processes and jet
substructure

I di-jets: relative pT → correlated to kT

I tag on PDF
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2+1 dimensional Imaging of Quarks & Gluons

[EIC YR]

Nuclear Femtography

Structure mapped in terms of:
bT = transverse position
kT = transverse momentum

use different processes to
access different aspects of
distribution functions

PDFs: (SI)DIS cross sections

GPDs: Deep Exclusive Scattering (DES) cross sections like:
deeply virtual Compton scattering (DVCS) γ? + p → γ + p
or production of a vector meson γ? + p → V + p
Spin-dependent 2+1D coordinate space images

TMDs: SIDIS cross sections
Spin-dependent 3D momentum space images
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Nucleon Spin
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ECCE Simulation
DJANGOH ep, 10 fb-1

5x41 GeV
18x275 GeV

g1 ~ -

total
quark spin

gluon
spin

angular
momentum

[ECCE prop]

quark contribution: integral of g1 over x from 0 to 1

gluon contribution: dg1(x ,Q2)/dlnQ2 → ∆g(x ,Q2)

Measured through DIS cross section asymmetry in oppositely
polarized collisions

Improved constraints on the spin of quarks/gluons
⇒ Constrain contribution of orbital angular momentum
(OAM) of partons to proton spin

Collisions with polarized deuterons/helium-3
⇒ Access to neutron spin
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Nucleon Spin
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Imaging the Nuclei
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Measurements with A ≥ 56 (Fe):

eA/μA DIS (E-139, E-665, EMC, NMC)
JLAB-12
νA DIS (CCFR, CDHSW, CHORUS, NuTeV)
DY (E772, E866)
DY (E906)
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[EIC YR]

DGLAP

predicts Q2 but not A-dependence
and x-dependence

Saturation models

predict A-dependence and
x-dependence but not Q2

Need: large Q2 lever-arm for fixed
x ,A-scan

Measure different structure function in
eA → constrain nPDF

Does the nucleus behave like a proton
at low-x?

Direct Access to gluons at medium to
high x by tagging photon-gluon fusion
using charm events
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Color Glass Condensate?

log(x)

lo
g
(Q
)

Saturation

BK/JIMWLK BFKL

DGLAP

ΛQCD

Q = Qs

CGC?
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e interacts over distances L ∼ (2mNx)−1

For L > 2RA ∼ A1/3 probe cannot distinguish between
nucleons in front or back

Probe interacts coherently with all nucleons

⇒ Enhancement of Qs with A→ non-linear QCD regime
reached at significantly lower energy in A than in
proton

Di-Hadron or Di-Jet Correlations

Low p/A gluon n density (ep): pQCD 2→ 2 process predicts
⇒ back-to-back di-jet

High gluon density (eA): 2 → many process
⇒ expect broadening of away-side

EIC allows to study the evolution of Qs with x
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Kinematic Coverage
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Accelerator gives access to extensive
kinematic range

⇒ Now we need a detector to match
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Luminosity dependence - Main measurements

Phase-I

Phase-II

Phase-III

design luminosity:

L = 1034 cm−2 s−1

∫
Ldt = 100 fb−1 per year

∫
Ldt 1 fb−1 10 fb−1 10-100 fb−1

inclusive DIS

measure scattered electron

→ precision EM-Calorimetery

multi-dimensional binning:
x ,Q2

→ maximize x ,Q2 coverage &
determines interaction
region design

semi-inclusive DIS

measure scattered electron in
coincidence with identified
hadrons

multi-dimensional binning:
x ,Q2, z , θ,pT

→ maximize PID detector coverage
in whole phase space

Exclusive processes

measure all particles in event

→ hermetic tracking + hadronic
calorimetry

multi-dimensional binning:
x ,Q2, z , θ,pT

measure proton kinematics

→ strong constraints on far-forward
detector & interaction region

F. Bock (ORNL) EIC physics to detector May 24, 2022 12 / 24



Generalized detector design considerations
p/A beam electron beam

z
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Endcap

Hadron
Endcap

η= 0.88
θ= 45°

η= 4
θ= 2°

η= -4
θ= 178°

η= 0
θ= 90°

η= -0.88
θ= 135°

lo
w

-x

ha

dr
on
s

medium-x

hadrons

large-x

lo
w

-Q
2

sc

att
ere
d e
lec
tron

high-Q2 Large rapidity coverage for central detector

Specialized far-forward detectors for p
kinematics measurements

High precision low mass tracking

Hermetic coverage of tracking, electromagnetic
& hadronic calorimetry

High performance single track PID for π, K, p
seperation

Large acceptance for diffraction, tagging, neutrons from nuclear breakup
many auxillary detectors integrated in beam line: low-Q2 tagger, Roman
pots, ZDCs . . .

High control if systematics
luminisity monitors, electron & hadron polarimetry

Highly integrated design between detector and machine for IR
[EIC YR]
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The detector design process
Define physics objectives & generic machine/detector parameters
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LONG RANGE PLAN  

for NUCLEAR SCIENCE

 REACHING FOR THE HORIZON

The Site of the Wright Brothers’ First Airplane Flight

2012 2015 2017 2020
Realistic machine & detector concepts

Feb. 2021 Dec. 2012

Detector & machine design driven by
physics objectives

NSAC recommendation: ”. . . a
high-energy high-luminosity polarized
EIC . . . highest priority for new facility
construction . . . ”

Jan. 2020: BNL site selection

Extensive generic detector R&D for
EIC for PID, tracking & calorimetry

YR outlines general detector
requirements for benchmark physics
observables

Mar. 2021: Call for Detector
Proposals

Detector proposal based on more
realistic full detector simulations

F. Bock (ORNL) EIC physics to detector May 24, 2022 14 / 24

https://arxiv.org/pdf/1212.1701v3.pdf
https://science.osti.gov/-/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf
https://arxiv.org/pdf/1708.01527.pdf
https://arxiv.org/pdf/2103.05419
https://www.bnl.gov/ec/files/eic_cdr_final.pdf
https://indico.bnl.gov/event/13614/attachments/39800/66073/ATHENA_proposal.pdf
https://indico.bnl.gov/event/13614/attachments/39800/66075/CORE_proposal.pdf
https://indico.bnl.gov/event/13614/attachments/39800/66076/ECCE_proposal.pdf


ECCE

Backward Endcap 
Tracking: 

• ITS3 MAPS Si discs (x4)

• AC-LGAD

PID:  
• mRICH

• AC-LGAD TOF

• PbWO4 EM Calorimeter 

(EEMC)

Barrel 
Tracking: 

• ITS3 MAPS Si 

      (vertex x3; sagitta x2) 

• μRWell outer layer (x2)

• AC-LGAD (before hpDIRC)

• μRWell (after hpDIRC)

h-PID:  
• AC-LGAD TOF 

• hpDIRC 
Electron ID: 
• SciGlass EM Cal (BEMC)

Hadron calorimetry: 
• Outer Fe/Sc Calorimeter 

(oHCAL)

• Instrumented frame 

(iHCAL)

Forward Endcap 
Tracking: 

• ITS3 MAPS Si discs (x5)

• AC-LGAD

PID: 
• dRICH

• AC-LGAD TOF

Calorimetry: 
• Pb/ScFi shashlik (FEMC)

• Longitudinally separated hadronic 

calorimeter (LHFCAL)

EIC Comprehensive
Chromodynamics Experiment

Scientiest from 98 international &
US based institutions

Objective:
“Produce a purpose-built detector,

designed to optimally deliver the full

EIC science program by carefully

balancing technology choices, costs

and risk”

Physics driven detector design
choices with strong connection to
YR

Effective use of funds with
minimized risks

Chosen as reference detector 1
design Mar. 2022 [ECCE prop]
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Tracking (1)

Embedded in BABAR 1.5T magnet

Mid-rapidity: Ultra thin MAPS based Si-detectors, µRwells & AC-LGAD detectors

Forward and Backward: MAPS based Silicon discs & AC-LGAD detectors

Outer layers placed to provide ideal track points before/after PID detectors

AI-Assisted optimization of placement of tracking layers & support reduction

Technology mix

MAPS based Si-detectors:
σ = 10µm, X/X0 ∼ 0.05− 0.15%/layer

µRwells:
σ = 55 µm, X/X0 ∼ 0.2%/layer

AC-LGADs:
σ = 30 µm, X/X0 ∼ 6− 7%/layer

[ECCE prop]
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Tracking (2)

0 5 10 15 20
[GeV/c]

T
Track p

1−10

1

10

210

m
]

µ[
2D

D
C

A

< 1η≤0 

0 5 10 15
[GeV/c]

T
Track p

1−10

1

10

210
m

]
µ[

2
D

D
C

A
< -1η≤-2.5 

ECCE Simulation 2021

YR PWG

0 5 10 15 20
(GeV/c)MCp

5

10

15(%
)

p/
p

∆

< -3.0η-3.5 < 
< -2.5η-3.0 < 

simulationECCE
±πsingle 

a)

0 5 10 15 20
(GeV/c)MCp

0 5 10 15 20
(GeV/c)MCp

0.5

1.0

1.5

(%
)

p/
p

∆

< -0.5η-1.0 < 
< 0.0η-0.5 < 

< 0.5η0.0 < 
< 1.0η0.5 < 

c)

0 5 10 15 20
(GeV/c)MCp

1

2

3

(%
)

p/
p

∆

< 1.5η1.0 < 
< 2.0η1.5 < 
< 2.5η2.0 < 

d)

0 5 10 15 20
(GeV/c)MCp

0

YR requirement
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Meeting primary vertex resolution YR-requirement

Momentum resolution harder to fullfil, all designs
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→ No significant negative impact on physics performance

[ECCE prop]
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Cherenkov-PID

hpDIRC frame
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mRICH hpDIRC dRICH

Optimized for charged pion, kaon & proton separation

Complemented by calorimetery & TOF

Geometries optimized to fit ECCE baseline design while maintaining required performance

Particular focus on large η coverage

[ECCE prop]
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Analog Coupled - Low Gain Avalanche Detectors
(AC-LGADs) with 25 ps time resolution resolution

Combined PID & tracking detector

Positions optimized for low momentum e/π, π/K, K/p
separation

Full η-coverage for simultaneous start time determination
[ECCE prop]
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Electromagnetic Calorimetery
EEMC

EEMC - homogenous high resolution PbWO4 crystal ECal

BEMC - homogenous, projective Sci-Glass ECal

FEMC - high granular shashlik Pb/Scint sampling ECal,
integrated within module LFHCAL

Minimized acceptance gaps

EEMC/BEMC optimized for scattered electron detection

FEMC optimized for shower separation within jets [ECCE prop]
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Hadronic Calorimetery

OHCAL

IHCAL
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YR Requirement OHCAL
 16.8⊕ E =  33.6/E/σOHCAL: 

 14.5⊕ E =  75.0/E/σOHCAL TB: 
YR Requirement LFHCAL

 1.4⊕ E =  33.2/E/σLFHCAL: 

η [-1 .. 1] [1 .. 4]

σE/E ~75%/√E + 15%* ~33%/√E + 1.4%

depth ~4-5 λI ~7-8 λI

*Based on prototype beam tests and earlier experiments

Barrel HCal LFHCAL

OHCAL+IHCAL LFHCAL
Designed to complement tracking in
Particle-Flow algorithm

OHCAL/IHCAL
I Fe/Scint sampling calorimeter
I partial sPHENIX re-use & magnet

flux return

LFHCAL
I Fe/Scint & W/Scint sampling

calorimeter
I highly segmented (7 long.

segments) & integrated with
FEMC for support material
reduction

I W-segment as tail catcher

No electron end-cap HCAL, no
strong enough physics motivation

[ECCE prop]
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Far-forward Region

B0 system for
charged-particle measurement
in forward direction &
neutral-particle tagging

off-momentum detectors
measure charged particles with
different rigidity than the
beam, e.g., those following
decay and fission.

roman pot detectors
charged particles measurement
close to beam envelope

zero-degree calorimeter
measures neutral particles at
small angles.

[ECCE prop]
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Far-backward Region

This area is designed to measure
scattered electrons at small,
far-backward angles

Strong technology synergies with
central detector systems

Low Q2-tagger
I Double-layer AC-LGAD tracker

at 24 & 37m from IP
I PbWO4 EMCAL (20cm x 2cm2

crystals)

Luminosity Monitor
I AC-LGAD and PbWO4 to

provide accuracy of the order of
1% or relative luminosity
determination exceeding 10−4

precision

[EIC YR] [ECCE prop]
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The EIC is coming!
fast!

Exiting times
ahead!

Thank you!


