Diffractive Physics at the EIC: physics and detectors *Spencer Klein, LBNL*

Presented at the Workshop on Forward QCD: open questions and future directions

- Diffraction at the EIC: parton distributions and imaging
- Differences between EIC collisions and UPCs
- The planned EIC detector(s): response to diffraction
- **Distinguishing coherent & incoherent production**
- **Regge-mediated interactions**
- **Backward production**
- Conclusions

Reference Detector

• Central barrel + endcaps cover $\sim 3.5 < \eta < \sim 3.5$

- Vertexer, tracking, PID, electromagnetic and hadronic calorimetry
- Non-zero crossing angle complicates acceptance in η
 - Acceptance limited by beampipe/machine constraints
- Forward detectors for scattered or dissociated nuclei
- Backward detector for scattered electron
 - Effort to go to the smallest possible energy loss, Q²

The forward region

- Detectors well integrated with accelerator magnets, pumps etc.
- Must detect nuclear breakup with high efficiency, to separate coherent and incoherent production
- Probe diffractive excitations of nuclear target
- Study pion, kaon structure functions

Goals of diffractive/exclusive studies at the EIC

- Measurement of parton distributions especially gluons
 - In protons and (especially) ions
 - Searching for new phenomena at high gluon densities
 - Saturation/the colored glass condensate
- Measurement of the transverse distribution of partons, especially gluons
- Studies of event-by-event parton fluctuations (gluonic hotspots)
- Studies of exclusive photoproduction, for hadron spectroscopy
 - XYZ charmonium states
 - γ-exotic coupling sheds light on their nature
 - γ+Reggeon reactions allow a wide range of final states
- Studies of near-threshold photoproduction of heavy quarkonium
- Studies of backward production
 - Reactions like $\gamma^* p \frac{\rho}{\omega} / \pi^0 p$, where |t| is large but |u| is small
 - Responsible for baryon stopping in heavy ion collisions?

Quarks and gluons at high densities

- Parton densities rise due to splitting
- At high densities, parton recombination also occurs
- At very high densities, the splitting & recombination rates are equal
 - Equilibrium saturation
 - Describable as a colored glass condensate
 - A classical gluon field
 - Originally predicted new phenomena, such as monojets in heavy-ion collisions
 - Now is mostly considered a calculational tool
- With the higher density, nuclei are more likely to exhibit high-density phenomena, like saturation
 - Phenomena emerge at larger Bjorken-x
 - Increase is by "Oomph factor" ~
 - A^{1/3} ~ 6 for gold/lead

Talk by Martin Hentschinski

.00000000000000000

ZUUUUUUUU

How does the EIC compare to UPCs?

- Virtual photons covering the full range of Q²
 - Measure parton distribution studies over Q²
 The EIC can directly probe partons via deep inelastic scattering
- Polarized protons & light ions, wide range of unpolarized ions
 - Polarized protons/ions give access to polarized parton distributions and GPDs
- High luminosity

- A detector that covers almost the full solid angle with charged particle tracking, particle identification and calorimetry
 - Down to low momentum (p_T < 100 MeV/c)
 - Reconstruct the full event
 - Missing mass techniques*
- But... lower energies than the LHC (comparable to RHIC), so less reach in Bjorken-x
 - Maximum 18 GeV electrons on 275 GeV p/110 GeV/n nuclei

Measuring gluon distributions

- In Deep Inelastic Scattering, an emits a virtual photon which interacts with quarks in the nucleus
 - x and Q² determined from scattered electron
 - y = inelasticity=fraction of electron energy transferred to hadrons
 - → Q² ~ sxy

- Gluons may be inferred from evolution of quark distributions
 - How does the quark density change with x or Q²?
- Direct measurements are highly desirable
 - Reactions that proceed via gluons
 - Photoproduction of dijets, open charm, or vector mesons
 - Single gluon exchange, but experimentally harder
 - Photoproduction of vector mesons
 - Experimentally simple, but theoretical complications

Kinematic Range and reconstruction

- Key variables: x, Q²
 - y=inelasticity; Q²~ sxy
- x,Q² determinable by observing scattered electron
 - Best over most of kinematic range, except at low y
 - Alternately, reconstruct x,Q² from hadronic final state
 - Double-angle method uses hadronic system + electron angles
 - Σ method uses hadronic final state

Dijets and open charm

- Theoretically relatively clean
- Rates are high (γ-charm coupling is large)
- Low Bjorken x corresponds to high photon energies, so the jet goes in the backward region
 - For photoproduction y = In(2k/M_{final}) and x= M_{final}/M_{proton} exp(-y)
 - Electroproduction only affects this a little
- Diffractive dijets/charm also expected
 - Proton/ion stays intact. Probe of Pomeron, test of Odderon

Exclusive vector meson photoproduction

- Occurs via colorless 'Pomeron exchange'
 - Require >=2 gluon exchange for color neutrality
 - Gluon ladder
- Light meson production via vector meson dominance
 - ρ, direct π⁺π⁻, ω, ρ'
- Heavy meson production treated with pQCD
 - J/ψ, ψ', Y(1S), Y(2S), and Y(3S)
- 3 targets, 3 coherence lengths and 3 p_T scales
 - Coherent: nucleus remains intact. $p_T < \sim hbar/R_A \& \sigma \sim A^2$
 - Incoherent: nucleus breaks up; protons remain intact. p_T <~ hbar/R_p
 - Proton dissociation: struck proton breaks up. $p_T \sim \Lambda_{QCD} \sim 300 \text{ MeV}$
 - Forward detectors can separate these three classes of events
- γ + Odderon (3+-gluon state) could lead to tensor mesons
- At low energy, photon+Reggeon contributes significantly
 - Reggeon = quark + antiquark ladder
 - Meson exchange trajectories
 - Allows a much wider range of quantum number, including charge 10

A/A*/Ax

VM photoproduction in LO pQCD

In 2-gluon model, leading order pQCD

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} \left(\gamma^* p \to J/\psi \ p\right)\Big|_{t=0} = \frac{\Gamma_{ee} M_{J/\psi}^3 \pi^3}{48\alpha} \left[\frac{\alpha_s(\bar{Q}^2)}{\bar{Q}^4} x g(x, \bar{Q}^2)\right]^2 \left(1 + \frac{Q^2}{M_{J/\psi}^2}\right).$$

$$\gamma^* \qquad J/\psi$$

$$c \qquad k_T \mid c \quad 0 \quad 0 \quad k_T$$

$$x \quad c \quad 0 \quad 0 \quad x'$$

$$p \qquad p$$

 $ar{Q}^2 \;=\; (Q^2 + M_{J/\psi}^2)/4\,, \qquad x\;=\; (Q^2 + M_{J/\psi}^2)/(W^2 + Q^2)$ With

- Vector meson mass provides hard scale
- Some caveats
 - NLO calculations look very different
 - Less problematic as Q² rises
 - pQCD factorization is imperfect
 - Gluons have different x values ($x' \ll x \ll 1$)
 - Generalized (skewed) gluon distributions.
 Can do exactly with Shuvaev transform
 More natural to treat as GPD
 on is not pure q q dipole
 - Photon is not pure $q\bar{q}$ dipole
 - Choice of scale μ (especially in NLO)

Jones, Martin, Ryskin and Teubner ("JMRT"), JHEP 1311, 085 (2013); K. Eskola et al., arXiv:2203.11613

The dipole approach

- Needed to incorporate transverse size into calculation
 - Important for nuclei

- Start with basics: $\sigma = |\langle \Psi_{\gamma} | M | \Psi_{V} \rangle|^{2}$
- Treat the qq pair as a dipole with size r
 - Need VM and photon wave functions, matrix element as f(r)
 - $\sigma \sim r^2$; r scales with 1/Q, but relationship is not simple
 - Different matrix elements for different nuclear models
 - pQCD, shadowing, colored glass condensate, etc.

$$A(K,\Omega) = 2i \int d^2 \mathbf{r}_T \frac{dz}{4\pi} d^2 \mathbf{b}_T e^{-i\mathbf{b}_T \cdot \mathbf{k}_T/\hbar} \\ \times \Psi^*(\mathbf{r}_T, z, Q^2) \Psi_V(\mathbf{r}_T, z, Q^2) N_\Omega(\mathbf{r}_T, \mathbf{b}_T)$$

Dipole approach allows impact-parameter dependent calculations

- Can calculate dσ/dt for different nuclear conditions
 - Different effective target shapes at different x,Q²

Exclusive production, gluon shadowing & hotspots

- The EIC will study $\gamma^* p$, A -> V p,A over full range of
 - Bjorken-x
 - ♦ Q² saturation is most visible at low Q² region!
 - Transverse and longitudinal polarization
 - A wide range of vector mesons, and photons for DVCS

Coherent production – practical aspects

- Bjorken-x is mapped from rapidity:
 - $x = M_F/2\gamma_PMp exp(y)$

 J/ψ

- M_F = final state mass, γ_p = ion Lorentz boost, and M_p = proton mass
- Modified for photons with high Q²
- Broad coverage in Bjorken-x requires broad coverage in rapidity

Coherent VM production in ATHENA: x, Q² range

- x depends on rapidity range of central tracker
- Roughly, tracking a vector meson out to rapidity |y_{max}| with good efficiency requires tracking daughters out to |η_{max}|= |y_{max}| +1
 - Not fully satisfied in any EIC detector
 - Loss of efficiency for x~1 or x ~ x_{minimum}
- Rapidity distribution depends on decay Clebsch-Gordon coefficients

Beyond gluon densities: to spatial distribution and fluctuations

- The Good-Walker formalism links coherent and incoherent production to the average nuclear configuration and event-byevent fluctuations respectively
 - Configuration = position of nucleons, gluonic hot spots etc.
- Coherent: Sum the amplitudes, then square -> average over different configurations
- Incoherent = Total coherent; total: square, then sum crosssections for different configurations

$$\frac{\mathrm{d}\sigma_{\mathrm{tot}}}{\mathrm{d}t} = \frac{1}{16\pi} \left\langle \left| A(K,\Omega) \right|^2 \right\rangle \qquad \text{Average cross-sections } (\Omega)$$
$$\frac{\mathrm{d}\sigma_{\mathrm{coh}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \qquad \text{Average amplitudes } (\Omega)$$
$$\frac{\mathrm{d}\sigma_{\mathrm{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \left(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \right) \qquad \text{Incoherent is difference}$$

Mantysaari and Schenk, PRD 94, 034042 (2016)

Good-Walker and transverse interaction profiles

The coherent cross-section gives us access to the transverse spatial distribution of individual targets within the nucleus

$$rac{\mathrm{d}\sigma_{\mathrm{coh}}}{\mathrm{d}t} = rac{1}{16\pi} \left| \langle A(K,\Omega) \rangle \right|^2$$
 Average amplitudes (Ω

- We can also write $\sigma_{\text{coherent}} = |\Sigma_i A_i k \exp(ikb)|^2$
 - Usually work with $t = p_T^2 + p_z^2 \sim p_T^2$
- Because of exponential d_{\u0375}/dp_{\u0375} encodes information about the transverse locations of the interactions
 - without shadowing, this is the shape of the nucleus
- The two-dimensional Fourier transform of do/dt gives F(b), the transverse distribution of targets

$$F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(bp_T) \sqrt{\frac{d\sigma}{dt}}$$

*flips sign after each diffractive minimum

 Multiple serious caveats – range of integration/ windowing finding diffractive minima, subtracting out photon p_T etc.

Experimental aspects of imaging

$$F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(bp_T) \sqrt{\frac{d\sigma}{dt}}$$

This integral goes from 0 to infinity, but data has a maximum p_T

- This introduces a 'window' (box) from 0 to p_{Tmax}, which is unavoidable convoluted with the signal
- Need to go to large p_T to minimize windowing
 - to the third minimum
- Find t via scattered p/ion, or e + hadrons
 - Scattered ion only visible for protons/light ions
- Need to remove resolution via deconvolution
 - Including beam energy & momentum spreads
 - Most important when electron energy loss is small
- Need to account for photon polarization as function of Q², and correlation between photon p_T and decay product p_T
 - s-channel helicity conservation: vector meson retains γ polarization 18

The STAR $\rho^{\rm 0}$ analysis

- 384,000 dipion events
- Fit $d\sigma_{incoherent}/dt$ in region of large |t| with a dipole form factor, extrapolate and subtract, leaving $d\sigma_{coherent}/dt$
 - Diffractive minima are visible
- 2-d Fourier tranform
- Blue band shows effect of varying |t|_{max} from 0.05 0.09 GeV²
 - Variation at small |b| may be due to windowing (finite t range)
 - Negative wings at large |b| are likely from interference

ATHENA gluon tomography of the proton using coherent J/ψ production

- In ep, so t comes from scattered proton
- Gluon distribution is Fourier transform of dσ/dt

Low-x $\boldsymbol{\varphi}$ production in eA

- Must reconstruct t using scattered electron +
 - Difference between two large numbers
 - Initial electron momentum, with beam spread
 - Scattered electron momentum
- Good resolution at lower electron energy
- Tradeoff between narrower x range and good t resolution

◆ Large Q² helps, so electron is at smaller |y|

Incoherent production and event-by-event fluctuations

The incoherent cross-section lets us measure the event-byevent fluctuations in the nuclear configuration, including the positions of individual nucleons, gluonic hot spots, etc.

$$\frac{\mathrm{d}\sigma_{\mathrm{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \left(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \right)$$

- Probes the deviations from the mean.
- The connection between t and impact parameter is weaker than with coherent production, but this can be used to test models.

γ^* p->J/ ψ at HERA and gluonic hot spots

HERA data provides an application of the Good-Walker formalism

 $\gamma + p \rightarrow J/\Psi + p, W = 75 \,\mathrm{GeV}, Q^2 = 0 \,\mathrm{GeV}^2$

- The proton is far from smooth. It contains gluonic hot spots (or other fluctuations)
- The EIC will map this behavior in x,Q², and should apply it to nuclei

How good a coherent/incoherent separation is needed?

- Wide |t| range required for coherent photoproduction to measure GPDs
 - Parton distributions as a function of transverse position within the nucleus
 - Fourier transform dσ/dt to F(b)
 - Accurate Fourier transform requires 0 < |t| < ~0.18 GeV² range for eAu
- Need ~500:1 rejection of incoherent production to observe coherent production with |t|>~0.1 GeV²
- Need 100:1 rejection of coherent production to observe incoherent production at small |t|

Discussed in Yellow Report; Plots from EIC White Paper

Separating coherent and incoherent production with heavy ion targets

- Nuclear breakup via neutron, proton or photon emission
 - Mixture depends on t, since nucleon emission reactions are exothermic
 - Significant theoretical uncertainties in branching ratios

Detecting photonic deexcitation

- For excitation energy < 1-5 MeV, the final state is well defined</p>
 - Shell model state with fixed energy, spin, parity
- Relationship between E and t depends on mass of recoiling state
 - STAR ρ^0 photoproduction data supports single-nucleon recoil fits
 - Fit is in range 0.45 GeV² > t >0.2 GeV²
- Lab-frame energy depends on Lorentz boost & angle
- For ²⁰⁸Pb, the lowest lying excited state is at 2.6 MeV
 - Incoherent production impossible below this threshold
 - $J^{\pi}=3^{-}$, so production is marginal, due to angular momentum
 - In the single nucleon paradigm (questionable here), with maximum boost, p_{min} ~ 70 MeV/c, t_{min} ~ 0.005 GeV²
 - For ¹⁹⁷Au, the lowest lying excited state is at 77 keV
 - $\tau = 1.9$ nsec, so the excited nucleus escapes the detector
 - Next lowest states are at 269 keV and 279 keV

Lead is preferred for coherent production studies

Cautions, questions and caveats

- Breakup into A>1 fragments is possible, but probably unlikely
- **Can a recoiling nucleon emit bremsstrahlung** γ w/o breakup?
 - eA->eVγA
 - Rate is probably low
- What are the real requirements for coherence?
 - Same initial and final state, per Good-Walker
 - $\sigma = |\Sigma_i A_i \exp(ikx)|^2$
 - AA->A*A* V (ρ , ρ ', J/ ψ) still exhibits coherence
 - There must be more to the Good-Walker coherence requirements

Strictly speaking, Good-Walker applies only for stable final states.

Miettinen and Pumplin, Phys. Rev. Lett. 42, 204 (1979). Caneschi and Schwimmer, Nucl. Phys. **B133**, 408 (1978). $\pi^+\pi^-$

Example: near-threshold Y

- At full beam energy (18 x 275 GeV²), near-threshold U production is at/beyond the edge of the detector acceptance
- Solution: run at lower beam energy (10 x100 GeV²), which shifts the threshold to near mid-rapidity
 - Total Y rate is much lower, but the near-threshold rates are the same
 - Unfortunately, this does not work at low x

Backward (u-channel) J/ ψ production

t is large and u is small

- In γp center-of-mass frame, meson and proton switch places
- The meson is far-forward, while the proton is at mid-rapidity
- Studied at fixed target accelerators
 - Only light mesons
 - Proton and meson share quark flavors

- Production models using Transition Distribution Amplitudes (TDA, like GPDs) or Regge trajectories involving baryons
 - Regge model like models of baryon stopping in heavy-ion collisions
- **Cross-section parameterized for the** ω
 - For ω, dσ/du ~ 4.4 µb/GeV² (s/1GeV)^{-2.7} exp(-21 GeV⁻²u)
 - At EIC, backward ω rate is ~ 1/300 of forward ω rate
 - J/ψ rate 1,000-10,000 times lower????
 - If so, backward J/ψ are accessible

C. Ayerbe Gayoso et al., arXiv:2107.06748; D. Cebra et al. . arXiv:2204.07915

Kinematics of backward production at the EIC

- Forward vector meson + mid-rapidity proton (+ electron for Q²>0)
- Proton near mid-rapidity (baryon stopping)
- Meson decay products in forward region
 - Shifts to lower y by reducing beam energy
 - For some final states, optimal detection at lower energies
 - Shifts to lower y for heavier final state mesons (e. g. φ, J/ψ)
 - Detection in combination of central detector, B0 magnet spectrometer and zero degree calorimeter
 - B0 and central detector

D. Cebra et al. arXiv:2204.07915

Conclusions

- Photoproduction is a key tool to study partons in dense nuclear environments
- The EIC will open an era of systematic, precision measurements on a variety of ion targets
- Photoproduction of open charm and dijets are theoretically fairly clean, but messy experimentally.
- Photoproduction of light and heavy quarkonium is mostly experimentally straightforward
- By measuring d_{\u0357}/dt for coherent production, we can image the targets in protons and nuclei
- By studying do/dt for incoherent production, we can study gluonic hot-spots and other event-by-event variations
- Measuring t with good enough resolution will be a challenge
- More work is needed on separation of coherent and incoherent interactions

Photons from relativistic nuclei

- Perpendicular E and B fields -> just like a photon field
 - Fourier transform E(x,b)-> E(k,b) and quantize
 - Equivalent photon approximation
- Pancaked E & M fields: opening angle $\theta = 1/\gamma$
- $k_{max} = c/\lambda_{max} = \gamma$ hbar c/b

$$N(k,b) = \frac{Z^2 \alpha k^2}{\pi^2 \gamma^2 \hbar^2 \beta^2} \left(K_1^2(x) + \frac{K_0^2(x)}{\gamma^2} \right)$$

- x=kb/γ hbar c
 - + x<1: N ~ $K_1^2(x)$ ~ 1/x²
 - x > 1: N is exponentially suppressed
 - Note: 1/b² dependence

Integrate over d²b: with b>2R_A (no nuclear collision)

$$N(k) = \frac{Z^2 \alpha k^2}{\pi^2 \gamma^2 \hbar^2 \beta^2} \left(K_1^2(u) + \frac{K_0^2(u)}{\gamma^2} \right)$$

• $u = \gamma$ hbar c/2R_A

The electron-ion collider

- Add an 18 GeV electron ring to the RHIC complex
- Augmented ion ring
 - 275 GeV p, 110 GeV/n ions
 - Improve polarized source
- Coherent electron cooling to reduce emittance
- Very high luminosity ~ 10 ³⁴/cm²/s
 - Precision physics
- At least one detector
 - Full acceptance, with excellent forward and backward coverage
 - Collaboration forming now
- Completion in early 2030s

EIC detectors

- "Reference detector" developed in the EIC Yellow Report
- Three responses to 'Call for proposals' from EIC Project
 - ATHENA: all-new detector with a 3 T solenoid magnet
 - ECCE: reuse components where possible.
 - 1.5 T solenoid, from sPHENIX, or new
 - CORE: compact detector
- ECCE was preferred by review committee
- Currently forming a new 'Detector One' collaboration
 - ECCE is base design, but it will be optimized, and may incorporate elements from ATHENA or CORE

More direct access to the gluons

- Photoproduction of open charm and dijets
 - γ + g -> ccbar (or qqbar-> dijets)
 - Jets are tricky at low energy (i. e. low x)
- $Q^2 = Q^2_{photon} + Q^2_{pair} = Q^2_{photon} + (M_{finalstate}/2)^2$
- Polarized and unpolarized measurements in ep

J/ψ photoproduction in NLO

- Some surprises in a new NLO calculation 20
- Very large scale uncertainty
 - Hope for reduction using some tricks
- σ_{NLO} ~55-70% below σ_{LO}
 - Previous LO calculations matched data...
- Multiple peaks in d_o/dy for UPCs
 - Note photon directional ambiguity
- NLO gluon contribution partly cancels LO gluon contribution
 - Quark contribution is important
- Different parton distribution fits give different results
 - Real part of gluon amplitude
- How well do uncertainties cancel when comparing proton and ion data?

K. Eskola et al., arXiv:2203.11613

Strong saturation and the black disk limit

Higher photon energies probe lower Bjorken-x values

- Lower x values -> more gluons, more hotspots
- The fraction of the proton or ion surface covered with hot spots rises
- Eventually, the whole surface is covered. This is the 'black disk limit,' when the nucleus acts like a totally absorptive disk
- Black disks don't fluctuate, so incoherent photoproduction should disappear.
- High-mass final states require more energetic (larger x) gluons, so they will be slower to disappear
 - Extension to nuclei model dependent

J. Cepila et al., Nucl. Phys. B934, 330 (2018)

Vector meson rates in 10 fb⁻¹/A

Accelerator	σ					Number of events					
	ρ^0	$ \phi$	${ m J}/\psi$	ψ'	$ \Upsilon(1S)$	ρ^0	$ \phi$	${ m J}/\psi$	$ \psi'$	$\Upsilon(1S)$	
eRHIC - ep	$5.0 \ \mu b$	230.0 nb	8.5 nb	1.4 nb	14.0 pb	50 giga	$2.3 \mathrm{giga}$	85 mega	14 mega	140 kilo	
eRHIC - eA	$870.0 \ \mu b$	$55.0 \ \mu b$	$1.9 \ \mu b$	320.0 nb	$1.2 \mathrm{~nb}$	44 giga	$2.8 \mathrm{giga}$	100 mega	16 mega	60 kilo	
JLEIC - ep	$3.7 \ \mu b$	160.0 nb	3.9 nb	600.0 pb	4.3 pb	37 giga	1.6 giga	39 mega	6.0 mega	43 kilo	
JLEIC - eA	$580.0 \ \mu b$	33.0 µb	590.0 nb	$82.0 \ \mathrm{nb}$	-	28 giga	1.6 giga	28 mega	3.9 mega	-	
LHeC - ep	$10.0 \ \mu b$	560.0 nb	47.0 nb	7.8 nb	120.0 pb	100 giga	5.6 giga	470 mega	78 mega	1.2 mega	
LHeC - eA	$2.3 \mathrm{~mb}$	$ 170.0 \ \mu b $	$15.0 \ \mu \mathrm{b}$	$2.9~\mu{ m b}$	41.0 nb	110 giga	8.2 giga	720 mega	140 mega	2.0 mega	
HERA - ep	$7.9 \ \mu b$	450.0 nb	40.0 nb	6.4 nb	$85.0 \mathrm{~pb}$	-	-	-	-	-	

TABLE III. The cross-sections and rates for VM photoproduction $(Q^2 < 1 \text{ GeV}^2)$ at the proposed EICs, and at HERA.

Accelerator	σ					Number of events				
	$ ho^0$	ϕ	${ m J}/\psi$	ψ'	$\Upsilon(1S)$	$ ho^0$	ϕ	${ m J}/\psi$	ψ'	$\Upsilon(1S)$
eRHIC - ep	14.0 nb	1.7 nb	570.0 pb	120.0 pb	2.4 pb	140 mega	17 mega	5.7 mega	1.2 mega	24 kilo
eRHIC - eA	730.0 nb	$110.0~\rm{nb}$	$77.0 \ {\rm nb}$	$19.0 \ \mathrm{nb}$	$200.0~\rm{pb}$	37 mega	5.6 mega	3.9 mega	960 kilo	10 kilo
JLEIC - ep	10.0 nb	1.2 nb	$270.0~\rm{pb}$	$55.0 \mathrm{~pb}$	790.0 fb	100.0 mega	12 mega	2.7 mega	550 kilo	7.9 kilo
JLEIC - eA	450.0 nb	67.0 nb	$25.0 \ \mathrm{nb}$	$5.1 \mathrm{~nb}$	-	22 mega	3.2 mega	1.2 mega	250 kilo	-
LHeC - ep	26.0 nb	3.7 nb	2.9 nb	630.0 pb	18.0 pb	260 mega	37 mega	29 mega	6.3 mega	180 kilo
LHeC - eA	$2.0 \ \mu \mathrm{b}$	$340.0~\rm{nb}$	$560.0~\rm{nb}$	$150.0~\rm{nb}$	$5.3 \ \mathrm{nb}$	100 mega	16 mega	27 mega	7.2 mega	250 kilo
HERA - ep	44.0 nb	6.4 nb	17.0 nb	3.6 nb	120.0 pb	-	-	-	-	-

TABLE IV. The cross-sections and rates for VM electroproduction $(Q^2 > 1 \text{ GeV}^2)$ at the proposed EICs and at HERA.

Y(2S) Y(3S) somewhat lower than Y(1S)

From eSTARlight; M. Lomnitz and SK, Phys. Rev. C99, 015203 (2019)

Models of Incoherent production

BEAGLE

- qqbar dipole scatters from a single nucleon, which recoils
- Recoil causes an intra-nuclear cascade, leading to dissociation.
 - Microscopic model.
- At low energies, photonic excitations may appear
- nucleon-free fraction depends on |t|
 - Expected nuclear breakup depends on available energy
- Rejection < ~ 1/50 at large |t|
- Sartre
 - Similar dipole to BEAGLE
 - Nucleus diffractively dissociates, with fragments ~ 1/M²
 - Nuclear breakup is from the GEMINI++ intranuclear cascade code
- Large theoretical uncertainties from intranuclear cascades

M. D. Baker, https://wiki.bnl.gov/conferences/images/f/f7/ERD17-2020-06-plus.pdf T. Toll and T. Ullrich, Comput.Phys.Commun. **185** (2014) 1835-1853

Nuclear Shadowing

- Compare ALICE & CMS data with PDF shadowing models
 - Use impulse approximation for proton reference
 - Normalize to HERA data to correct for higher order terms
 - 6 different parton distributions
- Consistent w/ 2012 leading twist approximation calculation
 - Except for MNRT07 parameterization
- More shadowing than HKN07 parameterization
- EPS09 parameterization fits data well
 - Error bars should shrink
 - Also true w/ EPPS'16
- No need for exotica e. g.
 - Colored glass condensate
 - Hard saturation cutoff

V. Guzey & M. Zhalov, JHEP 1310, 207 (2013) Frankfurt Guzey & Strikman, Phys. Rept. 512, 255 (2012) updated by V. Guzey & M. Strikman.

Polarized J/ ψ photoproduction at STAR

- Sensitive to polarized GPDs (generalized parton distributions), which probe the transverse position of partons with the nucleus
 - Is gluon polarization dependent on position within nucleus?
- From polarized p on Au collisions
 - Dominated by photon-from-gold
 - p_T cut improves separation
 - Polarized proton target
- Look at scattering asymmetries, which depends on W_{γp} and p_T
- 1st measurement; proof of principle

W. Schmidke [STAR], DPF 2019

-0.2

10

15

 $W_{\gamma p}^{35}$ (GeV)

25

20

30

EIC luminosity

Luminosity 1000 times HERA

- High currents required
- ♦ I_{electron}=2.5 A

- Max. 9 (or 10) MW synchrotron radiation limits I_{electron} at high energies
 - Cost of cooling
- ♦ I_{hadron} =1.0 A
- For ion beams, luminosity/nucleon is roughly constant

Trade energy for luminosity?

Different physics topics may hav different optimal energies

STAR fit to ρ^0 data

- Model includes photon p_T, ρ⁰ scattering on target, and interference between the two γ directions
- Cross-section $\sigma \sim |A_1 A_2 e^{ip \cdot b}|^2$
 - The vector meson is linearly polarized along b
 - π^+ and π^- p_T preferentially follow b
 - $e^{ip \cdot b}$ gives a correlation between the $\rho^0 p_T$ & pion p_T
 - -> an angular modulation in p_T
- Model fits data well
 - Hadronic radii (w/ neutron skin) R_{Au} = 6.62±0.03 fm & R_U = 7.29±0.08 fm

Precision UPC physics!

STAR, arXiv:2204.01625

Challenges in exclusive φ production

- K[±] from ϕ decay have 135 MeV/c in ϕ rest frame
 - Other decay channels are impractical
- ϕ w/o longitudinal (|y|>0) or transverse (large Q²) boost are hard to reconstruct $ep \rightarrow ep + \phi$ (1.5 T) $ep \rightarrow ep$
 - Limited range in x,Q² space
- **Background from** $\rho \rightarrow \pi^+ \pi^-$
- **The** ρ is much easier
 - Usable for theory?

J. Arrington et al. arXiv:2102.08337

An ATHENA-like silicon detector

