Diffractive Physics at the EIC: physics and detectors *Spencer Klein, LBNL*

Presented at the Workshop on Forward QCD: open questions and future directions

- Diffraction at the EIC: parton distributions and imaging
- Differences between EIC collisions and UPCs
- The planned EIC detector(s): response to diffraction
- Distinguishing coherent & incoherent production
- Regge-mediated interactions
- Backward production
- **Conclusions**

Reference Detector

- **Central barrel + endcaps cover** \sim **3.5 <** η **<** \sim **3.5**
	- Vertexer, tracking, PID, electromagnetic and hadronic calorimetry
	- \triangle Non-zero crossing angle complicates acceptance in η
		- # Acceptance limited by beampipe/machine constraints
- ! Forward detectors for scattered or dissociated nuclei
- ! Backward detector for scattered electron
	- \triangleleft Effort to go to the smallest possible energy loss, \mathbb{Q}^2

2

The forward region

- **EXPERITED EXECTS FIGHT INTEGRY INTEGRY IN ACCELERATOR IN DETECTS FIGHT IN DETAIL IN DETAIL IN DETAIL IN DETAIL**
- **I.** Must detect nuclear breakup with high efficiency, to separate coherent and incoherent production
- **Probe diffractive excitations of nuclear target**
- Study pion, kaon structure functions

Goals of diffractive/exclusive studies at the EIC

- **E.** Measurement of parton distributions especially gluons
	- In protons and (especially) ions
	- ◆ Searching for new phenomena at high gluon densities
		- \rightarrow Saturation/the colored glass condensate
- **EXECUTERE:** Measurement of the transverse distribution of partons, especially gluons
- **EXTERGHEER IS Studies of event-by-event parton fluctuations (gluonic hotspots)**
- **EXTERGHEER IS Studies of exclusive photoproduction, for hadron spectroscopy**
	- ◆ XYZ charmonium states
	- \rightarrow γ -exotic coupling sheds light on their nature
	- \rightarrow γ +Reggeon reactions allow a wide range of final states
- **EXTE:** Studies of near-threshold photoproduction of heavy quarkonium
- **E** Studies of backward production
	- Reactions like $\gamma^* p \rightarrow \rho/\omega/\pi^0 p$, where |t| is large but |u| is small
		- Responsible for baryon stopping in heavy ion collisions?

Quarks and gluons at high densities

- **Parton densities rise due to splitting**
- **EXTERN At high densities, parton recombination also occurs**
- **EXECT** At very high densities, the splitting & recombination rates are equal
	- ◆ Equilibrium saturation
	- **Describable as a colored glass condensate**
		- ← A classical gluon field
			- Originally predicted new phenomena, such as monojets in heavy-ion collisions
			- Now is mostly considered a calculational tool
- **E** With the higher density, nuclei are more likely to exhibit high-density phenomena, like saturation
	- ◆ Phenomena emerge at larger Bjorken-x
	- Increase is by "Oomph factor" ~
		- \star A^{1/3} ~ 6 for gold/lead

Talk by Martin Hentschinski

1000000000000000

Zmmmmm

How does the EIC compare to UPCs?

- \blacksquare Virtual photons covering the full range of Q^2
	- \triangleleft Measure parton distribution studies over \mathbb{Q}^2 The EIC can directly probe partons via deep inelastic scattering
- **EXTE:** Polarized protons & light ions, wide range of unpolarized ions
	- Polarized protons/ions give access to polarized parton distributions and GPDs
- **High luminosity**
- **E** A detector that covers almost the full solid angle with charged particle tracking, particle identification and calorimetry
	- \bullet Down to low momentum ($p_T < 100$ MeV/c)
	- \triangle Reconstruct the full event
		- **+ Missing mass techniques***
- But... lower energies than the LHC (comparable to RHIC), so less reach in Bjorken-x
	- ◆ Maximum 18 GeV electrons on 275 GeV p/110 GeV/n nuclei

Measuring gluon distributions

- **In Deep Inelastic Scattering, an emits a virtual photon** which interacts with quarks in the nucleus
	- \rightarrow x and Q² determined from scattered electron
	- $\rightarrow y$ = inelasticity=fraction of electron energy transferred to hadrons
		- \star Q²~ sxy
- **EXECUTE:** Gluons may be inferred from evolution of quark distributions
	- \triangleleft How does the quark density change with x or Q²?
- Direct measurements are highly desirable
	- ◆ Reactions that proceed via gluons
	- Photoproduction of dijets, open charm, or vector mesons
		- **★ Single gluon exchange, but experimentally harder**
	- ◆ Photoproduction of vector mesons
		- \rightarrow Experimentally simple, but theoretical complications

Kinematic Range and reconstruction

- **E** Key variables: x , Q^2
	- \leftrightarrow y=inelasticity; Q²~ sxy
- \blacksquare x, Q² determinable by observing scattered electron
	- **Best over most of kinematic range, except at low y**
	- \triangleleft Alternately, reconstruct x, Q² from hadronic final state
		- ← Double-angle method uses hadronic system + electron angles
		- $\rightarrow \Sigma$ method uses hadronic final state

Dijets and open charm

- Theoretically relatively clean
- Rates are high (γ -charm coupling is large)
- Low Bjorken x corresponds to high photon energies, so the jet goes in the backward region
	- \triangleright For photoproduction y = $ln(2k/M_{final})$ and x= M_{final}/M_{proton} exp(-y)
		- \leftarrow Electroproduction only affects this a little
- Diffractive dijets/charm also expected
	- Proton/ion stays intact. Probe of Pomeron, test of Odderon

Exclusive vector meson photoproduction

- **E.** Occurs via colorless 'Pomeron exchange'
	- ◆ Require >=2 gluon exchange for color neutrality
		- \leftarrow Gluon ladder
- **Example 20 I** Light meson production via vector meson dominance
	- \bullet p, direct $\pi^+\pi^-$, ω , p'
- **E** Heavy meson production treated with pQCD
	- \blacktriangleright J/ ψ , ψ' , $Y(1S)$, $Y(2S)$, and $Y(3S)$
- **3 targets, 3 coherence lengths and 3** p_T **scales**
	- \bullet Coherent: nucleus remains intact. $p_T < \sim hbar/R_A \& \sigma \sim A^2$
	- Incoherent: nucleus breaks up; protons remain intact. $p_T \leq P \text{ bar}/R_p$
	- Proton dissociation: struck proton breaks up. $p_T \sim \Lambda_{QCD} \sim 300$ MeV
	- Forward detectors can separate these three classes of events
- γ + Odderon (3+-gluon state) could lead to tensor mesons
- At low energy, photon+Reggeon contributes significantly
	- ◆ Reggeon = quark + antiquark ladder
		- *** Meson exchange trajectories**
	- Allows a much wider range of quantum number, including charge 10

A/A*/Ax

VM photoproduction in LO pQCD

In 2-gluon model, leading order pQCD

$$
\frac{d\sigma}{dt} \left(\gamma^* p \to J/\psi \; p \right) \Big|_{t=0} = \frac{\Gamma_{ee} M_{J/\psi}^3 \pi^3}{48\alpha} \; \left[\frac{\alpha_s(\bar{Q}^2)}{\bar{Q}^4} x g(x, \bar{Q}^2) \right]^2 \left(1 + \frac{Q^2}{M_{J/\psi}^2} \right) \, .
$$

 $\bar{Q}^2 = (Q^2 + M_{J/\psi}^2)/4$, $x = (Q^2 + M_{J/\psi}^2)/(W^2 + Q^2)$ **With**

- ***** Vector meson mass provides hard scale
- Some caveats
	- ◆ NLO calculations look very different
		- \triangle Less problematic as \mathbb{Q}^2 rises
	- ◆ pQCD factorization is imperfect
		- Gluons have different x values (x' $\ll x \ll 1$)
			- Generalized (skewed) gluon distributions.
			- Can do exactly with Shuvaev transform
			- More natural to treat as GPD
	- Photon is not pure $q\bar{q}$ dipole
	- Choice of scale μ (especially in NLO)

Jones, Martin, Ryskin and Teubner ("JMRT"), JHEP 1311, 085 (2013); K. Eskola et al., arXiv:2203.11613 11

The dipole approach

- Needed to incorporate transverse size into calculation
	- Important for nuclei
- **Start with basics:** $\sigma = |\langle \Psi_{\gamma} | M | \Psi_{V} \rangle|^2$
- Treat the qq pair as a dipole with size r
	- Need VM and photon wave functions, matrix element as f(r)
	- $\bullet \ \sigma$ ~ r²; r scales with 1/Q, but relationship is not simple
	- Different matrix elements for different nuclear models
		- # pQCD, shadowing, colored glass condensate, etc.

$$
A(K, \Omega) = 2i \int d^2 \mathbf{r}_T \frac{dz}{4\pi} d^2 \mathbf{b}_T e^{-i\mathbf{b}_T \cdot \mathbf{k}_T/\hbar}
$$

$$
\times \Psi^*(\mathbf{r}_T, z, Q^2) \Psi_V(\mathbf{r}_T, z, Q^2) N_{\Omega}(\mathbf{r}_T, \mathbf{b}_T)
$$

- ! Dipole approach allows impact-parameter dependent calculations
	- \triangle Can calculate d σ /dt for different nuclear conditions
		- Different effective target shapes at different x,Q^2

Exclusive production, gluon shadowing & hotspots

- **The EIC will study** γ^*p **, A -> V p, A over full range of**
	- ◆ Bjorken-x
	- $\triangleleft Q^2$ saturation is most visible at low Q^2 region!
	- **Transverse and longitudinal polarization**
	- ◆ A wide range of vector mesons, and photons for DVCS

Coherent production – practical aspects

- **Bjorken-x is mapped from rapidity:**
	- \star x = M_F/2_{YP}Mp exp(y)
		- \star M_F = final state mass, γ_{p} = ion Lorentz boost, and M_p = proton mass
		- \rightarrow Modified for photons with high Q²
- **Broad coverage in Bjorken-x requires broad coverage in rapidity**

Coherent VM production in ATHENA: x, Q2 range

- **EX depends on rapidity range of central tracker**
- **Roughly, tracking a vector meson out to rapidity** $|y_{max}|$ **with good** efficiency requires tracking daughters out to $|\eta_{max}| = |y_{max}| + 1$
	- ◆ Not fully satisfied in any EIC detector
	- \triangleleft Loss of efficiency for x~1 or x ~ $x_{minimum}$
- **Rapidity distribution depends on decay Clebsch-Gordon coefficients**

M. Lomnitz & SK, eSTARlight, Phys. Rev. C**99**, 015203 (2019)

Beyond gluon densities: to spatial distribution and fluctuations

- ! The Good-Walker formalism links coherent and incoherent production to the average nuclear configuration and event-byevent fluctuations respectively
	- \triangle Configuration = position of nucleons, gluonic hot spots etc.
- ! Coherent: Sum the amplitudes, then square -> average over different configurations
- ! Incoherent = Total coherent; total: square, then sum crosssections for different configurations

$$
\frac{d\sigma_{\text{tot}}}{dt} = \frac{1}{16\pi} \left\langle \left| A(K, \Omega) \right|^2 \right\rangle \qquad \text{Average cross-sections (}\Omega\text{)}
$$
\n
$$
\frac{d\sigma_{\text{coh}}}{dt} = \frac{1}{16\pi} \left| \left\langle A(K, \Omega) \right\rangle \right|^2 \qquad \text{Average amplitudes (}\Omega\text{)}
$$
\n
$$
\frac{d\sigma_{\text{inc}}}{dt} = \frac{1}{16\pi} \left(\left\langle \left| A(K, \Omega) \right|^2 \right\rangle - \left| \left\langle A(K, \Omega) \right\rangle \right|^2 \right) \qquad \text{Incoherent is difference}
$$

Mantysaari and Schenk, PRD **94**, 034042 (2016)

Good-Walker and transverse interaction profiles

The coherent cross-section gives us access to the transverse spatial distribution of individual targets within the nucleus

$$
\frac{\mathrm{d}\sigma_{\mathrm{coh}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \langle A(K,\Omega) \rangle \right|^2 \qquad \text{Average amplitudes (Ω)}
$$

- **No can also write** $\sigma_{\text{coherent}} = |\Sigma_i A_i \text{k} \exp(\text{ikb})|^2$
	- Usually work with $t = p_T^2 + p_Z^2 \sim p_T^2$
- **Because of exponential d** σ /dp_T encodes information about the transverse locations of the interactions
	- \bullet without shadowing, this is the shape of the nucleus
- The two-dimensional Fourier transform of $d\sigma/dt$ gives $F(b)$, the transverse distribution of targets

$$
F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(b p_T) \sqrt{\frac{d\sigma}{dt}}
$$

*flips sign after each diffractive minimum

I Multiple serious caveats – range of integration/ windowing finding diffractive minima, subtracting out photon p_T etc.

Experimental aspects of imaging

$$
F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(b p_T) \sqrt{\frac{d\sigma}{dt}}
$$

This integral goes from 0 to infinity, but data has a maximum p_T

- \bullet This introduces a 'window' (box) from 0 to p_{Tmax} , which is unavoidable convoluted with the signal
- \bullet Need to go to large p_T to minimize windowing
	- $\star \sim$ to the third minimum
- Find t via scattered p/ion, or e + hadrons
	- ◆ Scattered ion only visible for protons/light ions
- Need to remove resolution via deconvolution
	- Including beam energy & momentum spreads
		- ← Most important when electron energy loss is small
- Need to account for photon polarization as function of \mathbb{Q}^2 , and correlation between photon p_T and decay product p_T
	- \bullet s-channel helicity conservation: vector meson retains γ polarization ₁₈

The STAR ρ^0 analysis

- **384,000 dipion events**
- **Fit do**_{incoherent}/dt in region of large |t| with a dipole form factor, extrapolate and subtract, leaving $d\sigma_{\text{coherent}}/dt$
	- **Diffractive minima are visible**
- **2-d Fourier tranform**
- **Blue band shows effect of varying** $|t|_{max}$ **from 0.05 0.09 GeV**²
	- Variation at small |b| may be due to windowing (finite t range)
	- Negative wings at large |b| are likely from interference

ATHENA gluon tomography of the proton using coherent J/^y **production**

- In ep, so t comes from scattered proton
- Gluon distribution is Fourier transform of $d\sigma/dt$

Low-x φ production in eA

- Must reconstruct t using scattered electron + ϕ
	- \bullet Difference between two large numbers
		- Initial electron momentum, with beam spread
		- \rightarrow Scattered electron momentum
- Good resolution at lower electron energy
- Tradeoff between narrower x range and good t resolution
	- \triangleleft Large Q² helps, so electron is at smaller |y|

Incoherent production and event-by-event fluctuations

The incoherent cross-section lets us measure the event-byevent fluctuations in the nuclear configuration, including the positions of individual nucleons, gluonic hot spots, etc.

$$
\frac{\mathrm{d}\sigma_{\text{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \bigg(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \bigg)
$$

- Probes the deviations from the mean.
- The connection between t and impact parameter is weaker than with coherent production, but this can be used to test models.

g***p->J/**y **at HERA and gluonic hot spots**

! HERA data provides an application of the Good-Walker formalism

 $\gamma + p \rightarrow J/\Psi + p, W = 75 \,\text{GeV}, Q^2 = 0 \,\text{GeV}^2$

! The proton is far from smooth. It contains gluonic hot spots (or other fluctuations)

The EIC will map this behavior in $x,Q²$, and should apply it to nuclei

How good a coherent/incoherent separation is needed? $fLdt = 10 fb^{-1}/A$

- Wide |t| range required for coherent photoproduction to measure GPDs
	- ◆ Parton distributions as a function of transverse position within the nucleus
	- \bullet Fourier transform do/dt to F(b)
	- ◆ Accurate Fourier transform requires $0 < |t| < -0.18$ GeV² range for eAu
- Need ~500:1 rejection of incoherent production to observe coherent production with $|t| >$ -0.1 GeV²
- Need 100:1 rejection of coherent production to observe incoherent production at small |t|

Separating coherent and incoherent production with heavy ion targets

- Nuclear breakup via neutron, proton or photon emission
	- \bullet Mixture depends on t, since nucleon emission reactions are exothermic
	- \bullet Significant theoretical uncertainties in branching ratios

Detecting photonic deexcitation

- \blacksquare For excitation energy < 1-5 MeV, the final state is well defined
	- ◆ Shell model state with fixed energy, spin, parity
- **EXECTE FIGHT EXECTE FIGHTS IS EXECTED FIGHTS Relationship between E and t depends on mass of recoiling state**
	- \bullet STAR ρ^0 photoproduction data supports single-nucleon recoil fits
		- \div Fit is in range 0.45 GeV² > t > 0.2 GeV²
- Lab-frame energy depends on Lorentz boost & angle
- For ²⁰⁸Pb, the lowest lying excited state is at 2.6 MeV
	- Incoherent production impossible below this threshold
	- \blacklozenge J^{π}=3⁻, so production is marginal, due to angular momentum
	- \bullet In the single nucleon paradigm (questionable here), with maximum boost, $p_{min} \sim 70$ MeV/c, $t_{min} \sim 0.005$ GeV²
	- For ¹⁹⁷Au, the lowest lying excited state is at 77 keV
		- \rightarrow τ =1.9 nsec, so the excited nucleus escapes the detector
		- Next lowest states are at 269 keV and 279 keV
- Lead is preferred for coherent production studies

Cautions, questions and caveats

- Breakup into A>1 fragments is possible, but probably unlikely
- Can a recoiling nucleon emit bremsstrahlung γ w/o breakup?
	- \leftrightarrow eA->eVyA
		- \rightarrow Rate is probably low
- What are the real requirements for coherence?
	- ◆ Same initial and final state, per Good-Walker
	- $\bullet \ \sigma = |\sum_i A_i \exp(i k x)|^2$
		- \leftrightarrow AA->A*A* V (ρ , ρ' , J/ ψ) still exhibits coherence
		- ← There must be more to the Good-Walker coherence requirements

Strictly speaking, Good-Walker applies only for stable final states.

Miettinen and Pumplin, Phys. Rev. Lett. 42, 204 (1979). Caneschi and Schwimmer, Nucl. Phys. **B133**, 408 (1978). $\pi^+\pi^-$

Example: near-threshold Y

- **E** At full beam energy (18 x 275 GeV²), near-threshold U production is at/beyond the edge of the detector acceptance
- Solution: run at lower beam energy (10 \times 100 GeV²), which shifts the threshold to near mid-rapidity
	- \bullet Total Y rate is much lower, but the near-threshold rates are the same
	- Unfortunately, this does not work at low x

Backward (u-channel) J/y **production**

- t is large and u is small
	- \bullet In γ p center-of-mass frame, meson and proton switch places
	- \bullet The meson is far-forward, while the proton is at mid-rapidity
- Studied at fixed target accelerators
	- ◆ Only light mesons
		- \rightarrow Proton and meson share quark flavors

- ! Production models using Transition Distribution Amplitudes (TDA, like GPDs) or Regge trajectories involving baryons
	- Regge model like models of baryon stopping in heavy-ion collisions
- Cross-section parameterized for the ω
	- \bullet For ω , do/du ~ 4.4 μ b/GeV² (s/1GeV)^{-2.7} exp(-21 GeV⁻²u)
	- \triangle At EIC, backward ω rate is \sim 1/300 of forward ω rate
		- \rightarrow J/ ψ rate 1,000-10,000 times lower????
			- If so, backward J/ ψ are accessible

C. Ayerbe Gayoso et al., arXiv:2107.06748; D. Cebra et al. . arXiv:2204.07915

Kinematics of backward production at the EIC

- Forward vector meson + mid-rapidity proton (+ electron for $Q^2>0$)
- Proton near mid-rapidity (baryon stopping)
- **Meson decay products in forward region**
	- Shifts to lower y by reducing beam energy
		- \div For some final states, optimal detection at lower energies
		- \rightarrow Shifts to lower y for heavier final state mesons (e. g. ϕ , J/ ψ)
	- Detection in combination of central detector, B0 magnet spectrometer and zero degree calorimeter
	- ◆ B0 and central detector

D. Cebra et al. arXiv:2204.07915

Conclusions

- **EXTERGHEEVIOR IS A KEY TOO TO STARK IS A PROTECT FOR THE PROTECT FILTER** Photoproduction is a key tool to study partons in dense nuclear environments
- **The EIC will open an era of systematic, precision measurements on** a variety of ion targets
- **EXTERGHEEV Photoproduction of open charm and dijets are theoretically fairly** clean, but messy experimentally.
- **EXTERGHM** Photoproduction of light and heavy quarkonium is mostly experimentally straightforward
	- \bullet low Q² ϕ phi are exceptions
- By measuring d σ /dt for coherent production, we can image the targets in protons and nuclei
- \blacksquare By studying d σ /dt for incoherent production, we can study gluonic hot-spots and other event-by-event variations
- **E** Measuring t with good enough resolution will be a challenge
- **INOTE WORK IS needed on separation of coherent and incoherent** interactions $\frac{1}{31}$

Photons from relativistic nuclei

- **Perpendicular E and B fields -> just like a photon field**
	- \rightarrow Fourier transform $E(x,b)$ -> $E(k,b)$ and quantize
	- \triangleleft Equivalent photon approximation
- Pancaked E & M fields: opening angle $\theta=1/\gamma$
- $k_{\text{max}} = c/\lambda_{\text{max}} = \gamma$ hbar c/b

$$
N(k, b) = \frac{Z^2 \alpha k^2}{\pi^2 \gamma^2 \hbar^2 \beta^2} \left(K_1^2(x) + \frac{K_0^2(x)}{\gamma^2} \right)
$$

- \bullet x=kb/ γ hbar c
	- + x <1: $N \sim K_1^2(x) \sim 1/x^2$
	- \star x > 1: N is exponentially suppressed
	- \rightarrow Note: 1/b² dependence

Integrate over d^2b : with $b>2R_A$ (no nuclear collision)

$$
N(k) = \frac{Z^2 \alpha k^2}{\pi^2 \gamma^2 \hbar^2 \beta^2} \left(K_1^2(u) + \frac{K_0^2(u)}{\gamma^2} \right)
$$

 $\bullet\,$ u= γ hbar c/2R_A

Fermi, Weizsacker, Williams…

The electron-ion collider

- Add an 18 GeV electron ring to the RHIC complex
- **E.** Augmented ion ring
	- ◆ 275 GeV p, 110 GeV/n ions
	- Improve polarized source
- Coherent electron cooling to reduce emittance
- Very high luminosity $\sim 10^{-34}$ /cm²/s
	- ◆ Precision physics
- **E** At least one detector
	- \bullet Full acceptance, with excellent forward and backward coverage
	- ◆ Collaboration forming now
- ! Completion in early 2030s

EIC detectors

- "Reference detector" developed in the EIC Yellow Report
- ! Three responses to 'Call for proposals' from EIC Project
	- ◆ ATHENA: all-new detector with a 3 T solenoid magnet
	- **ECCE: reuse components where possible.**
		- ← 1.5 T solenoid, from sPHENIX, or new
	- ◆ CORE: compact detector
- ECCE was preferred by review committee
- ! Currently forming a new 'Detector One' collaboration
	- **ECCE** is base design, but it will be optimized, and may incorporate elements from ATHENA or CORE

More direct access to the gluons

- **EXPHotoproduction of open charm and dijets**
	- $\rightarrow y + g \rightarrow \text{cobar}$ (or qqbar-> dijets)
		- \rightarrow Jets are tricky at low energy (i. e. low x)
- \bullet Q² = Q²_{photon} + Q²_{pair} = Q²_{photon} + (M_{finalstate}/2)²
- ! Polarized and unpolarized measurements in ep

J/y **photoproduction in NLO**

- Some surprises in a new NLO calculation
- **Very large scale uncertainty**
	- ◆ Hope for reduction using some tricks
- σ_{NLO} ~55-70% below σ_{LO}
	- ◆ Previous LO calculations matched data...
- Multiple peaks in $d\sigma/dy$ for UPCs
	- Note photon directional ambiguity
- NLO gluon contribution partly cancels LO gluon contribution
	- ◆ Quark contribution is important
- Different parton distribution fits give different results
	- ◆ Real part of gluon amplitude
- How well do uncertainties cancel when comparing proton and ion data?

K. Eskola et al., arXiv:2203.11613

Strong saturation and the black disk limit

- **E.** Higher photon energies probe lower Bjorken-x values
	- Lower x values -> more gluons, more hotspots
	- \bullet The fraction of the proton or ion surface covered with hot spots rises
- **Exentually, the whole surface is covered.** This is the 'black disk limit,' when the nucleus acts like a totally absorptive disk
- **Black disks don't fluctuate, so** incoherent photoproduction should disappear.
- High-mass final states require more energetic (larger x) gluons, so they will be slower to disappear
- **Extension to nuclei model dependent** J. Cepila et al., Nucl. Phys. B934, 330 (2018)

Vector meson rates in 10 fb-1/A

Accelerator						Number of events					
		φ	J/ψ	$ \psi' $	$\Upsilon(1S)$		ϕ	J/ψ	ψ'	$\Upsilon(1S)$	
$ eRHIC - ep $		$5.0 \ \mu b \mid 230.0 \text{ nb}$		8.5 nb 1.4 nb	14.0 pb			50 giga 2.3 giga 85 mega 14 mega		140 kilo	
$ eRHIC - eA 870.0 \,\mu b 55.0 \,\mu b $				$1.9 \ \mu b \mid 320.0 \text{ nb} \mid$	1.2 nb			44 giga $ 2.8$ giga 100 mega 16 mega		60 kilo	
JLEIC - ep 3.7 μ b 160.0 nb 3.9 nb 600.0 pb								4.3 pb 37 giga 1.6 giga $\sqrt{39 \text{ mega} \cdot 6.0 \text{mega}}}$		43 kilo	
$ JLEIC - eA 580.0 \,\mu b 33.0 \,\mu b 590.0 \,\text{nb} 82.0 \,\text{nb}$								$28 \text{ giga} \mid 1.6 \text{ giga} \mid 28 \text{ mega} \mid 3.9 \text{ mega}$			
$L \text{HeC}-ep$								10.0 μ b 560.0 nb 47.0 nb 7.8 nb 120.0 pb 100 giga 5.6 giga 470 mega 78 mega 1.2 mega			
LHeC - eA		2.3 mb 170.0 μ b 15.0 μ b						2.9 μ b 41.0 nb 110 giga 8.2 giga 720 mega 140 mega 2.0 mega			
$\parallel \text{HERA}$ - ep \parallel		7.9 μ b 450.0 nb 40.0 nb			6.4 $nb \mid 85.0 \text{ pb}$						

TABLE III. The cross-sections and rates for VM photoproduction $(Q^2 < 1 \text{ GeV}^2)$ at the proposed EICs, and at HERA.

Accelerator	σ					Number of events				
		ϕ	J/ψ	ψ'	$\Upsilon(1S)$		ΦI	J/ψ	ψ'	$\Upsilon(1S)$
$ eRHIC - ep $ 14.0 nb 1.7 nb 570.0 pb 120.0 pb					2.4 pb	140 mega 17 mega 5.7 mega 1.2 mega				24 kilo
$ eRHIC - eA 730.0 \text{ nb} 110.0 \text{ nb} 77.0 \text{ nb} 19.0 \text{ nb} 200.0 \text{ pb} $								37 mega 5.6 mega 3.9 mega 960 kilo		10 kilo
JLEIC - ep 10.0 nb 1.2 nb 270.0 pb 55.0 pb 790.0 fb 100.0 mega 12 mega 2.7 mega 550 kilo 7.9 kilo										
$ JLEIC - eA $ 450.0 nb $ 67.0 \text{ nb} $ 25.0 nb $ 5.1 \text{ nb} $								$22 \text{ mega} 3.2 \text{ mega} 1.2 \text{ mega} 250 \text{ kilo} $		
$L \text{HeC}-ep$			26.0 nb 3.7 nb 2.9 nb 630.0 pb 18.0 pb			260 mega 37 mega 29 mega 6.3 mega 180 kilo				
$ LHeC - eA $			2.0 μ b 340.0 nb 560.0 nb 150.0 nb 5.3 nb			100 mega 16 mega 27 mega 7.2 mega 250 kilo				
$HERA - ep$			44.0 nb 6.4 nb 17.0 nb 3.6 nb 120.0 pb							

TABLE IV. The cross-sections and rates for VM electroproduction $(Q^2 > 1 \text{ GeV}^2)$ at the proposed EICs and at HERA.

$Y(2S) Y(3S)$ somewhat lower than $Y(1S)$

From eSTARlight; M. Lomnitz and SK, Phys. Rev. C99, 015203 (2019)

Models of Incoherent production

BEAGLE

- \bullet qqbar dipole scatters from a single nucleon, which recoils
- \triangleleft Recoil causes an intra-nuclear cascade, leading to dissociation.
	- \rightarrow Microscopic model.
- At low energies, photonic excitations may appear
- nucleon-free fraction depends on |t|
	- \rightarrow Expected nuclear breakup depends on available energy
- \triangleleft Rejection < \sim 1/50 at large |t|
- **Sartre**
	- ◆ Similar dipole to BEAGLE
	- \blacklozenge Nucleus diffractively dissociates, with fragments $\sim 1/M^2$
	- ◆ Nuclear breakup is from the GEMINI++ intranuclear cascade code
- Large theoretical uncertainties from intranuclear cascades

⁴⁰ M. D. Baker,<https://wiki.bnl.gov/conferences/images/f/f7/ERD17-2020-06-plus.pdf> T. Toll and T. Ullrich*, Comput.Phys.Commun.* **185** (2014) 1835-1853

Nuclear Shadowing

- Compare ALICE & CMS data with PDF shadowing models
	- \bullet Use impulse approximation for proton reference
		- ← Normalize to HERA data to correct for higher order terms
		- \rightarrow 6 different parton distributions
- **EX Consistent w/ 2012 leading twist approximation calculation**
	- ◆ Except for MNRT07 parameterization
- **I** More shadowing than HKN07 parameterization
- **EPS09 parameterization fits data well**
	- \triangle Error bars should shrink
		- \triangle Also true w/ EPPS'16
- No need for exotica e. g.
	- **Colored glass condensate**
	- ◆ Hard saturation cutoff

V. Guzey & M. Zhalov, JHEP 1310, 207 (2013) Frankfurt Guzey & Strikman, Phys. Rept. 512,

Polarized J/y **photoproduction at STAR**

- **Example 3 Sensitive to polarized GPDs** (generalized parton distributions), Generalized parton distributions),
which probe the transverse position of $\frac{2}{8}$ and notions with the puckus partons with the nucleus
	- \bullet Is gluon polarization dependent on position within nucleus?
- **Example From polarized p on Au collisions**
	- Dominated by photon-from-gold
		- \rightarrow p_T cut improves separation
	- ◆ Polarized proton target
- **E.** Look at scattering asymmetries, which depends on $W_{\gamma p}$ and p_T
- 1st measurement; proof of principle

20

25

30

⁴² W. Schmidke [STAR], DPF 2019

 -0.1

 -0.2

10

15

 $\mathsf{W}^{35}_{\scriptscriptstyle{\gamma}\mathsf{p}}(\mathsf{GeV}^{40}_{\scriptscriptstyle{\gamma}}$

EIC luminosity

Example 1000 Limes HERA

- High currents required
- \bullet Ielectron=2.5 A
	- \rightarrow Max. 9 (or 10) MW synchrotron radiation limits I_{electron} at high energies
		- Cost of cooling
- \bullet I_{hadron} =1.0 A
- **EXECTE:** For ion beams, luminosity/nucleon is roughly constant

Trade energy for luminosity?

Different physics topics may have different optimal energies

STAR fit to ρ^0 **data**

- **I** Model includes photon p_T , p^0 scattering on target, and interference between the two γ directions
- **Cross-section** $\sigma \sim |A_1 A_2 e^{ip \cdot b}|^2$
	- The vector meson is linearly polarized along b
		- $\arrow \pi^+$ and π^- p_T preferentially follow b
	- \blacklozenge e^{ip·b} gives a correlation between the ρ^0 p_T & pion p_T
		- \star -> an angular modulation in p_T
- ! Model fits data well
	- \triangleleft Hadronic radii (w/ neutron skin) R_{Au}= 6.62±0.03 fm & R_U = 7.29±0.08 fm

Precision UPC physics!

STAR, arXiv:2204.01625

Challenges in exclusive φ production

- \bullet ϕ was highlighted in EIC White Paper
- \blacksquare K[±] from ϕ decay have 135 MeV/c in ϕ rest frame
	- \triangleleft Other decay channels are impractical
- ϕ w/o longitudinal (|y|>0) or transverse (large Q²) boost are hard to reconstruct $ep \rightarrow ep + \phi (1.5 T)$
	- \triangleleft Limited range in x, Q² space
- Background from ρ - $\pi^+\pi^-$
- The ρ is much easier
	- Usable for theory?

J. Arrington et al. arXiv:2102.08337

An ATHENA-like silicon detector

