FoCal: Forward Calorimeter for ALICE

May 24 2022

I.G. Bearden HEHI Experimental Subatomic Physics Niels Bohr Institute For the FoCal collaboration

The FoCal Collaboration

BARC	Bhaba Atomic Research Centre, Mumbai, India	Knoxville	University of Tennessee, Knoxville, USA
Berkeley	Lawrence Berkeley National Laboratory, Berkeley, USA	Nara	Nara Women's University, Nara, Japan
Bhubaneswar	Institute of Physics, Bhubaneswar, India	NBI	Niels Bohr Institure, Copenhagen, Denmark
Bergen	University of Bergen, Bergen, Norway	MEPhI	National Research Nuclear University, Moscow, Russia
Bose	Bose Institute, Kolkata, India	NISER	National Institute of Science Education and Research (NISER)
CCNU	Central China Normal University	Oak Ridge	Oak Ridge National Laboratory (ORNL), Oak Ridge, USA
Detroit	Wayne State University, Detroit, USA	Oslo	University of Oslo, Oslo, Norway
Gauhati	Gauhati University, India	Panjab	Panjab University, Chandigarh, India
Grenoble	LPCS Grenoble, France	RIKEN	Institute of Physical and Chemical Research, Toky, Japan
Hiroshima	Hiroshima University, Hiroshima, Japan	Sao Paulo	Universidade de Sao Paulo (USP), Sao Paulo, Brazil
Houston	University of Houston, Houston, USA	Tsukuba	University of Tsukuba
HVL	Western Norway University of Applied Sciences, Bergen Norway	Tsukuba Tech	Tsukuba University of Technology
IITB	Indian Institute of Technology Bombay, Mumbai, India	UFRGS	Universidade Federál Do Rio Grande Do Sul
Indore	Indian Institute of Technology Indore, Indore, India	UU/Nikhef	Utrecht University, Utrecht, and Nikhef, Amsterdam, Netherlands
INR RAS	Inst. f. Nuclear Research Russian Acad. of Science, Moscow, Russia	VECC	Variable Energy Cyclotron Centre, Kolkata, India
Jammu	Jammu University, Jammu, India	USN	University of South-Eastern Norway, Konsberg, Norway
Jyväskylä	University of Jyväskylä, Jyväskylä, Finland	Yonsei	Yonsei University, Seoul, Korea

♣ KØBENHAVNS UNIVERSITET

In case you thought the topic of this meeting is only interesting to few people, welcome to my twitter feed today 12.22 🗸

*\$

"Peace-Washing" - the truth...

Jefferson Lab 🗞 @JLab_News · 11s · · · · What does the inside of a proton look like? Nuclear physicists partnered with visual artists to create a research-based animation of the landscape inside the proton. Check it out! bit.ly/3lXhvlb #STEM #physics #scienceiscool @ENERGY @doescience

Twitter Surveys @TwitterSurveys **•••** We've selected a group of people for a brief brand survey. Please answer a few quick questions!

Which of the following services have you heard of? (Please select all that apply)

DirecTV Stream

 \square

The Forward Calorimeter (FoCal):

3.4 < η < **5.8**

FoCal-E: high-granularity Si-W sampling calorimeter for photons and π⁰
FoCal-H: absorber-scintillator sampling calorimeter for photon isolation and jets

FoCal physics

- 1. Quantify nuclear modification of the gluon density at small-x
 - · Isolated photons in pp and pPb collisions
- 2. Explore non-linear QCD evolution
 - Azimuthal $\pi^{0-}\pi^{0}$ and isolated photon- π^{0} (or jet) correlations in pp and pPb collisions
- 3. Investigate the origin of long range flow-like correlations
 - Azimuthal π⁰-h correlations using FoCal and central ALICE (and muon arm?) in pp and pPb collisions
- 4. Explore jet quenching at forward rapidity
 - Measure high pT neutral pion production in PbPb

Explore the small-x structure of nucleons inside nuclei down to Bjorken-x of ~10⁻⁶

What is the correct description of gluon saturation?

FoCal Timeline

	19	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
	Q4	01 02 03 0	01 02 03 04	01 02 03 04	01 02 03 04	Q1 Q2 Q3 Q4	Q1Q2Q3 Q4	Q1Q2Q3Q4			
LHC		LS2		Run-3	3			LS3			Run-4
Lol											
R&D											
Test beams (SPS, DESY, KEK)											
TDR											
US Project approval											
Final design											
Production, construction, test of module											
Pre-assembly, calibration with test beam (KEK)											
Installation and commissioning											
Contingency											
Global commissioning and physics data taking											

I.G.Bearden HEHI NBI

KØBENHAVNS UNIVERSITET

Rapidity coverage and π^0 efficiency position z = 7mz = 700 cm y (cm) beam pipe radius 3.5cm

8x8cm square around beam: maximum rapidity 5.5-5.8

2-gamma distance gets small beyond η =5.5: \rightarrow sharp drop at Rmin plus effect

of circle vs square

Very good π^0 efficiency up to $\eta = 5.5$ (falls off above pT = 10 GeVdue to 2-gamma distance)

6.5

20

η__

Single π^0 efficiency vs pT

Single π^0 efficiency vs E

-6

-8-

Integration in ALICE

Integration into ALICE (Run-4)

- Installing FoCal implies challenging but feasible changes
- All key simulations with realistic beam-line setup in LOI
 - Impact on π^0 reconstruction only beyond $\eta > 5.3$
 - Not crucial for key physics but may be recoverable with by optimizing cluster reconstruction

FoCal-E conceptual design

Studied in simulations 20 layers: W(3.5 mm \approx 1X₀) + silicon sensors Two types: Pads (LG) and Pixels (HG)

- Pad layers provide shower profile and total energy
- Pixel layers (ALPIDE) provide position resolution to resolve overlapping showers

- Main challenge: Separate γ/π^0 at high energy
 - •Two photon separation from π^0 decay (pT=10 GeV, $\eta=4.5$) ~5mm
 - Requires small Molière radius and high granularity readout
 - Si-W calorimeter with effective granularity $\approx 1 \text{mm}^2$ Longitudinal profile (2y showers) Trans. profile

- Further optimization left for TDR:
- •Location of pixel layers
- •Number of pad layers
- Sensitive area at front for CPV/eID

FoCal-H conceptual design

- Discussion with industry and looking at "Dual Readout Calorimeter for IDEA:
 - Build calorimeter out of commercially available Cu capillary tubes with
 - scintillating fibers

Energy resolution for charged pions

- Simulation uses sandwich-structure:
 - 34 layers of 3cm absorber and 0.2cm scintillator
- Good performance for isolation and jets
 - Single hadron energy resolution of 10-25%
 - $E_T = 2 \text{ GeV}$ for isolation about E = 100 GeV at $\eta = 4.5$
 - Constant term (e/h compensation) more, sampling-fraction less important
- Conventional metal-scintillator design
 - Sampling / tower structure not yet defined
 - No longitudinal readout required

1.1 m long: ~6 λ I Tower size: 2-5 cm ~1k towers 880

Putting them together

FoCal-H development

ura Dufke

Radoslav

Simeonov

Niels Bohr Institute UNIVERSITY OF COPENHAGEN

lan

Bearden

Venelin

Kozhuharov

Focal-H funded by: CARLSBERG FOUNDATION

† CF21-0606, Hadronic Calorimeter for Forward Physics

1st Beam Test

FoCal-H prototype 1 "proof of concept"

9,8x9,8x55cm³ 1440 tubes ≈12 hours Fiber: BCF10 OD:1mm

ON MicroFC 60035 SiPMs

48 Bundles of 30 fibers

13

Available SiPM sizes:

SPS H6 Beamline EHN1 (building 887, Prevessin site), CERN

- up to ~120 GeV _

 - 4 different systems
 various different configurations tested in 13 days

Two potential problems with Capillary Tube design

- 1. Inefficiency due to voids between tubes
- 2. Particles can traverse length of scintillator ("channeling")

15

- Fair to ask: why use capillary tubes?
 - Arbitrary granularity
 Low machining cost

First Results

Channeling:

•

•

- Particles traversing along the scintillating fiber – result as peak in the total energy distribution
- . Change incident angle to reduce effect
- . Reproduced in MC

I.G.Bearden HEHI NBI

Charge reconstruction

Number of events

Beam energy dependence follow qualitatively expected trend

Monte-Carlo studies

GEANT4 based simulation

- Geometry and materials description
- Physics list: FFTP_BERT (also QGSP_BERT checked)
- Signal: energy deposit in the plastic scintillator fibers

Electron

Scintillation, light propagation,
 SiPM response, digitization - considered
 in an effective manner

Main goals

- - precise data analysis
- - total charge studies
- - saturation estimation
- - beam decomposition

Tests for future prototype designs

I.G

Cumulative charge

17.55

7.357

8.356

3000

Mean y Std Dev x

Std Dev y

MC – energy in fiber

KØBENHAVNS UNIVERSITET FoCal-H 2021 Prototype Final results

- . Electrons peak position in MC matches the DATA
- . DATA total charge distribution described by a weighted sum of simulated e, π, μ, p

Reconstructed charge [ADC counts]

45000

40000

35000

30000

25000

20000

15000

10000

5000È

I.G.Bearden HEHI NBI

FoCal-H, 2021 Prototype

18

- DATA

- MC

Prototype 2: Longer, thicker, better!

Prototype 1

FoCal-H Prototype 2

- 9 6.5x6.5x110 cm3 modules
- each module \approx 31,7 kg Cu 6.87gm/cm3
- 668 fibers/module

14 fibers/SiPM center module 21-30 fibers/SiPM outer modules

StGobain BCF12 Scintillating fiber (OD 1mm) Hamamatsu S13360-6025 SiPMs

Fill voids with Cu wire.

Plans 2022

. PS TestBeam, 8 – 16 June 2022

- Readout studies (CAEN A1702->CAEN 5502)
- Work with additional detector system
- SPS TestBeam, Autumn 2022
- - 9 modules, 3x3 construction
 - Each module 6,5 x 6,5 x 110 cm³
 - Capillary tubes, inner diameter 1.1mm, 668 * 1mm scintillating fiber
 - Shower containment
 - Energy resolution
 - Energy calibration 20-250 GeV
 - Test HGCROC SiPM readout?

Summary

- FoCal: Unique window on small-x region in LHC collisions
- R&D ongoing but nearing completion.
- FoCal-H proof of principle, now look at detailed performance
- FoCal TDR in \approx one year.