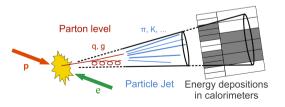
An experimental overview of jet physics with the ECCE detector at the EIC

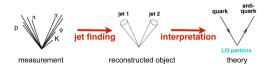
Forward QCD: open questions and future directions May 24, 2022

Nicolas Schmidt (ORNL)


Motivation and Basics for Jets

Jet advantages:

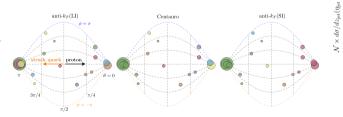
- Superior **proxies for parton kinematics** compared to single particles
- Minimize hadronization uncertainties
- Jet substructure gives access to a wide variety of physics at the EIC

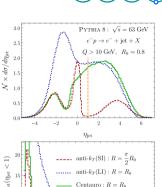

 \rightarrow e.g. fragmentation/hadronization + interplay

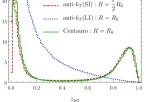
Jet ingredients:

- Jet finding algorithm (centauro, (anti)- $k_{\rm T}$, ...) \rightarrow choice depends on physics
- Reconstructed charged particle tracks and energy deposits in calorimeters
 - \rightarrow good energy and angular resolution critical
- Underlying event (UE) subtraction necessary → various approaches: toward/transverse/away, transverse-cone, ...

 \rightarrow very small underlying event at EIC (small effect from ISR/FSR on UE)


Breit frame (DIS)

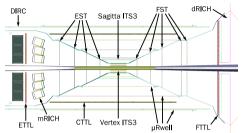


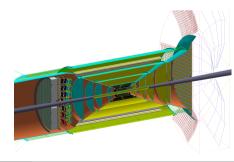

SIDIS*: Beam axis (Breit frame)

Ingredients: Jet Finders - Centauro

- $k_{\rm T}$ -type algorithms perform clustering in $y \phi$ plane \rightarrow longitudinally invariant algorithm
 - \rightarrow can not form a jet around beam axis ($y = \inf$)
- ۲ Centauro algorithm clusters in Breit frame \rightarrow designed to be invariant along z axis and spherically invariant in backward hemisphere
 - \rightarrow optimized to study energetic jets with low p_{T} in DIS \rightarrow provides relevant input for jet spectra, substruture, quark TMDs, spin physics, and cold-nuclear matter effects at the EIC
 - \rightarrow allows to see leading struck quark and its fragments

 $\stackrel{<}{\sim}$


Ingredients: ECCE tracking and PID



- ITS-3 type MAPS technology in barrel (3 vertex, 2 sagitta layers) and for forward/backward disks
 → very low material budget (EST, BST, FST)
- *µ***RWELL technology** in barrel (3 layers)
- AC-LGAD tracking/timing layers in barrel and forward/backward (ETTL, CTTL, FTTL)
- Al optimized design

PID Detectors:

- π/K separation with:
 - \rightarrow AC-LGAD timing layers in barrel and forward/backward
 - \rightarrow mRICH (backward), dRICH (forward)
 - \rightarrow DIRC (barrel)
- e/π with calorimeters using shower shape and E/p

° d

_0

Ingredients: ECCE tracking and PID - 2

 $0 \le n < 1$

5 10 15 Track p [GeV/c]

-3 ≤ n < -2.5

- - - VR PWG

0.07

0.0

0.06

ECCE Simulation 2021

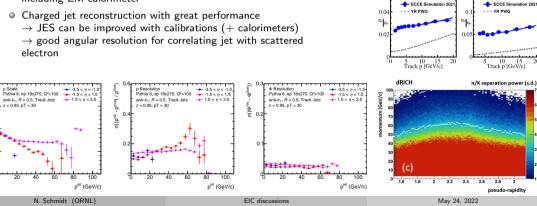
0.04

20

 $2.5 \le \eta < 3$

5 10 15 Track p [GeV/c]

-3.5 ≤ η < -3


4/10

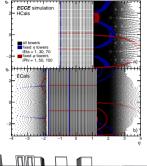
- - - VR PWG

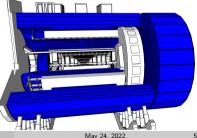
ECCE Simulation 202

Tracking and charged jet performance:

- Combined tracking with all layers using Kalman filter
- High momentum resolution in barrel and forward \rightarrow in backward region physics requirements are met by including EM calorimeter
- Charged jet reconstruction with great performance

Ingredients: ECCE calorimetry

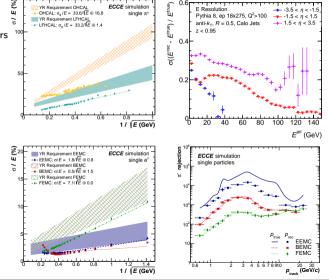

Calorimeter Design:


• EM calorimeters:

- \rightarrow Barrel ECal (BEMC) SciGlass (4 × 4cm towers)
- ightarrow e-going ECal (EEMC) PWO crystals (2 imes 2cm towers)
- \rightarrow h-going ECal (FEMC) Pb-Sci Shashlik

Hadronic calorimeters:

- ightarrow Barrel HCals (i/oHCAL) Fe-Sci ($\Delta\eta imes \Delta arphi pprox 0.1 imes 0.1)$
- \rightarrow h-going HCal (LFHCAL) Fe/W-sampling (5 \times 5cm towers)
- Near-full η coverage from -3.5 to 3.5
- Modern approaches for better performance
 - \rightarrow sub-Molière towers
 - \rightarrow longitudinal separation
 - $\rightarrow \mathsf{SiPM} \ \mathsf{readout}$

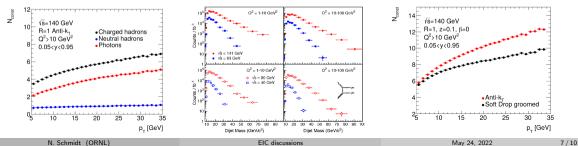

Ingredients: ECCE calorimetry - 2

Calorimeter Performance:

- Excellent energy resolutions for all calorimeters based on Geant4 full detector simulations → exceeding requirements by EIC WGs
- PID via *E*/*p* with up to 50k rejection factor → excellent for flavor tagging

Calorimeter Jets:

- Jet reco. using EM and hadronic clusters
- Reconstruction possible in all η regions
- Calo-only jet energy resolution below 0.35
- JES not shown due to incomplete calibrations



Jets at the EIC - Characteristics

ECCE

Jets at EIC contain few particles

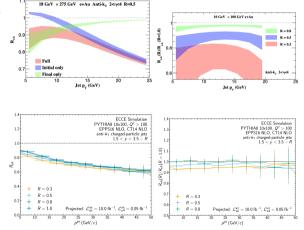
- \rightarrow require clean events with moderate underlying event
- \rightarrow typical low $p_{\rm T}$ requires precision tracking to reduce JES uncertainties
- $\bullet~$ Low center-of-mass energy leads to lower jet yields and limited $p_{\rm T}$ reach
 - \rightarrow high luminosity needed to accumulate sufficient statistics
 - \rightarrow high reco. efficiency necessary
 - \rightarrow high di-jet masses only possible with high \sqrt{s}
- Flavor tagging via identification of the highest $p_{\rm T}$ hadron in the jet
- Jet substructure (Grooming, Trimming, Soft-Drop,...)
 - \rightarrow jets at EIC likely to already satisfy grooming criteria (unlike at LHC)
 - \rightarrow groomed jets have 0–2 constituents removed on average

EIC physics involving jets

- Spin and mass of the Proton
- 3D nucleon/nucleus tomography
- Saturation (new form of gluon matter)
- Hadronization and quarks+gluons in the nucleus
- Jets at NNLO
- Jet substructure low p_T but clean environment
- TMDs + spin, back-to-back correlations
- Energy loss in e-p and e-A

 \rightarrow measurement of leading jets momentum fraction

- Determination of higher twist operators (PRD84 (2011))
- Measure properties of the nuclear medium with event shapes (PRD88 (2013))
- Measurement of the strong coupling constant through DIS event shapes (arXiv:1601.01499)


Rich physics program at the EIC!

Example Physics: Jet $R_{ m eA}$

ECCÉ

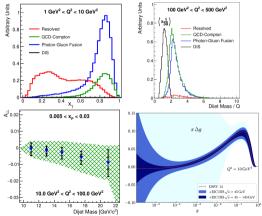
- Measurement to disentangle initial and final state effects due to nuclear matter
- Nuclear modification factor: $R_{\rm eA} = rac{lpha\sigma_{\rm eA}}{\sigma_{\rm ep}}$, $\sigma = rac{{\rm d}^2\sigma}{{
 m dyd}
 ho^{
 m jet}}$
- Modifications expected to be largest in forward direction
 - \rightarrow probing of anti-shadowing and EMC regions of nPDFs at large x
- $\bullet~$ Clear suppression in full ECCE Geant4 simulation of pythia 10 \times 100 GeV events
 - \rightarrow only small detector effects to be corrected via unfolding
- $R_{
 m eA}$ double ratios approximately flat vs $p^{
 m jet}$
 - \rightarrow probing of final-state effects (initial-state cancels)
 - \rightarrow projected uncertainties point at non-sensitivity for <10% effects

• Rich jet physics program at the EIC!

- ${\scriptstyle \bullet}\,$ Jet reconstruction with ECCE detector in interesting kinematic regions
 - \rightarrow tracking and calorimetry with high resolution
 - \rightarrow novel jet finders used for desired physics
 - \rightarrow particle flow for full jets yet to be studied with ECCE
- First look at jets from full detector simulations \rightarrow jet R_{eA} with visible modification

Join the EIC Detector 1 jet efforts!

Backup



Example Physics: Spin of the Proton

- Exploration of the gluon contribution to the proton spin (ΔG) via longitudinal double spin asymmetry (A_{LL}) at leading order
- Requires tagging of photon-gluon fusion (PGF) events
- Properties of PGF events:

 \rightarrow production of back-to-back particles with large p transverse to the photon-proton interaction axis

- \rightarrow background from resolved and QCD compton processes
- parton and photon momentum fraction (x_γ, x_p) used for discrimination of backgrounds
 x_γ = 1/2 ± (m_{T,1} · e^{-Y₁} + m_{T,2} · e^{-Y₂})
 x_p = 1/2 ± (m_{T,1} · e^{Y₁} + m_{T,2} · e^{Y₂})
- Further discrimination via Q^2 cut to remove DIS contributions and by requiring $x_\gamma pprox 1$
- $\bullet~$ Asymmetry $A_{\rm LL}$ as average of weights containing parton level asymmetry, PDF of the virtual γ and of the proton
- Asymmetry for each subprocess increases up to 20%
 → opposite signs mean that total asymmetry will be smaller
 → improvement of isolation of gluon contribution requires
 reduction of QCDC events

