Zero Degree Calorimeter at the LHC

Quan Wang (Univ. of Kansas)

Quan Wang

Forward QCD Workshop, 2022

Outline

ZDC in Heavy Ion Collisions at the LHC

Current ZDC design and performance at the LHC

R&D for future ZDC at the LHC (HL-LHC)

- ZDC measures neutral particle energy deposit in far forward direction
 Photons and neutrons
 |η|>8.3 (- Run3), |η|>8.5 (Run 4 -)
 Measuring spectator neutrons
 - □ Neutron multiplicity

 ZDC measures neutral particle energy deposit in far forward direction
 Photons and neutrons

□ |η|>8.3 (− Run3), |η|>8.5 (Run 4−)

- Measuring spectator neutrons
 Neutron multiplicity
- Event triggering (non)hadronic
 Ultra-Peripheral Collisions

ZDC measures neutral particle energy deposit in far forward direction

Photons and neutrons

 $\Box |\eta| > 8.3 (- Run3), |\eta| > 8.5 (Run 4 -) \stackrel{\circ}{R}_{L}$

- Measuring spectator neutrons
 Neutron multiplicity
- Event triggering (non)hadronic
 Ultra-Peripheral Collisions
- Pile-up rejection
 - Ultra-Central Collisions
- Impact parameter Centrality

 ZDC measures neutral particle energy deposit in far forward direction
 Photons and neutrons

□ |η|>8.3 (− Run3), |η|>8.5 (Run 4 −)

- Measuring spectator neutrons
 Neutron multiplicity
- Event triggering (non)hadronic
 Ultra-Peripheral Collisions
- Pile-up rejection
 - Ultra-Central Collisions
- Impact parameter Centrality

ZDC for LHC Physics

→ Dimuon acoplanarity in γγ UPC PbPb at CMS □γγ → μ+μ⁻, as a function of neutron multiplicity □Acoplanarity: $\alpha = 1 - |\phi^+ - \phi^-|/\pi$

PRL 127, 122001 (2021)

Forward QCD Workshop, 2022

ZDC for LHC Physics

→ Dimuon acoplanarity in γγ UPC PbPb at CMS □γγ → $\mu^+\mu^-$, as a function of neutron multiplicity □Acoplanarity: $\alpha = 1 - |\phi^+ - \phi^-|/\pi$

> Dimuon Xsec in $\gamma\gamma$ UPC PbPb at ATLAS

ΔXsec vs m_{µµ}, y_{µµ}, α, k

 \blacktriangleright Dimuon acoplanarity in $\gamma\gamma$ UPC PbPb at CMS

 $\Box \gamma \gamma \rightarrow \mu^+ \mu^-$, as a function of neutron multiplicity

DAcoplanarity: $\alpha = 1 - |\phi^+ - \phi^-|/\pi$

> Dimuon Xsec in $\gamma\gamma$ UPC PbPb at ATLAS

ΔXsec vs m_{μμ}, y_{μμ}, α, k

> V_n harmonics in γ Pb UPC PbPb at ATLAS

 \blacktriangleright Dimuon acoplanarity in $\gamma\gamma$ UPC PbPb at CMS $\Box \gamma \gamma \rightarrow \mu^+ \mu^-$, as a function of neutron multiplicity $rac{\sim}{\sim}$ **D**Acoplanarity: $\alpha = 1 - |\phi^+ - \phi^-|/\pi$ \succ Dimuon Xsec in $\gamma\gamma$ UPC PbPb at ATLAS \Box Xsec vs m_{µµ}, y_{µµ}, α , k \succ V_n harmonics in γ Pb UPC PbPb at ATLAS \gg V₂ harmonic in γ p UPC pPb at CMS

ZDC Detector at LHC

>ZDC is 140m away from IP, inside TAN

>ZDC is installed only for Heavy Ion data taking

ZDC Detector at LHC

>ZDC is 140m away from IP, inside TAN

- ZDC is installed only for Heavy Ion data taking
- ≻ HL-LHC Run 4 (2029–)
 - □127m away from IP
 - Limited space at TAN (TAXN)

ZDC at ATLAS

EM, **HAD** sections

Quan Wang

Forward QCD Workshop, 2022

ZDC at CMS

ZDC consists of EM, RPD and HAD sections

Quan Wang

Forward QCD Workshop, 2022

ZDC at CMS

ZDC consists of EM, RPD and HAD sections

RPD, reaction plane detector

ZDC Key Design Criteria

- ► Large dynamic range <1n, to ~100n
 - Clean separation between 0 and >=1n [diffractive vs hadronic]
 - **Good** γ /n separation
 - □ Provide trigger decisions
- ➢ 1n peak crucial for energy calibration
 - Beam energy neutron
- Measure spectator event plane angle
 - □Neutron orientation

ZDC Key Design Criteria at HL-LHC

- Performance requirement
 Highly radiation hard
 Stable over Run 4
- ➢ Operation requirement
 □Compatible with TAXN
 New beam optics (92mm→46mm)
 - □Easy installation/cabling (RP)

ZDC Key Design Criteria at HL-LHC

- Performance requirement
 Highly radiation hard
 Stable over Run 4
- ➢ Operation requirement
 - □Compatible with TAXN New beam optics (92mm→46mm)
 - □Easy installation/cabling (RP)
- ➢ Joint Zero degree Calorimeter Project

JZCaP

ATLAS and CMS

Zero Degree Calorimeter for HL-LHC

- Detector design
 - **D**Electromagnetic [EM] section
 - **Hadronic** [HAD] section
 - **Reaction Plane Detector[RPD]**
- Operation requirement
 - □Single piece structure
 - Easy access patch panels
- ➢ Specs
 - **4**6mm X 766mm
 - **1**20-125 kg

 $\Box 5.5 \lambda_{int} \text{ of W}$ Quan Wang

Zero Degree Calorimeter for HL-LHC

EM section

25 tungsten plates

 [42mm X 120mm X 4mm]

 15 fused silica rods per layer

 [\phi]1.5mm]

□~30 X₀

- □4x3 [X-Z] segmentations
- □Winston cone light-guide
- \Box Hamamatsu R2496 [ϕ 10mm]
- Beam test in 2019/2021

EM section

25 tungsten plates

 [42mm X 120mm X 4mm]

 15 fused silica rods per layer

 [\phi]1.5mm]

□~30 X₀

- □4x3 [X-Z] segmentations
- □Winston cone light-guide
- Hamamatsu R2496 [ϕ 10mm]
- Beam test in 2019/2021

HAD section

- 45 tungsten plates
 [42mm X 120mm X 10mm]
 15 fused silica rods per layer
 [\u03c61.5mm]
- \Box ~4.5 λ_{int}
- □6 [Z] segmentations
- Trapezoidal light-guide
- □Hamamatsu R2059 [*ϕ*51mm]
- Beam test in 2018 at SPS

HAD section

- □45 tungsten plates
 [42mm X 120mm X 10mm]
 □15 fused silica rods per layer
 [\$\phi\$1.5mm]
- \Box ~4.5 λ_{int}
- □6 [Z] segmentations
- Trapezoidal light-guide
- □Hamamatsu R2059 [*ϕ*51mm]
- Beam test in 2018 at SPS

RPD section

- □ "Pan flute" design
- Fused silica core and polyamide buffer
- □4X4 [X-Y] segmentations
- □ Machine learning algos
- \Box Hamamatsu R2496 [ϕ 10mm]
- Beam test in 2021 at SPS

Fused Silica Radiation Hardness

Radiation hard fused silica rods used as Cherenkov radiator
Uracle Various fused silica rods irradiated by BRAN group in TAN during Run 2

Wavelength [nm]

Fused Silica Radiation Hardness

Radiation hard fused silica rods used as Cherenkov radiator

□Various fused silica rods irradiated by BRAN group in TAN during Run 2

Things Not Covered

PMT considerations

- □ Radiation hardness, diameter, rising time
- LED gain monitoring system
 - Online calibrations
- ➢ HL-LHC integration
 - □ Installation, RP
- Experiment integration
 - Readout, DAQ, DCS, monitoring
 - Software

Summary

ZDC is important to overall Heavy Ion program at LHC

- **D**Better energy resolution and γ /n separation
- □ Reaction Plane Detector for neutron orientation measurement
- Radiation hard and compact ZDC design for HL-LHC
 - □ Radiation tolerance for increased luminosity in Run 4
 - Compatible with TAXN modification

Beam tests

- **2**018, 2019, 2021
- Well defined schedule