Far-Forward Detectors at the Electron-Ion Collider

Michael Murray, Forward QCD

The Electron-Ion Collider (EIC)

Polarized

Electron

Source

- Two interaction regions (IRs) for possible detector locations.
- Only one, IP6, in DOE project scope.

Electron

Possible

Detector

Electron Injector (RCS

(Polarized)

Ion Source

Possible On-energy Ion Injector

Electron

- Reference detector based on the 1.5T BaBar solenoid and ECCE reference design.
- > Contains detectors for tracking, PID, and calorimetry.

The Electron-Ion Collider (EIC)

 In addition to the central detector → detectors integrated into the beamline on both the hadron-going (far-forward) and electron-going (far-backward) direction.

Detectors have to be very tightly integrated with machine. The large crossing angle and short bunch crossing time cause many challenges.

Great Fun

Far-Forward Physics at the EIC

Far-Forward Physics at the EIC

Far-Forward Physics at the EIC

- Physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at very-forward rapidities ($\eta > 4.5$).
- Different final states \rightarrow tailored detector subsystems.
- Various collision systems and energies (h: 41, 100-275 GeV, e: 5-18 GeV; e+p, e+d, e+Au, etc.).
- Placing of far-forward detectors uniquely challenging due to integration with accelerator.
- Details studied in EIC Yellow Report and Conceptual Design Report, and in the ATHENA, ECCE, and CORE EIC detector proposals.

The Far-Forward Detectors

B0 Detectors

B0 Detectors

(5.5 < **θ** < 20.0 mrad)

- Charged particle reconstruction and photon tagging.
- Precise tracking (~10um spatial resolution).
- Fast timing for background rejection and to remove crab smearing (~35ps).
- > Photon detection (tagging or full reco).

Hadrons

Alex Jentsch - DIS 2022 - Santiago de Compostela, Spain - May 2nd to 6th, 2022

B0 Detectors

(5.5 < **θ** < 20.0 mrad)

- Higher granularity silicon (e.g. MAPS) required.
- Tagging photons important in differentiating between coherent and incoherent heavy-nuclear scattering, and for reconstructing π⁰ → γγ.
- Space is a major concern here <u>an EMCAL</u> is highly preferred, but we may only have space for a <u>preshower</u>.

B0-detectors (calorimetry)

- For studies of *u*-Channel (Backwardangle) exclusive electroproduction, need capability to reconstruct photons from π^0 decays.
 - Physics beyond the EIC white paper!
- Would require full EMCAL with high granularity and energy resolution.
 - PbWO4 used in ECCE studies.
- Longitudinal space in BOpf magnet limited.
 - Would be a great candidate for an upgrade or for IP8 complementarity!

Roman Pots @ the EIC

Roman "Pots" @ the EIC

- Putting silicondirectly into machine vacuum maximizes geometric coverage
- Need space for detector insertion tooling and support structure.
- Cooling is vital

Roman "Pots" @ the EIC

DD4HEP Simulation

• Two main options

- AC-LGAD sensor provides both fine pixilation (~140um spatial resolution), and fast timing (~35ps).
- MAPS + LYSO timing layer.
- "Potless" design concept with thin RF foils surrounding detector components.

Roman "Pots" @ the EIC

DD4HEP Simulation

 $\sigma(z)$ is the Gaussian width of the beam, $\beta(z)$ is the RMS transverse beam size.

 ε is the beam emittance.

$$\sigma(z) = \sqrt{\varepsilon \cdot \beta(z))}$$

- Low-pT cutoff determined by beam optics.
 - The safe distance is ~10 σ from the beam center.
 - $1\sigma \sim 1$ mm
- Optics choices change with energy, but be changed within a single energy to maximize *either acceptance at the RP, or the luminosity.*

Off-Momentum Detectors

EICROOT

4 simulation.

Summary of Detector Performance (Trackers)

Zero-Degree Calorimeter

E_γ [GeV]

Neutron Energy [GeV]

Summary and Takeaways

- All FF detector acceptances and detector performance well-understood with currently available information.
 - Numerous impact studies done!
 - Some final choices on technology underway \rightarrow also important for IP8 complementarity.
 - Full effort benefitted from three (ECCE, ATHENA, CORE) proposals to identify multiple technology solutions!
- More realistic engineering considerations need to be added to simulations as design of IR vacuum system and magnets progresses toward CD-2/3a.
 - Lots of experience in performing these simulations, so this work will progress rapidly as engineering design matures.
 - Already well-established line of communication between detector and physics parties and the EIC machine/IR development group ⇒ Crucial for success!!!

Summary of Detector Performance (Trackers)

- Includes realistic considerations for pixel sizes and materials
 - More work needed on support structure and associated impacts.
- Roman Pots and Off-Momentum detectors suffer from additional smearing due to improper transfer matrix reconstruction.
 - This problem is close to being solved!

Digression: Machine Optics

275 GeV DVCS Proton Acceptance

<u>High Divergence</u>: smaller β^* at IP, but bigger $\beta(z = 30m) \rightarrow$ higher lumi., larger beam at RP

Digression: Machine Optics

275 GeV DVCS Proton Acceptance

<u>High Divergence</u>: smaller β^* at IP, but bigger $\beta(z = 30m) \rightarrow$ higher lumi., larger beam at RP

<u>High Acceptance:</u> larger β^* at IP, smaller $\beta(z = 30m) \rightarrow$ lower lumi., smaller beam at RP

Digression: Machine Optics

275 GeV DVCS Proton Acceptance

30

So how does the FF system perform for measurements (non-exhaustive)?

Off-Momentum Detectors

• Off-momentum protons \rightarrow smaller magnetic rigidity — greater bending in dipole fields.

B1apf

Digression: particle beams

Angular divergence

- Angular "spread" of the beam away from the central trajectory.
- Gives some small initial transverse momentum to the beam particles.
- Crab cavity rotation
 - Can perform rotations of the beam bunches in 2D.
 - Used to account for the luminosity drop due to the crossing angle – allows for head-on collisions to still take place.

These effects introduce smearing in our momentum reconstruction.

Spectator Tagging in Light Nuclei

EIC enables use of deuteron beams \rightarrow the next best thing to a beam of neutrons!

- Measurements on unpolarized deuterons¹ (or polarized He-3)² at the EIC.
- Spectator proton momentum → enables selection of nuclear (p/n) configurations.
 - Extract free neutron structure function³ \rightarrow Not possible elsewhere!
 - Study nuclear modifications of both nucleons in the deuteron (study in progress).

[1] Z. Tu, A. Jentsch, et al., Physics Letters B, (2020)

[2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, *et al.*, Phys. Lett. B, **Volume 823**, 136726 (2021)

[3] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

Proton spectator case.

Particular process in BeAGLE: incoherent diffractive J/psi production off bounded nucleons.

Short-range correlations!

 $t' = (n' - d)^2 - M_n$

20000

DUDU

18x110GeV

 $t = (p' - p)^2$

J/w

- Spectator kinematic variables reconstructed over a broad range.
- All beam/detector effects included.
- Bin migration is observed due to smearing in the reconstruction.

- In the proton spectator case, essentially all spectators tagged.
- Active neutrons only tagged up to 4.5 mrad.
 - Alex Jentsch DIS 2022 Santiago de Compostela, Spain May 2nd to 6th, 2022

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

 $\land \land \land$

18x110GeV

 $t = (p' - p)^2$

 $t' = (n' - d)^2 - M_n$

J/w

t-reconstruction using doubletagging (both proton and **neutron**). Takes advantage of combined B0 + off-momentum detector coverage. Better coverage in the neutron spectator case.

Spectator information is the "dial" for the SRC region.

Free Neutron F₂ Extraction

(Active nucleon reduced cross section) $\sim F_2$

- Cross-section as a function of the proton spectator kinematics → dial to select nuclear configuration → allows extrapolation to "free" neutron region.
- Enables measurement of free neutron structure function!

 $P_{pT}^2 = p_{px}^2 + p_{py}^2$ $\sigma_{red,n} \sim F_{2,n} \text{ (cross section)}$

A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)

Neutron Spin Structure in He3

- Studies of neutron structure with a *polarized* neutron.
- More challenging final state tagging since *both* protons must be tagged in the FF region.
- MC events generated with CLASDIS in fixed-target frame, and then boosted to collider frame.

Alex Jentsch - DIS 2022 - Santiago de Compostela, Spain - May 2nd to 6th, 2022

Roman Pots

- Active sensor area very large (26cm x 13cm).
- "Potless" design could make better use of space.
- With AC-LGADS + ALTIROC ASIC, current estimates of power dissipation around 400-500 watts for entire subsystem, so roughly 100 watts/layer.
 - With potless design, leveraging experience from LHCb VELO for cooling would allow for cooling of the electronics within the vacuum.
- Support structure only to be placed between hadron pipe and wall to avoid interference with the ZDC.

Roman Pots

• Updated layout with current design for AC-LGAD sensor + ASIC.

• Current R&D aimed at customizing ASIC readout chip (ALTIROC) for use with AC-LGADs.

ASIC size	ASIC Pixel pitch	# Ch. per ASIC	# ASICs per module	Sensor area	# Mod. per layer	Total # ASICs	Total # Ch.	Total Si Area
1.6x1.8 cm ²	500 <i>µ</i> m	32x32	4	3.2x3.2 cm ²	32	512	524,288	1,311 cm ²

Luminosity Monitor

- Must make measurement in challenging environment.
 - High synchrotron radiation, high bremsstrahlung rates (~10 GHz), etc.
- Need ~1% for absolute luminosity measurement, ~10⁻⁴ for relative luminosity measurement.
- Can make direct photon measurement, or indirect via pair conversion in exit window, where e⁺e⁻ pair is steered toward two calorimeters opposite a dipole magnet.
- Direct photon calorimeter includes moveable SR filters/monitors (F1 and F2), and has configurations for high (PCALf) and low (PCALc) luminosity running.

Exit window for luminosity monitor

- Part of outgoing electron beam pipe
- Conversion layer for bremsstrahlung photons
- Tilt angle vs. electron (and photon) beam axis against synchrotron radiation

Low-Q² Taggers

- Two taggers for reconstructing electrons from low-Q² (< 10⁻¹ GeV²) reactions.
- Combination of EM calorimetry for energy reconstruction, and silicon layers (High Resolution Hodoscope – HIHS) for position and angular resolution.

Performance for low-Q2 tagger

- Tagger 1 and 2 are placed closer (further) from the IP
- Overlap in Q2 acceptance (< 0.1 GeV²) •
- Complementary in electron energy (higher energies reach Tagger 2)
- Consistent for Pythia6 and quasi-real photoproduction (QR)

Electron energy E (GeV)

Tagger 1

0.9

0.8

0.7

0.6

0.5

-0.4

0.3

Machine Optics: Roman Pots

Momentum Resolution – Timing

For exclusive reactions measured with the Roman Pots we need good timing to resolve the position of the interaction within the proton bunch. But what should the timing be?

- Because of the rotation, the Roman Pots see the bunch crossing smeared in x.
- Vertex smearing = 12.5mrad (half the crossing angle) * 10cm = 1.25 mm
- If the effective vertex smearing was for a 1cm bunch, we would have .125mm vertex smearing.
- The simulations were done with these two extrema and the results compared.
 - From these comparisons, reducing the effective vertex smearing to that of the 1cm bunch length reduces the momentum smearing to negligible from this contribution.
 - > This can be achieved with timing of ~ 35ps (1cm/speed of light).

Momentum Resolution – Comparison

• The various contributions add in quadrature (this was checked empirically, measuring each effect independently).

Beam angular divergence

- Beam property, can't correct for it sets the lower bound of smearing.
- Subject to change (i.e. get better) beam parameters not yet set in stone
- Vertex smearing from crab rotation
 - Correctable with good timing (~35ps)
- Finite pixel size on sensor
 - 500um seems like the best compromise between potential cost and smearing

Free Neutron F₂ Extraction

Extrapolation only performed for the generator-level distribution. $R = 2\alpha_p^2 m_N \Gamma^2 (2 - \alpha_p)$ $a_T^2 = m_N^2 - \alpha_p (2 - \alpha_p) \frac{M_d^2}{4}$ $S_d (p_{pT}, \alpha_p) [pole] = \frac{R}{(p_{pT}^2 + a_T^2)^2}$ R = residue of spectral function $a_T^2 = position \text{ of pole}$

(Active nucleon reduced cross section)

https://arxiv.org/abs/2108.08314 Submitted to Physical Review C

What about IP8?

Major potential benefit: Secondary Focus

- Allows for tagging of protons and nuclei at very high values of xL close to one (pT ~ 0).
- Complementarity with the IP6 configuration and detector important for the EIC!

Based on eRD24 R&D work.