Exploring femtoscopy as a measurement tool for ultra-peripheral collisions

Christopher Anson Creighton University

Forward QCD: open questions and future directions University of Kansas 23-24 May 2022

Topics Shape Size Single VM Saturation QCD studies **Gluon** spatial Hadronic structure interactions VM-VM femtoscopy Space-Impact Momentum parameter **Correlations?** dependence Femtoscopy in TMDs hadronic GPDs n emission photon flux collisions non-Gaussian non-femto shape correlations ChristopherAnson 2

STAR, Phys. Rev. C 96 (2017) 054904

^{††}Koonin-Pratt Equation: Phys. Rev. C 42 (1990) 2646, Phys. Lett. B 70 (1977) 43

Source distributions

Correlation function calculation

CATS

<u>Correlation Analysis Tool</u> using the <u>Schrodinger equation</u> [Eur. Phys. J C 78 (2018) 394] Solve numerically Appropriate for small systems

$$C(k^{\star}) = \int S(r) |\psi_{2}(r)|^{2} d^{3}r$$
$$S(r) = \alpha S_{SS} + (1 - \alpha) S_{\langle b \rangle}$$
$$C(k) = \alpha C_{SS} + (1 - \alpha) C_{\langle b \rangle}$$

ChristopherAnson

Source distributions

- pp just has narrower distributions.
- pA only has "Same Source" distribution.

Source distributions

- pp just has narrower distributions.
- pA only has "Same Source" distribution.

Impact parameter dependence

Note: Oscillations may remain for narrow b distribution (XnXn).

Application & Test

- ZDC selections (0n0n, 0nXn, XnXn) → Different peak widths
- Calibrate two methods
- Constrain fits to extract gluon source parameters.

Rapidity considerations

- term needs forward & backward VM + similar momentum
- Impact parameter contribution may decrease.
- Study using fit parameter.
- Larger y, smaller x.

Will future forward detectors allow forward measurement? What are tracking & PID capabilities?

Woods-Saxon vs. Black Disk

- Distinguishes between expected gluon distributions.
- contribution and gluon distribution affect different areas.

$\rho^0 \rho^0$ vs J/ ψ J/ ψ & hadronic interactions

$\rho^0 J/\psi$ & hadronic interactions

Hadronic interactions

May not be much effect in AA

Hadronic interactions

Double VM photoproduction...

- Provides opportunity to study VM-VM interactions
- Hadronic interactions may not be very important in AA

Ideas to try...

- Lednicky formula (but assumes Gaussian source)
- Vary system size
- Vary gluon source shape in pPb.
- Measure in hadronic pp or PbPb collisions?
- Input from theory
- Compare $\rho^0 \rho^0$ with $\rho^0 J/\psi$

Non-femtoscopic correlations

Non-femtoscopic correlations (expected)

- Appear in small & low multiplicity systems.
- In hadronic pp, mini-jets and EMCICs (energy-momentum conservation).
- MUST be understood to interpret results. (Combinatorics?)

Dip at very low k* (unanticipated, not surprising)

 Two-slit interference, binning/momentum resolution, track splitting/merging, parity effects, P- or D-state, V(r)?_{ChristopherAnson}

Statistics estimate

	Condition			Central 1	Central 2	Forward 1	Forward 2
				Narrow	Wide	Narrow	Wide
	Rapidity			y < 0.9	y < 2.4	2.5 < y < 4.0	2 < y < 5
e/	$e/\pi/\mu$ pseudorapidity			$ \eta < 0.9$	$ \eta < 2.4$	$2.5 < \eta < 4.0$	$2<\eta<5$
				PbPb			
		σ	All	Central 1	Central 2	Forward 1	Forward 2
Meson			Total	Total	Total	Total 1	Total
$ ho o \pi^+ \pi^-$	-	5.2b	68 B	5.5 B	21B	4.9 B	13 B
$\rho' \to \pi^+ \pi^- \pi^+$	$+\pi^{-}$	730 mb	9.5 B	210 M	2.5 B	190 M	1.2 B
$\phi \rightarrow K^+ K^-$	-	0.22b	2.9 B	82 M	490 M	15 M	330 M
$\mathrm{J}/\psi ightarrow \mu^+ \mu$	ι	1.0 mb	14 M	1.1 M	5.7 M	600 K	1.6 M
$\psi(2S) \rightarrow \mu^+$	μ^{-}	30µb	400 K	35 K	180 K	19 K	47 K
$Y(1S) \rightarrow \mu^+$	μ^{-}	$2.0 \ \mu b$	26 K	2.8 K	14 K	880	2.0 K

Z. Citron, et. al. Arxiv: 1812.06772

Statistics estimate

Possibilities with pp?

- Momentum
- Rapidity

- Relative to impact parameter
- Polarization effects
- VM-VM & ππ correlations

Two-slit interference effects?

Summary

- New application of femtoscopy.
- May be way to probe gluon structure.
- Correlations sensitive to
 - impact parameter
 - gluon spatial distributions
 - hadronic interactions
- Decouple effects by comparing
 - different particles
 - collision systems
 - complementary studies
 - theory input.

• Needs further development but looks promising!

Backup

Other topics...

Coherent vs Incoherent

- Looking at difference in interaction points, fluctuations may average out.
- Incoherent may also probe gluon distribution.

Quantum Correlations

• Do Two-slit interference affect two-particle correlations too?

pp, AA and pA

Proton-Nucleus:

Only proton gluon distribution contributes

Proton-Proton:

- All observations similar to PbPb.
- pp has wider "Same Source" contribution.
- term largely independent of source size & shape.