Beam Thrust as Jet Veto

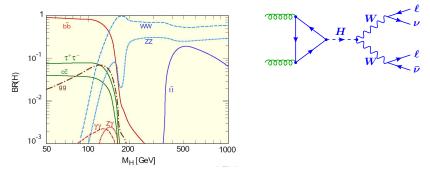
0-Jet Higgs Production

Higgs Production with a Jet Veto at NNLL+NNLO

Wouter Waalewijn

UCSD

Boston Jet Physics Workshop January 12-14, 2011

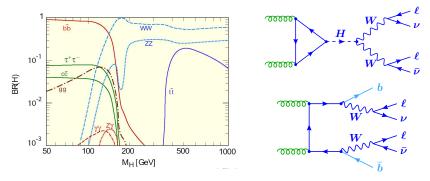

In collaboration with: Carola Berger, Claudio Marcantonini, Iain Stewart and Frank Tackmann

arXiv:1012.4480

Beam Thrust as Jet Veto

0-Jet Higgs Production

Higgs at LHC and Tevatron


$gg ightarrow H ightarrow WW ightarrow \ell ar{ u} ar{\ell} u$

 Strong discovery potential, dominant channel in Tevatron exclusion for $m_H\gtrsim 130\,{
m GeV}$

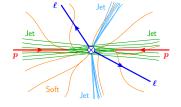
Beam Thrust as Jet Veto

0-Jet Higgs Production

Higgs at LHC and Tevatron

$gg ightarrow H ightarrow WW ightarrow \ell ar{ u} ar{\ell} u$

- Strong discovery potential, dominant channel in Tevatron exclusion for $m_H\gtrsim 130\,{
 m GeV}$
- Large $\sim 40:1$ background from $tar{t}
 ightarrow WWbar{b}$
- Cannot reconstruct Higgs invariant mass $(\nu \bar{\nu})$


Beam Thrust as Jet Veto

0-Jet Higgs Production 000000

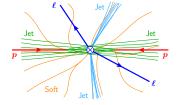
Higgs at LHC and Tevatron

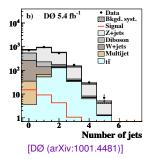
Use jet veto to remove $t\bar{t}$ background

• Throw out events with a jet with $p_T^{\text{jet}} > p_T^{\text{cut}}$ Tevatron: $p_T^{\text{cut}} \simeq 20 \text{ GeV}$ LHC: $p_T^{\text{cut}} \simeq 25 \text{ GeV}$

Beam Thrust as Jet Veto 00000 0-Jet Higgs Production

Higgs at LHC and Tevatron

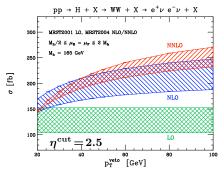

Use jet veto to remove $t\bar{t}$ background

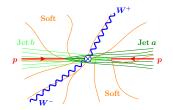

► Throw out events with a jet with $p_T^{\text{jet}} > p_T^{\text{cut}}$ Tevatron: $p_T^{\text{cut}} \simeq 20 \text{ GeV}$ LHC: $p_T^{\text{cut}} \simeq 25 \text{ GeV}$

Tevatron excludes $m_H \simeq 165\,{ m GeV}$ at 95% CL

- Includes channels with jets
- Sensitivity dominated by 0-jet sample
- Exclusion requires reliable theory predictions Recently some discussion on theory uncert:
 - Large K-factor: vary µ by factor of 3
 - PDF set uncertainty

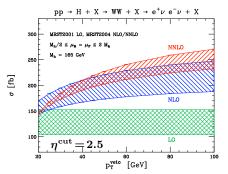
[Baglio, Djouadi (arXiv:1003.4266)]

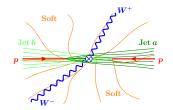



Beam Thrust as Jet Veto

0-Jet Higgs Production

gg ightarrow H ightarrow WW with 0 Jets


[Anastasiou, Dissertori, Stöckli (arXiv:0707.2373)]



Jet veto restricts initial-state radiation

Beam Thrust as Jet Veto 00000 0-Jet Higgs Production

gg ightarrow H ightarrow WW with 0 Jets

Jet veto restricts initial-state radiation

[Anastasiou, Dissertori, Stöckli (arXiv:0707.2373)]

Jet veto leads to large double logarithms (if $p_T^{
m cut} \ll m_H$)

$$\sigma(p_T^{
m cut}) \propto 1 - rac{2lpha_s C_A}{\pi} \ln^2 rac{p_T^{
m cut}}{m_H} + \dots \,,$$

[Extracted from Catani, de Florian, Grazzini (hep-ph/0111164)]

Need to be summed for reliable predictions and uncertainties

Beam Thrust as Jet Veto 00000 0-Jet Higgs Production 000000

Large Jet Veto Logarithms

Cross section with jet veto p_T^{cut} [with $L = \ln(p_T^{\mathrm{cut}}/m_H)$]

$$\begin{split} \sigma &= \sigma_0 \Big\{ 1 + \alpha_s [c_{12}L^2 + c_{11}L + c_{10} + n_1(p_T^{\text{cut}})] \\ &+ \alpha_s^2 [c_{24}L^4 + c_{23}L^3 + c_{22}L^2 + c_{21}L + c_{20} + n_2(p_T^{\text{cut}})] \\ &+ \alpha_s^3 [c_{36}L^6 + c_{35}L^5 + c_{34}L^4 + c_{33}L^3 + \dots] \\ &+ \dots \Big\} \end{split}$$

Nonsingular terms $n_i(p_T^{\text{cut}})$

• Suppressed by $O(p_T^{\text{cut}}/m_H)$ relative to singular terms e.g. $p_T^{\text{cut}}/m_H \ln(p_T^{\text{cut}}/m_H)$

Different calculations:

► Fixed order: LO, NLO, NNLO, ...

Beam Thrust as Jet Veto 00000

0-Jet Higgs Production 000000

Large Jet Veto Logarithms

Cross section with jet veto p_T^{cut} [with $L = \ln(p_T^{\mathrm{cut}}/m_H)$]

$$\begin{split} \sigma &= \sigma_0 \big\{ 1 + \alpha_s [c_{12}L^2 + c_{11}L + c_{10} + n_1(p_T^{\text{cut}})] \\ &+ \alpha_s^2 [c_{24}L^4 + c_{23}L^3 + c_{22}L^2 + c_{21}L + c_{20} + n_2(p_T^{\text{cut}})] \\ &+ \alpha_s^3 [c_{36}L^6 + c_{35}L^5 + c_{34}L^4 + c_{33}L^3 + \dots] \\ &+ \dots \big\} \end{split}$$

Nonsingular terms $n_i(p_T^{\text{cut}})$

• Suppressed by $\mathcal{O}(p_T^{\text{cut}}/m_H)$ relative to singular terms e.g. $p_T^{\text{cut}}/m_H \ln(p_T^{\text{cut}}/m_H)$

Different calculations:

- Fixed order: LO, NLO, NNLO, ...
- Monte Carlo: Parton-shower, MC@NLO

Beam Thrust as Jet Veto 00000

0-Jet Higgs Production 000000

Large Jet Veto Logarithms

Cross section with jet veto p_T^{cut} [with $L = \ln(p_T^{\mathrm{cut}}/m_H)$]

$$\begin{split} \sigma &= \sigma_0 \big\{ 1 + \alpha_s [c_{12}L^2 + c_{11}L + c_{10} + n_1(p_T^{\text{cut}})] \\ &+ \alpha_s^2 [c_{24}L^4 + c_{23}L^3 + c_{22}L^2 + c_{21}L + c_{20} + n_2(p_T^{\text{cut}})] \\ &+ \alpha_s^3 [c_{36}L^6 + c_{35}L^5 + c_{34}L^4 + c_{33}L^3 + \dots] \\ &+ \dots \big\} \end{split}$$

Nonsingular terms $n_i(p_T^{\text{cut}})$

• Suppressed by $\mathcal{O}(p_T^{\text{cut}}/m_H)$ relative to singular terms e.g. $p_T^{\text{cut}}/m_H \ln(p_T^{\text{cut}}/m_H)$

Different calculations:

- Fixed order: LO, NLO, NNLO, ...
- Monte Carlo: Parton-shower, MC@NLO
- Resummed: LL, NLL, NLL', NNLL

Beam Thrust as Jet Veto 00000

0-Jet Higgs Production 000000

Large Jet Veto Logarithms

Cross section with jet veto p_T^{cut} [with $L = \ln(p_T^{\mathrm{cut}}/m_H)$]

$$\begin{split} \sigma &= \sigma_0 \big\{ 1 + \alpha_s [c_{12}L^2 + c_{11}L + c_{10} + n_1(p_T^{\text{cut}})] \\ &+ \alpha_s^2 [c_{24}L^4 + c_{23}L^3 + c_{22}L^2 + c_{21}L + c_{20} + n_2(p_T^{\text{cut}})] \\ &+ \alpha_s^3 [c_{36}L^6 + c_{35}L^5 + c_{34}L^4 + c_{33}L^3 + \dots] \\ &+ \dots \big\} \end{split}$$

Nonsingular terms $n_i(p_T^{\text{cut}})$

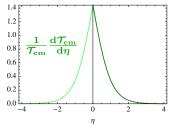
• Suppressed by $\mathcal{O}(p_T^{\text{cut}}/m_H)$ relative to singular terms e.g. $p_T^{\text{cut}}/m_H \ln(p_T^{\text{cut}}/m_H)$

Different calculations:

- Fixed order: LO, NLO, NNLO, ...
- Monte Carlo: Parton-shower, MC@NLO
- ► Resummed: LL, NLL, NLL', NNLL+NNLO

Beam Thrust as Jet Veto •0000

0-Jet Higgs Production


Beam Thrust

We want to sum jet veto logs to higher order

Phase space is complicated for jet algorithm
 Use beam thrust:

$$\mathcal{T}_{ ext{cm}} = \sum_k ert ec{p}_{kT} ert e^{-ert \eta_k ert} = \sum_k (E_k - ert p_k^z ert)$$

- Central jet veto: $\mathcal{T}_{
 m cm} \leq \mathcal{T}_{
 m cm}^{
 m cut} \ll m_H$
- \mathcal{T}_{cm} has no jet algorithm dependence

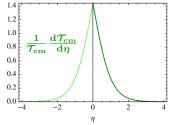
Beam Thrust as Jet Veto •0000 0-Jet Higgs Production

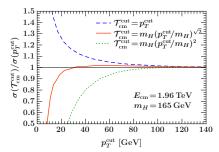
Beam Thrust

We want to sum jet veto logs to higher order

Phase space is complicated for jet algorithm
 Use beam thrust:

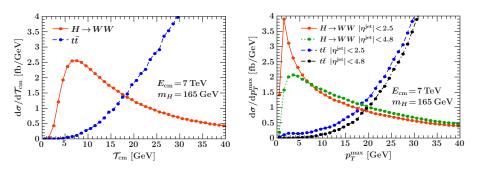
$$\mathcal{T}_{ ext{cm}} = \sum_k ert ec{p}_{kT} ert e^{-ert \eta_k ert} = \sum_k (E_k - ert p_k^z ert)$$


- Central jet veto: $\mathcal{T}_{cm} \leq \mathcal{T}_{cm}^{cut} \ll m_H$
- \mathcal{T}_{cm} has no jet algorithm dependence


Compare to jet algorithm veto p_T^{cut}

Exact for LL results

$$\mathcal{T}^{ ext{cut}}_{ ext{cm}}\simeq m_{H} \Big(rac{p_{T}^{ ext{cut}}}{m_{H}}\Big)^{\sqrt{2}}$$

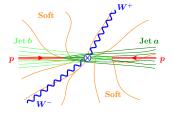

 Correspondence at NNLO within 3% for Tevatron and 7% for LHC [Using FEHiP: Anastasiou, Petriello, Melnikov]

Beam Thrust as Jet Veto 0000 0-Jet Higgs Production

Higgs vs. $t\bar{t}$ background using Pythia

- Lepton selection cuts from Atlas study [arXiv:0901.0512] Don't affect Higgs shape, affect $t\bar{t}$ shape by 5% - 20%
- Hadronization is included, multiple parton interactions are not

Beam Thrust as Jet Veto


0-Jet Higgs Production

Beam Thrust Factorization Theorem

Sum large $\alpha_s^n \ln^m (\mathcal{T}_{\mathrm{cm}}/m_H)$ using:

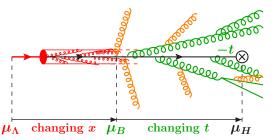
Factorization theorem for $\mathcal{T}_{cm} \ll m_H$ [Stewart, Tackmann, WW (arXiv:0910.0467)]

Derived using Soft-Collinear Effective Theory

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_{\mathrm{cm}}} &= H_{gg}(m_t, m_H, \mu) \int \mathrm{d}Y \! \int \! \mathrm{d}x_a \, B_i(t_a, x_a, \mu) \int \! \mathrm{d}t_b \, B_j(t_b, x_b, \mu) \\ & \times S_B \Big(\mathcal{T}_{\mathrm{cm}} - \frac{e^{-Y} t_a + e^Y t_b}{m_H}, \mu \Big) \bigg[1 + \mathcal{O} \Big(\frac{\Lambda_{\mathrm{QCD}}}{m_H}, \frac{\mathcal{T}_{\mathrm{cm}}}{m_H} \Big) \bigg] \end{aligned}$$

			$\mu_H\simeq -{ m i}m_H$
B	beam function	virtual & real energetic ISR	$\mu_B\simeq \sqrt{\mathcal{T}_{ m cm}m_H}$
\boldsymbol{S}	soft function	virtual & real soft radiation	$\mu_S \simeq \mathcal{T}_{ m cm}$

 \blacktriangleright Each function depends on only one scale \rightarrow use RGE to sum large logs


Sum large π^2 terms in the hard function \rightarrow improves convergence

Beam Thrust as Jet Veto

0-Jet Higgs Production 000000

Physical Picture of the Initial State

Measurement sets scale at which PDF is probed, $\mu_B \simeq \sqrt{\mathcal{T}_{
m cm} m_H}$

$\mu < \mu_B$: on-shell partons inside proton

▶ ISR described by PDF evolution, redistributes the momentum fraction x


$\mu > \mu_B$: off-shell partons inside incoming jet

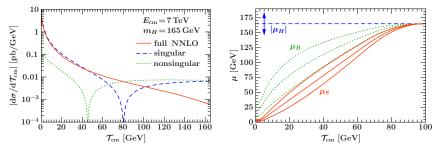
- Colliding parton emits collinear and soft ISR builds up jet of size t, where -t is transverse virtuality of colliding parton
- Wide angle emissions described by fixed-order corrections at $\mu \simeq \mu_B$
- Small angle emissions summed by evolution: changes t, not x or flavor

Beam Thrust as Jet Veto

0-Jet Higgs Production 000000

Cross Section at NNLL+NNLO

Nonsingular terms in our analysis


$$\sigma^{ ext{ns,NNLO}}(\mathcal{T}_{ ext{cm}}) = \sigma^{ ext{NNLO}}(\mathcal{T}_{ ext{cm}}) - \sigma^{ ext{s,NNLO}}(\mathcal{T}_{ ext{cm}})$$

- Suppressed by $\mathcal{O}(\mathcal{T}_{\rm cm}/m_H)$, included up to NNLO
- Cancellation between singular and nonsingular for large \mathcal{T}_{cm}

Beam Thrust as Jet Veto

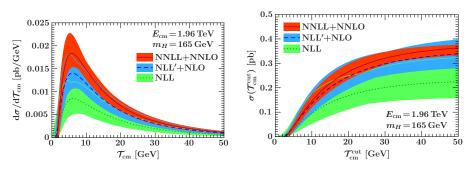
0-Jet Higgs Production

Cross Section at NNLL+NNLO

Nonsingular terms in our analysis

$$\sigma^{ ext{ns,NNLO}}(\mathcal{T}_{ ext{cm}}) = \sigma^{ ext{NNLO}}(\mathcal{T}_{ ext{cm}}) - \sigma^{ ext{s,NNLO}}(\mathcal{T}_{ ext{cm}})$$

- Suppressed by $\mathcal{O}(\mathcal{T}_{\mathrm{cm}}/m_{H})$, included up to NNLO
- ► Cancellation between singular and nonsingular for large T_{cm} → turn resummation off earlier using profile functions [Ligeti, Stewart, Tackmann (arXiv:0807.1926) Abbate et. al. (arXiv:1006.3080)]

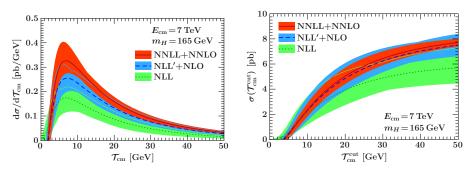

Estimating uncertainties

• Take the envelope of varying μ_H , μ_B and μ_S separately

Beam Thrust as Jet Veto 00000 0-Jet Higgs Production •00000

Higgs Production for Small $\mathcal{T}_{\rm cm}$

Tevatron:



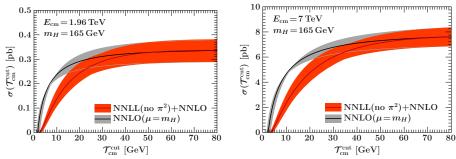
- Leptonic decay not included (multiply by branching ratio)
- Radiation peaked at small $\mathcal{T}_{
 m cm} \sim 5 \, {
 m GeV}$
- Large perturbative corrections
- Resummed perturbation series converges (within uncertainty bands)
- Perturbative uncertainty dominates over hadronization corrections for Higgs (peak is perturbative)

Beam Thrust as Jet Veto 00000 0-Jet Higgs Production •00000

Higgs Production for Small \mathcal{T}_{cm}

LHC at 7 TeV:

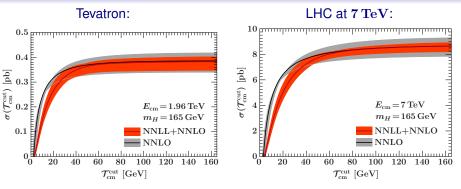
- Leptonic decay not included (multiply by branching ratio)
- Radiation peaked at small $\mathcal{T}_{
 m cm} \sim 5 \, {
 m GeV}$
- Large perturbative corrections
- Resummed perturbation series converges (within uncertainty bands)
- Perturbative uncertainty dominates over hadronization corrections for Higgs (peak is perturbative)


Beam Thrust as Jet Veto

0-Jet Higgs Production

Higgs Production for Large $\mathcal{T}_{\mathrm{cm}}$

Tevatron:


No π^2 resummation and evaluating NNLO at $\mu=m_H$

NNLL+NNLO merges with the NNLO for large \mathcal{T}_{cm}

Beam Thrust as Jet Veto

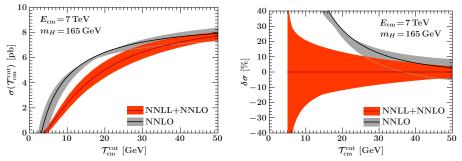
0-Jet Higgs Production

Higgs Production for Large $\mathcal{T}_{\mathrm{cm}}$

No π^2 resummation and evaluating NNLO at $\mu=m_H$

NNLL+NNLO merges with the NNLO for large $\mathcal{T}_{\rm cm}$

With π^2 resummation and evaluating NNLO at $\mu=m_H/2$

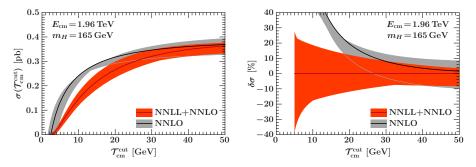

- Increases the cross section
- π^2 resummation and evaluating at $\mu = m_H/2$ have very similar effect!
- Reduces uncertainties at large \mathcal{T}_{cm} . Tevatron: $\frac{+5\%}{-9\%}$, LHC: $\frac{+3\%}{-5\%}$

Beam Thrust as Jet Veto

0-Jet Higgs Production

Comparison to Fixed Order

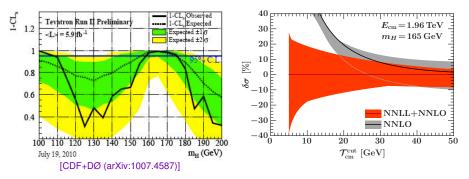
LHC at 7 TeV:


- NNLO evaluated at conventional $\mu = m_H/2$
- \blacktriangleright Central values differ by $\sim 25\%$ at $\mathcal{T}_{
 m cm}^{
 m cut} = 20\,{
 m GeV}$
 - > 50% at $\mathcal{T}_{
 m cm}^{
 m cut} = 10\,{
 m GeV}$
- NNLO scale variation underestimates uncertainty for small T^{cut}_{cm}
- Resummation is important for reliable predictions & uncertainties

Beam Thrust as Jet Veto

0-Jet Higgs Production

Implications for Tevatron Higgs exclusion


Tevatron:

Beam Thrust as Jet Veto 00000 0-Jet Higgs Production

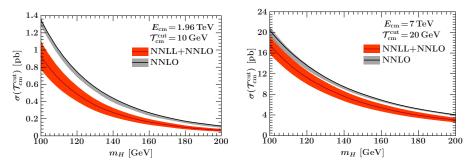
Implications for Tevatron Higgs exclusion

Tevatron:

ightarrow Tevatron uses $\pm 7\%$ scale uncertainty at $p_T^{
m cut}\simeq 20\,{
m GeV}$ from NNLO

[Anastasiou, Dissertori, Grazzini, Stöckli, Webber (arXiv:0905.3529)] compared to $\pm 20\%$ at $\mathcal{T}_{cm}^{cut} \simeq 10~GeV$ uncertainty from our NNLL+NNLO

Reweighting parton shower (LL) with NNLO might improve central value but cannot yield better uncertainties than NNLL+NNLO


Beam Thrust as Jet Veto

0-Jet Higgs Production

m_H dependence

Tevatron:

- \blacktriangleright Using representative cut ${\cal T}_{\rm cm}^{\rm cut}=10\,{\rm GeV}$ for Tevatron $20\,{\rm GeV}$ for LHC
- Smaller $m_H \rightarrow$ smaller logs \rightarrow effect of resummation smaller (relatively)
- Resummation remains important for reliable predictions & uncertainties

Conclusions

- Jet veto needed to remove $t\bar{t}$ background in $H \to WW \to \ell \nu \ell \bar{\nu}$.
- Strong jet veto leads to large logs in the cross section
 - \rightarrow logs must be summed for reliable predictions and uncertainties
- Beam thrust $\mathcal{T}_{\mathrm{cm}}$
 - easier phase space restrictions than jet algorithm
 - ightarrow can sum beyond leading log
 - no jet algorithm dependence
 - good correspondence with p_T^{cut}
- Large perturbative uncertainties ($\sim 20\%$) should be taken into account in Tevatron Higgs bound, and will weaken it

Thank you!

Contribution	WW	WZ	ZZ	$t\bar{t}$	DY	$W\gamma$	W+jet	$gg \rightarrow H$	WH	ZH	VBF
Cross Section :							-				
Scale PDF Model								7.0	•		
Total	6.0	6.0	6.0	10.0				1.0	5.0	5.0	10.0
Acceptance :	0.0	0.0	0.0	10.0					0.0	010	10.0
Scale (leptons)								1.7			
Scale (jets)	0.3							1.5			
PDF Model (leptons)								2.7			
PDF Model (jets)	1.1							5.5			
Higher-order Diagrams		10.0	10.0	10.0		10.0			10.0	10.0	10.0
E_T Modeling					19.5						
Conversion Modeling						10.0					
Jet Fake Rates											
(Low S/B)							22.0				
(High S/B)							25.0				
Jet Energy Scale	2.6	6.1	3.4	26.0	17.5	3.1		5.0	10.5	5.0	11.5
Lepton ID Efficiencies	3.0	3.0	3.0	3.0	3.0			3.0	3.0	3.0	3.0
Trigger Efficiencies	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0
Luminosity	3.8	3.8	3.8	3.8	3.8			3.8	3.8	3.8	3.8
Luminosity Monitor	4.4	4.4	4.4	4.4	4.4			4.4	4.4	4.4	4.4

CDF: $H \to W^+ W^- \to \ell^{\pm} \ell'^{\mp}$ with no associated jet channel relative uncertainties (%)

Backup