# Power Counting and Jet Algorithm Parameters Jonathan Walsh UC Berkeley / LBL

# Overview

- Power counting in soft collinear effective theory (SCET)
- Factorization and properties of jets through power counting
- Applications to jet substructure

# Small Parameters and Jets

- Jet observables often defined with small parameters:
  - Jet size R, jet energy cut  $\Lambda/Q$
  - Jet substructure methods introduce small parameters to separate out dynamics in jets (e.g. pileup from FSR)
  - These parameters will generate large logarithms
- Resummation of these parameters key to correctly predicting behavior of jet substructure and more complex observables for jets

## Brief SCET Overview

- Modes in SCET :
  - collinear:  $p_c \sim Q(1, \lambda^2, \lambda)$
  - soft:  $p_s \sim Q(\lambda^2, \lambda^2, \lambda^2)$

$$p = (E + p_z, E - p_z, p_\perp)$$
$$= (p^-, p^+, p_\perp) - \text{light cone coordinates}$$



- Collinear modes describe jet evolution, soft modes the global soft radiation in/between jets
- Factorization allows us to separate contributions of soft and collinear modes (live at different scales), resum large logarithms

## Factorization

Divides the cross section into pieces depending on separate scales



Factorization of N-jet operators in SCET shown at leading power (Bauer, Pirjol, Stewart)

## Factorization of Observables

Start with basic SCET distribution

$$\frac{d\sigma}{d\tau} = H_N \langle O_N^{\dagger} \hat{\mathcal{R}}(\tau) O_N \rangle$$

The restriction operator specifies the phase space cuts and measurement of the observable

 $O_N$  factorizes into jet and soft operators  $O_N = O_J^N O_{S_N}$ 

Need to show the restriction operator factorizes:  $\hat{\mathcal{R}} = \hat{\mathcal{R}}_c + \hat{\mathcal{R}}_s$ 

# Why is Factorization Important?

- Small parameters in the algorithm definition  $(\hat{\mathcal{R}})$  will create • large logarithms in cross sections
  - Without factorization, these logs not resummed



(e.g. JADE)

The problem of non-global logarithms in jet observables is • much more challenging (outside this scope)

# Power Counting in SCET

- Power counting can determine the dominant physics for an observable or algorithm
- We will use power counting to test a necessary condition for factorization:  $\hat{\mathcal{R}} = \hat{\mathcal{R}}_c + \hat{\mathcal{R}}_s$
- This simple power counting can extract properties of jets and place constraints on jet substructure methods

## Power Counting Kinematics in SCET

- Energies:  $E_c \sim \lambda^0, E_s \sim \lambda^2$
- Angles:
  - collinear collinear:  $\theta_{cc} \sim \lambda$

 $\longrightarrow$  can write  $\theta_{cs}$  as  $\theta_{ns}$ 

- soft soft:  $\theta_{ss} \sim \lambda^0$
- collinear soft:  $p_c \cdot p_s = 2E_c E_s (1 \cos \theta_{cs})$  $\frac{p_c \cdot p_s}{E_c E_s} = 2 \frac{p_c^- p_s^+}{p_c^- (p_s^+ + p_s^-)} + \mathcal{O}(\lambda) = \underbrace{\frac{2p_s^+}{p_s^+ + p_s^-}}_{\text{soft Wilson line } Y_r} + \mathcal{O}(\lambda)$

soft Wilson line  $Y_n$ depends only on label direction

### Power Counting for Jet Algorithms: anti-kT

algorithm: 
$$\rho_{ij} = \min\left(\frac{1}{E_i}, \frac{1}{E_j}\right) \frac{\theta_{ij}}{R}, \quad \rho_i = \frac{1}{E_i}$$



### Power Counting for Jet Algorithms: anti-kT



soft - collinear phase space constraints decouple:  $\widehat{\mathcal{R}} = \widehat{\mathcal{R}}_c + \widehat{\mathcal{R}}_s$   $\downarrow$ necessary condition for factorization satisfied

soft phase space for collinear jets factorizes:  $\theta_{ns} < R$   $\downarrow$ anti-kT has circular jets

anti-kT is an ideal algorithm for SCET

### Power Counting for Jet Algorithms: JADE

algorithm:  $\rho_{ij} = E_i E_j \theta_{ij}^2$ ,  $y_{cut} \sim \lambda^2$ 



soft - collinear phase space constraints do not decouple  $\widehat{\mathcal{R}} \neq \widehat{\mathcal{R}}_c + \widehat{\mathcal{R}}_s \longrightarrow \text{does not satisfy necessary condition for factorization}$ 

#### JADE does not factorize:

soft phase space cuts depend on details of collinear splittings

$$\rho_{cs} = E_s E_c \theta_{ns}^2 \sim \lambda^2$$

## Power Counting Results for Jet Algorithms

- Key (already known) results:
  - anti-kT: circular jets
    - Soft PS factorizes into single particle PS
  - JADE: does not factorize
    - No two loop calculation needed
  - kT: soft phase space non-circular
    - No single particle PS

### Power Counting for Jet Substructure

#### Essential steps in a generic substructure method:



Needs to factorize to be able to factorize observable subjet selection

 $\widehat{\mathcal{R}} = \widehat{\mathcal{R}}_c + \widehat{\mathcal{R}}_s$ 

### Power Counting for Pruning

• Pruning: recluster found jets and prune recombinations with



### Power Counting for Pruning

• Pruning: recluster found jets and prune recombinations with

 $\frac{\min(E_i, E_j)}{E_{i+j}} < z_{\text{cut}} \quad \text{and} \quad \theta_{ij} > D_{\text{cut}}$   $\overset{}{\overset{}}\text{angles: no dependence on both soft and collinear particles}$ 

• Consider soft - collinear candidate recombination

comparison: 
$$\frac{E_s}{E_c} \sim \lambda^2 < z_{\rm cut}$$

- Factorization fails if  $z_{\rm cut} \sim \lambda^2$  : suggests  $z_{\rm cut} \sim \lambda$  (or higher)
- The observable will set  $\lambda$  tells us the size of  $z_{cut}$  needed

### Power Counting for Filtering

• Filtering: select subjets and keep the N hardest



### Power Counting for Filtering

• Filtering: select subjets and keep the N hardest



- If there are "soft subjets", whether or not they pass the cut depends on the number of collinear subjets
- Filtering does not factorize unless there are no soft subjets: constrains the algorithm used to find subjets (e.g. MD-F)

### Power Counting for Trimming

• Trimming: select subjets and keep a subset by a cut



### Power Counting for Trimming

• Trimming: select subjets and keep a subset by a cut



- If the cut is on individual subjets e.g. a jet wide pT cut, then trimming could be factorized
- Factorization of trimming seems most straightforward

## Conclusions

- Use SCET power counting to analyze factorizability of jet algorithms/observables
- Simple properties of jets and constraints on jet substructure can be extracted
- Worthwhile exercise when designing jet substructure methods
  - Can tell you whether the behavior can be reliably predicted