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Drell-Yan production

✦ Drell-Yan processes such as pp→W, Z, H are 
of great importance to collider physics:

✦ measurement of W-boson mass
✦ determination of PDFs
✦ discovery of Higgs boson

✦ Important kinematical situation:

with      either much larger than            or even 
comparable to it 

M � qT

qT ΛQCD

→ classical two-scale problem with large Sudakov 
logarithms                                , which need to be resummed                                                    ∼ (αs ln2M/qT )n



Drell-Yan production

✦ Transverse momentum of Drell-Yan object 
(W, Z, H) due to initial-state radiation (ISR) 
off collinear partons

✦ Simple example of beam jets described by 
beam functions in SCET

✦ Yet many surprises and subtleties arise 
(collinear anomaly, divergent expansions), 
which may be relevant also for other 
applications of beam functions in jet processes

Stewart, Tackmann, Waalewijn 2009



A tale of many scales

✦ Effective field theories provide an elegant 
approach to this problem, based on scale 
separation (factorization) and RG evolution

✦ Factorize cross sections:

✦ Define components in terms                                     
of effective theory objects

✦ Resum large Sudakov logarithms                                
directly in momentum space by                            
solving RG equations 

H

J J

J J

S

σ ∼ H(µh)
�

i

Ji(µi)⊗ S(µs)

Becher, MN 2006
Sen 1983; Kidonakis, Oderda, Sterman 1998



Drell-Yan cross section in SCET

✦ Expect factorization theorem:

✦ Matching of the current onto SCET (integrate 
out hard quantum fluctuations): 

We begin with the standard relation

dσ =
4πα2

3q2s

d4q

(2π)4

∫

d4x e−iq·x (−gµν) 〈N1(p) N2(p̄)| Jµ†(x) Jν(0) |N1(p) N2(p̄)〉 , (1)

where

Jµ =
∑

q

(

gq
L q̄γµ 1 − γ5

2
q + gq

R q̄γµ 1 + γ5

2
q

)

, gq
L = gq

R = eq (2)

is the electromagnetic current. Keeping the left- and right-handed couplings separate has
the advantage that our analysis can be carried over straightforwardly to the case of weak
gauge-boson production.

To analyze this process in SCET, we introduce two light-like reference vectors n and n̄
satisfying n·n̄ = 2, which are parallel to the directions of the colliding hadrons N1 and N2 with
momenta p and p̄. Any four momentum can then be split into light-cone and perpendicular
components according to

kµ = n · k
n̄µ

2
+ n̄ · k

nµ

2
+ kµ

⊥ ≡ kµ
+ + kµ

− + kµ
⊥ . (3)

In the effective theory one defines a small expansion parameter λ = qT /M and distinguishes
fields whose momentum components (n·k, n̄·k, k⊥) scale differently with λ. In the present case,
the production of a lepton pair with transverse momentum qT requires one or more parton
emissions into the final state, which balance that momentum. As a result, the substructure
of the colliding hadrons is probed at distance scales of order 1/qT . The partons in the col-
liding beam jets thus generically have so-called hard-collinear (hc) or anti-hard-collinear (hc)
momenta scaling as

phc ∼ M (λ2, 1, λ) , phc ∼ M (1, λ2, λ) . (4)

In SCET, one introduces different sets of hard-collinear and anti-hard-collinear quark and
gluon fields describing the interactions of these partons [11, 12, 13]. While these fields have
QCD-like interactions among themselves, two fields belonging to different sectors can interact
only via the exchange of soft partons (only soft gluon interactions contribute at leading power
in λ), whose momenta scale like

ps ∼ M (λ2, λ2, λ2) . (5)

Adding a soft momentum to a (anti-)hard-collinear momentum does not change its scaling
properties. Note that interactions between hard-collinear and anti-hard-collinear fields cannot
be mediated by partons with momenta scaling like M(λ, λ, λ), because this would take the
(anti-)hard-collinear fields far off-shell. Since in our case the total transverse momentum of
the hadronic final state must balance the transverse momentum qT = Mλ of the lepton pair,
it follows that this final state must contain at least one (anti-)hard-collinear parton, and that
soft fields give a power-suppressed contribution to its transverse momentum. As a result, we
will see that the total contribution of an arbitrary number of soft emissions cancels in the final
factorization formula for the Drell-Yan cross section at fixed qT . This is in contrast with the
factorization formula for Drell-Yan production near threshold, in which the soft contribution
gives an important contribution [27, 28] (see [29] for a derivation using SCET). The absence
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of a soft contribution is an important aspect of our analysis, in which it differs from a recent
study in [25], where a soft component is present in the SCET factorization theorem. We will
comment on this paper in more detail in Section 5. If there were indeed a sensitivity to the
soft scale µs ∼ q2

T /M , the Drell-Yan qT distribution would be non-perturbative even at high
transverse momenta qT !

√

MΛQCD, which would be a disaster for phenomenology.
In SCET, the current (2) is matched onto (we adopt a regularization scheme with anti-

commuting γ5) [30, 31]

Jµ → CV (−q2 − iε, µ)
∑

q

(

gq
L χ̄hc S†

n̄ γµ 1 − γ5

2
Sn χhc + gq

R χ̄hc S†
n̄ γµ 1 + γ5

2
Sn χhc

)

, (6)

where the matching coefficient CV depends on the hard momentum transfer Q2 = −q2 = −M2.
For time-like processes this coefficient is complex. From now on we will suppress the −iε
prescription that defines the sign of the imaginary part of CV . The effective fields χhc = W †

hc ξhc

and χhc = W †

hc
ξhc are the usual gauge-invariant combinations of effective (anti-)hard-collinear

quark fields and Wilson lines.1 They satisfy /n χhc = 0 and /̄n χhc = 0. These fields are obtained
after the SCET decoupling transformation has been applied, which removes the interactions
between soft and (anti-)hard-collinear fields in the leading-order SCET Lagrangian [12]. This
introduces the soft Wilson lines Sn and Sn̄ into the effective current shown above. In [29], we
have derived a factorization theorem for the Drell-Yan process in the threshold region. Many
more details about the effective-theory formalism can be found in this reference.

Using a Fierz transformation along with some elementary Dirac algebra, and averaging
over nucleon spins, the hadronic matrix element in (1) can be rewritten as

(−gµν) 〈N1(p) N2(p̄)| Jµ†(x) Jν(0) |N1(p) N2(p̄)〉 → |CV (−q2, µ)|2
∑

q

|gq
L|2 + |gq

R|2

2Nc

× ŴDY(x) 〈N1(p)| χ̄hc(x)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x) |N2(p̄)〉 ,

(7)

where

ŴDY(x) =
1

Nc
〈0|Tr

[

T
(

S†
n(x) Sn̄(x)

)

T
(

S†
n̄(0) Sn(0)

)]

|0〉 (8)

is a soft Wilson-line correlator. Up to this point our discussion is completely analogous to that
in [29]. We now perform the multipole expansion appropriate for the kinematical situation
considered here, i.e., we expand the fields in derivatives corresponding to suppressed momen-
tum components [13, 32]. Here we encounter a difference with our previous analysis, which is
due to the different kinematical requirements on the transverse momentum of the photon. In
the present case the separation of the fields scales as x ∼ M−1(1, 1, λ−1), which is conjugate to
the hard photon momentum q ∼ M(1, 1, λ). Since derivatives on the soft fields scale as λ2, the
leading term in the expansion is obtained by evaluating the soft Wilson lines at x = 0. In the
(anti-)hard-collinear fields, the dependence on x⊥ and on the light-cone components conjugate
to the large momentum components is unsuppressed and must be kept. The expanded result

1As usual in SCET we restrict ourselves to gauge transformations that vanish at infinity.
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Drell-Yan cross section in SCET

✦ But soft interactions cancel out (KLN) 

✦ Result after multipole expansion:

hard

hard-collinear

M2

q2
T

W,Z,H

p

p
n̄

n

then takes the form

dσ =
4πα2

3Ncq2s

d4q

(2π)4

∫

d4x e−iq·x |CV (−q2, µ)|2
∑

q

|gq
L|2 + |gq

R|2

2
ŴDY(0)

× 〈N1(p)| χ̄hc(x+ + x⊥)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x− + x⊥) |N2(p̄)〉 .

(9)

The definition (8) implies that ŴDY(0) = 1, and hence the soft contribution cancels out in the
result for the cross section. Physically, the reason is simply that soft gluons carry transverse
momenta of order q2

T /M , which is insufficient to produce a hadronic final state with transverse
momentum qT .

We recall at this point the definitions of the parton distribution functions (PDFs) [33, 34].
In terms of SCET operators, they read

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉 ,

φg/N(z, µ) =
z n̄ · p

2π

∫

dt e−iztn̄·p 〈N(p)|−A⊥µ(tn̄)Aµ
⊥(0) |N(p)〉 ,

(10)

where 0 ≤ z ≤ 1, and for simplicity we suppress the hc labels on the fields. The nucleon N
carries momentum p along the n direction. The anti-quark PDF φq̄/N(z, µ) is given by the
same matrix element as in the first line, but with the sign in the exponent reversed. Because
of the appearance of the transverse displacement vector x⊥, the hadronic matrix elements
appearing in (9) are not of the form of the matrix elements of light-ray operators defining the
PDFs. Instead, one defines the generalized, xT -dependent PDFs (with x2

T ≡ −x2
⊥ > 0) [34]

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉 , (11)

and similarly for the gluon and anti-quark cases. Their Fourier transforms with respect to xT

are referred to as transverse-momentum dependent PDFs. In the context of SCET, generalized
PDFs, i.e. hadron matrix elements in which collinear fields are separated by distances that
are not light-like, are referred to as beam functions [17, 18]. Naively, then, the differential
cross section (9) can be expressed in terms of a convolution of the hard matching coefficient
|CV (−M2, µ)|2 with (anti-)hard-collinear beam functions, and this would appear to achieve
the desired factorization of the hard and hard-collinear scales, M2 and q2

T .

2.2 Collinear anomaly and refactorization

The formal derivation of factorization just presented is spoiled by quantum effects. This can
be seen from the fact that the RG equation for the hard matching coefficient contains a term
proportional to a “cusp logarithm” of the hard scale q2 = M2 [26],

d

d lnµ
CV (−q2, µ) =

[

ΓF
cusp(αs) ln

−q2

µ2
+ 2γq(αs)

]

CV (−q2, µ) . (12)
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Drell-Yan cross section in SCET

✦ Absence of semi-soft contributions k~(λ,λ,λ) 
follows after proper multipole expansion using 
that x~(1,1, λ-1), which implies:

✦ Relevant loops integrals such as

are scaleless and vanish in dimensional 
regularization

regulator d = 4−2ε is kept in place. However, with analytic regulators the contributions of the
different momentum regions are now well-defined individually and one can check which regions
give non-vanishing contributions to the expansion of the loop integrals. One finds that only the
hard, hard-collinear, and anti-hard-collinear regions contribute. If the diagrams are evaluated
off-shell, then also a soft contribution arises in the individual diagrams, but one easily verifies
that the contribution of a semi-hard mode vanishes. Since such contributions were considered
in the literature, we now explicitly show they are absent in analytical regularization. To do so,
one assumes that the gluon momentum k in the QCD diagram in Figure 1 scales as M(λ, λ, λ)
and then expands the diagram in powers of λ. At leading power, the relevant phase-space
integral becomes

∫
ddk

1

(n · k − iε)1+α

1

(n̄ · k − iε)1+β
δ(k2) θ(k0) eip·x−ik⊥·x⊥ . (31)

After the expansion, the integrand involves the usual eikonal propagators characteristic for
soft emissions, which are raised to fractional powers because of the analytic regulators. It
is important that not only the propagator denominators, but also the Fourier exponent is
multipole expanded:

(p − k) · x = p · x − k⊥ · x⊥ + O(λ) , (32)

which follows from the scaling x ∼ (1, 1, λ−1) derived in Section 2. Performing the integration
over the light-cone components of the gluon momentum, one finds that the integral (31) is
scaleless and vanishes.

We note that the multipole expansion was not performed in [25], which explains why similar
integrals were found to be non-vanishing in this reference. However, the expansion is a crucial
ingredient to achieve scale separation for effective theories in dimensional regularization. It
is equally important in the strategy of region technique [19, 20]. Without performing the
expansion integrals pick up contributions from several regions, and care needs to be taken to
avoid double counting.

Having shown that the soft and semi-hard regions do not contribute, let us now turn to the
hard-collinear contributions. Since the original diagrams are well defined without analytical
regulators and are obtained by adding up the contributions from the different regions, we are
guaranteed that the limits α → 0 and β → 0 can be taken in the sum of all diagrams and
that the final result is independent of the regularization scheme. Individually, however, the
diagrams in each sector involve divergences in the analytical regulators. If the momentum
k in (30) is hard-collinear, as in the first SCET diagram in Figure 1, the regularization in
the effective theory takes the same form as in QCD. If, on the other hand, the momentum
k is anti-hard-collinear, then the propagator is far off-shell and in SCET is represented by a
Wilson line, as shown in the second diagram in Figure 1. Using the replacement rule (30) and
performing the appropriate expansions, we find that the Feynman rule for a gluon emission
from the anti-hard-collinear Wilson line Whc in the current operator (6) gets replaced by

nµ

n · k − iε
→

ν2α
1 nµ n̄ · p

(n · k n̄ · p − iε)1+α . (33)

Note that, as mentioned earlier in Section 2.2, the regularized Feynman rule for the anti-hard-
collinear Wilson line is no longer invariant under the rescaling transformation p → λp. As
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→ difference with: Mantry, Petriello 2009

A side remark:



Drell-Yan cross section in SCET

✦ Hadronic matrix elements define transverse 
position dependent (generalized) PDFs: 

✦ Differential cross section:

where:

then takes the form

dσ =
4πα2

3Ncq2s

d4q

(2π)4

∫

d4x e−iq·x |CV (−q2, µ)|2
∑

q

|gq
L|2 + |gq

R|2

2
ŴDY(0)

× 〈N1(p)| χ̄hc(x+ + x⊥)
/̄n

2
χhc(0) |N1(p)〉 〈N2(p̄)| χ̄hc(0)

/n

2
χhc(x− + x⊥) |N2(p̄)〉 .

(9)

The definition (8) implies that ŴDY(0) = 1, and hence the soft contribution cancels out in the
result for the cross section. Physically, the reason is simply that soft gluons carry transverse
momenta of order q2

T /M , which is insufficient to produce a hadronic final state with transverse
momentum qT .

We recall at this point the definitions of the parton distribution functions (PDFs) [33, 34].
In terms of SCET operators, they read

φq/N(z, µ) =
1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄)
/̄n

2
χ(0) |N(p)〉 ,

φg/N(z, µ) =
z n̄ · p

2π

∫

dt e−iztn̄·p 〈N(p)|−A⊥µ(tn̄)Aµ
⊥(0) |N(p)〉 ,

(10)

where 0 ≤ z ≤ 1, and for simplicity we suppress the hc labels on the fields. The nucleon N
carries momentum p along the n direction. The anti-quark PDF φq̄/N(z, µ) is given by the
same matrix element as in the first line, but with the sign in the exponent reversed. Because
of the appearance of the transverse displacement vector x⊥, the hadronic matrix elements
appearing in (9) are not of the form of the matrix elements of light-ray operators defining the
PDFs. Instead, one defines the generalized, xT -dependent PDFs (with x2

T ≡ −x2
⊥ > 0) [34]

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉 , (11)

and similarly for the gluon and anti-quark cases. Their Fourier transforms with respect to xT

are referred to as transverse-momentum dependent PDFs. In the context of SCET, generalized
PDFs, i.e. hadron matrix elements in which collinear fields are separated by distances that
are not light-like, are referred to as beam functions [17, 18]. Naively, then, the differential
cross section (9) can be expressed in terms of a convolution of the hard matching coefficient
|CV (−M2, µ)|2 with (anti-)hard-collinear beam functions, and this would appear to achieve
the desired factorization of the hard and hard-collinear scales, M2 and q2
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ΓF
cusp(αs) ln

−q2

µ2
+ 2γq(αs)

]

CV (−q2, µ) . (12)
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are referred to as transverse-momentum dependent PDFs. In the context of SCET, generalized
PDFs, i.e. hadron matrix elements in which collinear fields are separated by distances that
are not light-like, are referred to as beam functions [17, 18]. Naively, then, the differential
cross section (9) can be expressed in terms of a convolution of the hard matching coefficient
|CV (−M2, µ)|2 with (anti-)hard-collinear beam functions, and this would appear to achieve
the desired factorization of the hard and hard-collinear scales, M2 and q2

T .

2.2 Collinear anomaly and refactorization

The formal derivation of factorization just presented is spoiled by quantum effects. This can
be seen from the fact that the RG equation for the hard matching coefficient contains a term
proportional to a “cusp logarithm” of the hard scale q2 = M2 [26],
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We have used that d4q θ(q0) δ(q2 − M2) = 1
2 d2q⊥ dy = π

2 dq2
T dy, where the last identity holds

after integration over the polar angle. In the factorization formula (16), the disparate scales M2

and q2
T ∼ x−2

T are now completely separated. Corrections to the leading term in this formula
are suppressed by powers of the ratio q2

T /M2 & 1. Also, as written above, the formula holds
irrespective of whether or not the transverse momentum is a perturbative scale. Taking a
Fourier transform of the cross section, it is possible to get direct access to the xT -dependent
PDFs as given in the factorization theorem (13). We find
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By varying xT , M2, s, y, and the beam nuclei N1, N2, one can (at least in principle) map
out the functional dependences of Fqq̄ and certain combinations of transverse PDFs on x2

T and
ξi, much in the same way as the standard PDFs are constrained from fits to Drell-Yan cross
sections. While for xT & Λ−1

QCD the right-hand side of (18) can be calculated in terms of known

PDFs (see below), for xT ∼ Λ−1
QCD the above relation provides access to the non-perturbative

behavior of Fqq̄ and of the transverse PDFs. This can help to constrain phenomenological
models of these functions, which are needed e.g. for a precision determination of the mass
of the W boson. We emphasize that the above relation only holds for x2

T ' 1/M2, because
otherwise the power corrections to our factorization formula become large. It can therefore
not be used to study the xT → 0 limit of the functions Fqq̄ or Bi/N .

2.3 Simplifications at large q2
T

For given transverse momentum qT , the Fourier integral in (16) receives important contri-
butions from transverse separations xT ! q−1

T only. For large transverse momenta in the
perturbative domain, q2
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QCD, we therefore need the xT -dependent PDFs at transverse

separation xT & Λ−1
QCD. In this case these functions obey an operator-product expansion of
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then takes the form
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(9)

The definition (8) implies that ŴDY(0) = 1, and hence the soft contribution cancels out in the
result for the cross section. Physically, the reason is simply that soft gluons carry transverse
momenta of order q2

T /M , which is insufficient to produce a hadronic final state with transverse
momentum qT .

We recall at this point the definitions of the parton distribution functions (PDFs) [33, 34].
In terms of SCET operators, they read
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where 0 ≤ z ≤ 1, and for simplicity we suppress the hc labels on the fields. The nucleon N
carries momentum p along the n direction. The anti-quark PDF φq̄/N(z, µ) is given by the
same matrix element as in the first line, but with the sign in the exponent reversed. Because
of the appearance of the transverse displacement vector x⊥, the hadronic matrix elements
appearing in (9) are not of the form of the matrix elements of light-ray operators defining the
PDFs. Instead, one defines the generalized, xT -dependent PDFs (with x2

T ≡ −x2
⊥ > 0) [34]
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∫
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/̄n

2
χ(0) |N(p)〉 , (11)

and similarly for the gluon and anti-quark cases. Their Fourier transforms with respect to xT

are referred to as transverse-momentum dependent PDFs. In the context of SCET, generalized
PDFs, i.e. hadron matrix elements in which collinear fields are separated by distances that
are not light-like, are referred to as beam functions [17, 18]. Naively, then, the differential
cross section (9) can be expressed in terms of a convolution of the hard matching coefficient
|CV (−M2, µ)|2 with (anti-)hard-collinear beam functions, and this would appear to achieve
the desired factorization of the hard and hard-collinear scales, M2 and q2

T .

2.2 Collinear anomaly and refactorization

The formal derivation of factorization just presented is spoiled by quantum effects. This can
be seen from the fact that the RG equation for the hard matching coefficient contains a term
proportional to a “cusp logarithm” of the hard scale q2 = M2 [26],
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CV (−q2, µ) =
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We have used that d4q θ(q0) δ(q2 − M2) = 1
2 d2q⊥ dy = π

2 dq2
T dy, where the last identity holds

after integration over the polar angle. In the factorization formula (16), the disparate scales M2

and q2
T ∼ x−2

T are now completely separated. Corrections to the leading term in this formula
are suppressed by powers of the ratio q2

T /M2 & 1. Also, as written above, the formula holds
irrespective of whether or not the transverse momentum is a perturbative scale. Taking a
Fourier transform of the cross section, it is possible to get direct access to the xT -dependent
PDFs as given in the factorization theorem (13). We find
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By varying xT , M2, s, y, and the beam nuclei N1, N2, one can (at least in principle) map
out the functional dependences of Fqq̄ and certain combinations of transverse PDFs on x2

T and
ξi, much in the same way as the standard PDFs are constrained from fits to Drell-Yan cross
sections. While for xT & Λ−1

QCD the right-hand side of (18) can be calculated in terms of known

PDFs (see below), for xT ∼ Λ−1
QCD the above relation provides access to the non-perturbative

behavior of Fqq̄ and of the transverse PDFs. This can help to constrain phenomenological
models of these functions, which are needed e.g. for a precision determination of the mass
of the W boson. We emphasize that the above relation only holds for x2

T ' 1/M2, because
otherwise the power corrections to our factorization formula become large. It can therefore
not be used to study the xT → 0 limit of the functions Fqq̄ or Bi/N .

2.3 Simplifications at large q2
T

For given transverse momentum qT , the Fourier integral in (16) receives important contri-
butions from transverse separations xT ! q−1

T only. For large transverse momenta in the
perturbative domain, q2

T ' Λ2
QCD, we therefore need the xT -dependent PDFs at transverse

separation xT & Λ−1
QCD. In this case these functions obey an operator-product expansion of

the form [34]
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∑
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∫ 1

ξ
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z
Ii←j(ξ/z, x

2
T , µ) φj/N(z, µ) + O(Λ2

QCD x2
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8

(αs ln2M/qT )n

(q2 = M2)



Drell-Yan cross section in SCET

✦ Differential cross section:

where:

✦ Resummation of large logarithms                       
is accomplished by solving RGE                    :

expressed as

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ) Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(16)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (17)

We have used that d4q θ(q0) δ(q2 − M2) = 1
2 d2q⊥ dy = π

2 dq2
T dy, where the last identity holds

after integration over the polar angle. In the factorization formula (16), the disparate scales M2

and q2
T ∼ x−2

T are now completely separated. Corrections to the leading term in this formula
are suppressed by powers of the ratio q2

T /M2 & 1. Also, as written above, the formula holds
irrespective of whether or not the transverse momentum is a perturbative scale. Taking a
Fourier transform of the cross section, it is possible to get direct access to the xT -dependent
PDFs as given in the factorization theorem (13). We find

9M2s

4πα2

∫ ∞

0

dq2
T J0(qT xT )

d3σ

dM2 dq2
T dy

=
∣

∣CV (−M2, µ)
∣

∣

2
(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ) Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

1

x2
T M2

)

.

(18)

By varying xT , M2, s, y, and the beam nuclei N1, N2, one can (at least in principle) map
out the functional dependences of Fqq̄ and certain combinations of transverse PDFs on x2

T and
ξi, much in the same way as the standard PDFs are constrained from fits to Drell-Yan cross
sections. While for xT & Λ−1

QCD the right-hand side of (18) can be calculated in terms of known

PDFs (see below), for xT ∼ Λ−1
QCD the above relation provides access to the non-perturbative

behavior of Fqq̄ and of the transverse PDFs. This can help to constrain phenomenological
models of these functions, which are needed e.g. for a precision determination of the mass
of the W boson. We emphasize that the above relation only holds for x2

T ' 1/M2, because
otherwise the power corrections to our factorization formula become large. It can therefore
not be used to study the xT → 0 limit of the functions Fqq̄ or Bi/N .

2.3 Simplifications at large q2
T

For given transverse momentum qT , the Fourier integral in (16) receives important contri-
butions from transverse separations xT ! q−1

T only. For large transverse momenta in the
perturbative domain, q2

T ' Λ2
QCD, we therefore need the xT -dependent PDFs at transverse

separation xT & Λ−1
QCD. In this case these functions obey an operator-product expansion of

the form [34]

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(ξ/z, x

2
T , µ) φj/N(z, µ) + O(Λ2

QCD x2
T ) . (19)

8

then takes the form

dσ =
4πα2

3Ncq2s

d4q

(2π)4

∫

d4x e−iq·x |CV (−q2, µ)|2
∑

q

|gq
L|2 + |gq

R|2

2
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T ≡ −x2
⊥ > 0) [34]

Bq/N (z, x2
T , µ) =

1

2π

∫

dt e−iztn̄·p 〈N(p)| χ̄(tn̄ + x⊥)
/̄n

2
χ(0) |N(p)〉 , (11)

and similarly for the gluon and anti-quark cases. Their Fourier transforms with respect to xT

are referred to as transverse-momentum dependent PDFs. In the context of SCET, generalized
PDFs, i.e. hadron matrix elements in which collinear fields are separated by distances that
are not light-like, are referred to as beam functions [17, 18]. Naively, then, the differential
cross section (9) can be expressed in terms of a convolution of the hard matching coefficient
|CV (−M2, µ)|2 with (anti-)hard-collinear beam functions, and this would appear to achieve
the desired factorization of the hard and hard-collinear scales, M2 and q2

T .

2.2 Collinear anomaly and refactorization

The formal derivation of factorization just presented is spoiled by quantum effects. This can
be seen from the fact that the RG equation for the hard matching coefficient contains a term
proportional to a “cusp logarithm” of the hard scale q2 = M2 [26],

d

d lnµ
CV (−q2, µ) =

[

ΓF
cusp(αs) ln

−q2

µ2
+ 2γq(αs)

]

CV (−q2, µ) . (12)

5

×
�

q

e2
q

�
Bq/N1(ξ1, x

2
T , µ)Bq̄/N2(ξ2, x

2
T , µ) + (q ↔ q̄)

�
+O

�
q2
T

M2

�

expressed as

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ) Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

q2
T

M2

)

,

(16)

where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2

⊥

s
=

M2 + q2
T

s
. (17)

We have used that d4q θ(q0) δ(q2 − M2) = 1
2 d2q⊥ dy = π

2 dq2
T dy, where the last identity holds

after integration over the polar angle. In the factorization formula (16), the disparate scales M2

and q2
T ∼ x−2

T are now completely separated. Corrections to the leading term in this formula
are suppressed by powers of the ratio q2

T /M2 & 1. Also, as written above, the formula holds
irrespective of whether or not the transverse momentum is a perturbative scale. Taking a
Fourier transform of the cross section, it is possible to get direct access to the xT -dependent
PDFs as given in the factorization theorem (13). We find

9M2s

4πα2

∫ ∞

0

dq2
T J0(qT xT )

d3σ

dM2 dq2
T dy

=
∣

∣CV (−M2, µ)
∣

∣

2
(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ) Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

1

x2
T M2

)

.

(18)

By varying xT , M2, s, y, and the beam nuclei N1, N2, one can (at least in principle) map
out the functional dependences of Fqq̄ and certain combinations of transverse PDFs on x2

T and
ξi, much in the same way as the standard PDFs are constrained from fits to Drell-Yan cross
sections. While for xT & Λ−1

QCD the right-hand side of (18) can be calculated in terms of known

PDFs (see below), for xT ∼ Λ−1
QCD the above relation provides access to the non-perturbative

behavior of Fqq̄ and of the transverse PDFs. This can help to constrain phenomenological
models of these functions, which are needed e.g. for a precision determination of the mass
of the W boson. We emphasize that the above relation only holds for x2

T ' 1/M2, because
otherwise the power corrections to our factorization formula become large. It can therefore
not be used to study the xT → 0 limit of the functions Fqq̄ or Bi/N .

2.3 Simplifications at large q2
T

For given transverse momentum qT , the Fourier integral in (16) receives important contri-
butions from transverse separations xT ! q−1

T only. For large transverse momenta in the
perturbative domain, q2

T ' Λ2
QCD, we therefore need the xT -dependent PDFs at transverse

separation xT & Λ−1
QCD. In this case these functions obey an operator-product expansion of

the form [34]

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(ξ/z, x

2
T , µ) φj/N(z, µ) + O(Λ2

QCD x2
T ) . (19)

8

This formula is wrong!

(αs ln2M/qT )n

(q2 = M2)

→ see SCET papers: Gao, Li, Liu 2005; Idilbi, Ji, Yuan 2005
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Collinear anomaly

✦ RG invariance of the cross section requires 
that the product                                           of 
generalized PDFs must carry an anomalous 
dependence on hard momentum transfer q2:*) 

with:

Bq/N1(ξ1, x
2
T , µ)Bq̄/N2(ξ2, x

2
T , µ)

Its coefficient ΓF
cusp(αs) is the cusp anomalous dimension in the fundamental representation.

The quantity γq (equal to γV /2 in [26]) refers to the quark anomalous dimension as defined
in [35, 36]. Here and below, the coupling αs without an explicit scale argument always refers
to αs(µ). RG invariance of the physical cross section (9) requires that the evolution equation
for the product of the two transverse PDFs must contain the same ln(q2/µ2) term as in (12),
but with the opposite sign. This fact is incompatible with the concept of universal, process-
independent generalized PDFs. As we will see, the xT -dependent PDFs as given in (11) are
not well-defined in dimensional regularization and require an additional regularization of light-
cone singularities. The anomalous q2 dependence arises because the formal factorization of
hard-collinear and anti-hard-collinear fields in the SCET Lagrangian in the absence of soft
interactions is invalidated as soon as one introduces a regulator to give meaning to the loop
integrals appearing in explicit evaluations of SCET diagrams. We will refer to this effect as the
“collinear anomaly”. Only the product of two transverse PDFs referring to hadrons moving
in different directions is well defined and regularization independent.

Because of the dependence of the transverse PDFs on the hard scale of the underlying
process, relation (9) does not accomplish a complete separation of the hard and hard-collinear
scales q2 and q2

T . It is thus not yet a useful factorization formula. In order to complete
the factorization and resum all associated large logarithms, it is necessary to control the q2

dependence of the product Bq/N1
Bq̄/N2

of transverse PDFs to all orders in perturbation theory.
We will show in Section 3.2 that in xT space this product can be refactorized in the form

[

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ)

]

q2
=

(

x2
T q2

4e−2γE

)−Fqq̄(x2
T ,µ)

Bq/N1
(z1, x

2
T , µ) Bq̄/N2

(z2, x
2
T , µ) ,

(13)
where the exponent Fqq̄ depends only on the transverse coordinate and the renormalization
scale. The bracket on the left-hand side of (13) indicates the hidden q2 dependence induced by
the collinear anomaly. The functions Bi/N on the right-hand side are independent of the hard
momentum transfer. While we do not have an operator definition of these functions, they are
uniquely defined by relation (13). All q2 dependence is now explicit and controlled by the
function Fqq̄. Note that for µ ∼ x−1

T the q2-dependent prefactor resums all large logarithms of
the hard scale, while Fqq̄(x2

T , µ) has a perturbative expansion in αs(µ) with O(1) coefficients.
RG invariance of the cross section (9) implies the evolution equations

dFqq̄(x2
T , µ)

d lnµ
= 2ΓF

cusp(αs) ,

d

d lnµ
Bq/N(z, x2

T , µ) =

[

ΓF
cusp(αs) ln

x2
T µ2

4e−2γE
− 2γq(αs)

]

Bq/N (z, x2
T , µ) .

(14)

The first relation completely determines the scale dependence of Fqq̄. Note that the structure
of the evolution equation for Bi/N is completely analogous to that for the hard matching
coefficient in (12). As a side remark, let us note that for gluon-initiated processes such as
Higgs-boson production analogous evolution equations hold for the quantities Fgg and Bg/N , in
which ΓF

cusp is replaced with the cusp anomalous dimension ΓA
cusp in the adjoint representation,

and γq is replaced with the gluon anomalous dimension γg as defined in [35, 36]. Formal

6

p

Its coefficient ΓF
cusp(αs) is the cusp anomalous dimension in the fundamental representation.

The quantity γq (equal to γV /2 in [26]) refers to the quark anomalous dimension as defined
in [35, 36]. Here and below, the coupling αs without an explicit scale argument always refers
to αs(µ). RG invariance of the physical cross section (9) requires that the evolution equation
for the product of the two transverse PDFs must contain the same ln(q2/µ2) term as in (12),
but with the opposite sign. This fact is incompatible with the concept of universal, process-
independent generalized PDFs. As we will see, the xT -dependent PDFs as given in (11) are
not well-defined in dimensional regularization and require an additional regularization of light-
cone singularities. The anomalous q2 dependence arises because the formal factorization of
hard-collinear and anti-hard-collinear fields in the SCET Lagrangian in the absence of soft
interactions is invalidated as soon as one introduces a regulator to give meaning to the loop
integrals appearing in explicit evaluations of SCET diagrams. We will refer to this effect as the
“collinear anomaly”. Only the product of two transverse PDFs referring to hadrons moving
in different directions is well defined and regularization independent.

Because of the dependence of the transverse PDFs on the hard scale of the underlying
process, relation (9) does not accomplish a complete separation of the hard and hard-collinear
scales q2 and q2

T . It is thus not yet a useful factorization formula. In order to complete
the factorization and resum all associated large logarithms, it is necessary to control the q2

dependence of the product Bq/N1
Bq̄/N2

of transverse PDFs to all orders in perturbation theory.
We will show in Section 3.2 that in xT space this product can be refactorized in the form

[

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ)

]

q2
=

(

x2
T q2

4e−2γE

)−Fqq̄(x2
T ,µ)

Bq/N1
(z1, x

2
T , µ) Bq̄/N2

(z2, x
2
T , µ) ,

(13)
where the exponent Fqq̄ depends only on the transverse coordinate and the renormalization
scale. The bracket on the left-hand side of (13) indicates the hidden q2 dependence induced by
the collinear anomaly. The functions Bi/N on the right-hand side are independent of the hard
momentum transfer. While we do not have an operator definition of these functions, they are
uniquely defined by relation (13). All q2 dependence is now explicit and controlled by the
function Fqq̄. Note that for µ ∼ x−1

T the q2-dependent prefactor resums all large logarithms of
the hard scale, while Fqq̄(x2

T , µ) has a perturbative expansion in αs(µ) with O(1) coefficients.
RG invariance of the cross section (9) implies the evolution equations

dFqq̄(x2
T , µ)

d lnµ
= 2ΓF

cusp(αs) ,

d

d lnµ
Bq/N(z, x2

T , µ) =

[

ΓF
cusp(αs) ln

x2
T µ2

4e−2γE
− 2γq(αs)

]

Bq/N (z, x2
T , µ) .

(14)

The first relation completely determines the scale dependence of Fqq̄. Note that the structure
of the evolution equation for Bi/N is completely analogous to that for the hard matching
coefficient in (12). As a side remark, let us note that for gluon-initiated processes such as
Higgs-boson production analogous evolution equations hold for the quantities Fgg and Bg/N , in
which ΓF

cusp is replaced with the cusp anomalous dimension ΓA
cusp in the adjoint representation,

and γq is replaced with the gluon anomalous dimension γg as defined in [35, 36]. Formal

6

*) Similar effect (in simpler setting) occurs for 
Sudakov form factor of a massive vector boson, 
see: Giu, Golf, Kelley, Manohar 2007



Collinear anomaly

✦ RG invariance of the cross section requires 
that the product                                           of 
generalized PDFs must carry an anomalous 
dependence on hard momentum transfer q2:

with:

✦ Refactorization theorem:

Bq/N1(ξ1, x
2
T , µ)Bq̄/N2(ξ2, x

2
T , µ)

Its coefficient ΓF
cusp(αs) is the cusp anomalous dimension in the fundamental representation.

The quantity γq (equal to γV /2 in [26]) refers to the quark anomalous dimension as defined
in [35, 36]. Here and below, the coupling αs without an explicit scale argument always refers
to αs(µ). RG invariance of the physical cross section (9) requires that the evolution equation
for the product of the two transverse PDFs must contain the same ln(q2/µ2) term as in (12),
but with the opposite sign. This fact is incompatible with the concept of universal, process-
independent generalized PDFs. As we will see, the xT -dependent PDFs as given in (11) are
not well-defined in dimensional regularization and require an additional regularization of light-
cone singularities. The anomalous q2 dependence arises because the formal factorization of
hard-collinear and anti-hard-collinear fields in the SCET Lagrangian in the absence of soft
interactions is invalidated as soon as one introduces a regulator to give meaning to the loop
integrals appearing in explicit evaluations of SCET diagrams. We will refer to this effect as the
“collinear anomaly”. Only the product of two transverse PDFs referring to hadrons moving
in different directions is well defined and regularization independent.

Because of the dependence of the transverse PDFs on the hard scale of the underlying
process, relation (9) does not accomplish a complete separation of the hard and hard-collinear
scales q2 and q2

T . It is thus not yet a useful factorization formula. In order to complete
the factorization and resum all associated large logarithms, it is necessary to control the q2

dependence of the product Bq/N1
Bq̄/N2

of transverse PDFs to all orders in perturbation theory.
We will show in Section 3.2 that in xT space this product can be refactorized in the form

[

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ)

]

q2
=

(

x2
T q2

4e−2γE

)−Fqq̄(x2
T ,µ)

Bq/N1
(z1, x

2
T , µ) Bq̄/N2

(z2, x
2
T , µ) ,

(13)
where the exponent Fqq̄ depends only on the transverse coordinate and the renormalization
scale. The bracket on the left-hand side of (13) indicates the hidden q2 dependence induced by
the collinear anomaly. The functions Bi/N on the right-hand side are independent of the hard
momentum transfer. While we do not have an operator definition of these functions, they are
uniquely defined by relation (13). All q2 dependence is now explicit and controlled by the
function Fqq̄. Note that for µ ∼ x−1

T the q2-dependent prefactor resums all large logarithms of
the hard scale, while Fqq̄(x2

T , µ) has a perturbative expansion in αs(µ) with O(1) coefficients.
RG invariance of the cross section (9) implies the evolution equations

dFqq̄(x2
T , µ)

d lnµ
= 2ΓF

cusp(αs) ,

d

d lnµ
Bq/N(z, x2

T , µ) =

[

ΓF
cusp(αs) ln

x2
T µ2

4e−2γE
− 2γq(αs)

]

Bq/N (z, x2
T , µ) .

(14)

The first relation completely determines the scale dependence of Fqq̄. Note that the structure
of the evolution equation for Bi/N is completely analogous to that for the hard matching
coefficient in (12). As a side remark, let us note that for gluon-initiated processes such as
Higgs-boson production analogous evolution equations hold for the quantities Fgg and Bg/N , in
which ΓF

cusp is replaced with the cusp anomalous dimension ΓA
cusp in the adjoint representation,

and γq is replaced with the gluon anomalous dimension γg as defined in [35, 36]. Formal
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Its coefficient ΓF
cusp(αs) is the cusp anomalous dimension in the fundamental representation.

The quantity γq (equal to γV /2 in [26]) refers to the quark anomalous dimension as defined
in [35, 36]. Here and below, the coupling αs without an explicit scale argument always refers
to αs(µ). RG invariance of the physical cross section (9) requires that the evolution equation
for the product of the two transverse PDFs must contain the same ln(q2/µ2) term as in (12),
but with the opposite sign. This fact is incompatible with the concept of universal, process-
independent generalized PDFs. As we will see, the xT -dependent PDFs as given in (11) are
not well-defined in dimensional regularization and require an additional regularization of light-
cone singularities. The anomalous q2 dependence arises because the formal factorization of
hard-collinear and anti-hard-collinear fields in the SCET Lagrangian in the absence of soft
interactions is invalidated as soon as one introduces a regulator to give meaning to the loop
integrals appearing in explicit evaluations of SCET diagrams. We will refer to this effect as the
“collinear anomaly”. Only the product of two transverse PDFs referring to hadrons moving
in different directions is well defined and regularization independent.

Because of the dependence of the transverse PDFs on the hard scale of the underlying
process, relation (9) does not accomplish a complete separation of the hard and hard-collinear
scales q2 and q2

T . It is thus not yet a useful factorization formula. In order to complete
the factorization and resum all associated large logarithms, it is necessary to control the q2

dependence of the product Bq/N1
Bq̄/N2

of transverse PDFs to all orders in perturbation theory.
We will show in Section 3.2 that in xT space this product can be refactorized in the form

[

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ)

]

q2
=

(

x2
T q2

4e−2γE

)−Fqq̄(x2
T ,µ)

Bq/N1
(z1, x

2
T , µ) Bq̄/N2

(z2, x
2
T , µ) ,

(13)
where the exponent Fqq̄ depends only on the transverse coordinate and the renormalization
scale. The bracket on the left-hand side of (13) indicates the hidden q2 dependence induced by
the collinear anomaly. The functions Bi/N on the right-hand side are independent of the hard
momentum transfer. While we do not have an operator definition of these functions, they are
uniquely defined by relation (13). All q2 dependence is now explicit and controlled by the
function Fqq̄. Note that for µ ∼ x−1

T the q2-dependent prefactor resums all large logarithms of
the hard scale, while Fqq̄(x2

T , µ) has a perturbative expansion in αs(µ) with O(1) coefficients.
RG invariance of the cross section (9) implies the evolution equations

dFqq̄(x2
T , µ)

d lnµ
= 2ΓF

cusp(αs) ,

d

d lnµ
Bq/N(z, x2

T , µ) =

[

ΓF
cusp(αs) ln

x2
T µ2

4e−2γE
− 2γq(αs)

]

Bq/N (z, x2
T , µ) .

(14)

The first relation completely determines the scale dependence of Fqq̄. Note that the structure
of the evolution equation for Bi/N is completely analogous to that for the hard matching
coefficient in (12). As a side remark, let us note that for gluon-initiated processes such as
Higgs-boson production analogous evolution equations hold for the quantities Fgg and Bg/N , in
which ΓF

cusp is replaced with the cusp anomalous dimension ΓA
cusp in the adjoint representation,

and γq is replaced with the gluon anomalous dimension γg as defined in [35, 36]. Formal

6



Collinear anomaly

✦ Hard-collinear SCET loops graphs such as

are not defined in dimensional regularization 
and require analytic regularization

✦ Not a new quantum anomaly of QCD, but a 
feature of the effective theory relevant to 
derivations of QCD factorization theorems 
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Figure 1: Matching of an analytically-regularized QCD graph onto SCET diagrams.

3 Calculation of the kernels Iq←q and Iq←g

We now perform a perturbative calculation of the relevant kernels Ii←j entering the factor-
ization formula (23) at first non-trivial order in αs. Since we do not have explicit operator
definitions of the refactorized transverse distribution functions Bi/N , we analyze instead the
original functions Bi/N defined in (11), keeping in mind that only products of two such func-
tions referring to different hadrons are well defined. If we write an operator-product expansion
analogous to (20)

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(z, x

2
T , µ) φj/N(ξ/z, µ) + O(Λ2

QCD x2
T ) , (28)

it follows that the products of two Ii←j functions are well defined and obey a factorization
formula analogous to (15).

3.1 One-loop results

Perturbative expansions for the kernels Ii←j can be derived from a matching calculation, in
which the matrix elements in (10) and (11) are evaluated using external parton states carrying
a fixed fraction of the nucleon momentum p. The tree-level result is obviously given by

Ii←j(z, x
2
T , µ) = δ(1 − z) δij + O(αs) . (29)

However, when trying to evaluate the one-loop corrections, one finds that they are ill-defined
in dimensional regularization due to light-cone singularities. To give meaning to the corre-
sponding loop integrals requires introducing additional regulators. The simplest possibility
is to employ analytic regularization, as is common in the context of asymptotic expansions
[19, 20]. In the context of SCET this method has been used in [15, 47]. One starts by re-
considering the QCD diagrams contributing to the process and raises all propagators through
which the external hard-collinear momentum p flows to a fractional power,

1

−(p − k)2 − iε
→

ν2α
1

[−(p − k)2 − iε]1+α , (30)

and similarly for the anti-hard-collinear propagators, but with a different regulator β and an
associated scale ν2. For QCD diagrams, such as the first graph in Figure 1, the modification
is trivial in the sense that the limits α → 0 and β → 0 are smooth as long as the dimensional
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Collinear anomaly

✦ In SCET, a quantum anomaly in the usual 
sense, that a symmetry of the classical 
Lagrangian is  broken by regularization:

✦ Regularization breaks this to subgroup            , 
allowing for anomalous dependence on 

✦ Consequence is that only the product of all 
generalized PDFs in a process is well defined, 
but individual transverse PDFs are not!                                          

p̄→ λ̄p̄ (p→ λp)Lhc (Lhc) invariant under:

λλ̄ = 1
q2 = 2p · p̄



Collinear anomaly

✦ In SCET, a quantum anomaly in the usual 
sense, that a symmetry of the classical 
Lagrangian is  broken by regularization:

✦ Regularization breaks this to subgroup            , 
allowing for anomalous dependence on 

✦ New functions           obey well-defined RGEs:

✦ Solves decade-old problem of how to make 
sense of transverse PDFs!                                        

p̄→ λ̄p̄ (p→ λp)Lhc (Lhc) invariant under:

λλ̄ = 1
q2 = 2p · p̄

Its coefficient ΓF
cusp(αs) is the cusp anomalous dimension in the fundamental representation.

The quantity γq (equal to γV /2 in [26]) refers to the quark anomalous dimension as defined
in [35, 36]. Here and below, the coupling αs without an explicit scale argument always refers
to αs(µ). RG invariance of the physical cross section (9) requires that the evolution equation
for the product of the two transverse PDFs must contain the same ln(q2/µ2) term as in (12),
but with the opposite sign. This fact is incompatible with the concept of universal, process-
independent generalized PDFs. As we will see, the xT -dependent PDFs as given in (11) are
not well-defined in dimensional regularization and require an additional regularization of light-
cone singularities. The anomalous q2 dependence arises because the formal factorization of
hard-collinear and anti-hard-collinear fields in the SCET Lagrangian in the absence of soft
interactions is invalidated as soon as one introduces a regulator to give meaning to the loop
integrals appearing in explicit evaluations of SCET diagrams. We will refer to this effect as the
“collinear anomaly”. Only the product of two transverse PDFs referring to hadrons moving
in different directions is well defined and regularization independent.

Because of the dependence of the transverse PDFs on the hard scale of the underlying
process, relation (9) does not accomplish a complete separation of the hard and hard-collinear
scales q2 and q2

T . It is thus not yet a useful factorization formula. In order to complete
the factorization and resum all associated large logarithms, it is necessary to control the q2

dependence of the product Bq/N1
Bq̄/N2

of transverse PDFs to all orders in perturbation theory.
We will show in Section 3.2 that in xT space this product can be refactorized in the form

[

Bq/N1
(z1, x

2
T , µ)Bq̄/N2

(z2, x
2
T , µ)

]

q2
=

(

x2
T q2

4e−2γE

)−Fqq̄(x2
T ,µ)

Bq/N1
(z1, x

2
T , µ) Bq̄/N2

(z2, x
2
T , µ) ,

(13)
where the exponent Fqq̄ depends only on the transverse coordinate and the renormalization
scale. The bracket on the left-hand side of (13) indicates the hidden q2 dependence induced by
the collinear anomaly. The functions Bi/N on the right-hand side are independent of the hard
momentum transfer. While we do not have an operator definition of these functions, they are
uniquely defined by relation (13). All q2 dependence is now explicit and controlled by the
function Fqq̄. Note that for µ ∼ x−1

T the q2-dependent prefactor resums all large logarithms of
the hard scale, while Fqq̄(x2

T , µ) has a perturbative expansion in αs(µ) with O(1) coefficients.
RG invariance of the cross section (9) implies the evolution equations

dFqq̄(x2
T , µ)

d lnµ
= 2ΓF

cusp(αs) ,

d

d lnµ
Bq/N(z, x2

T , µ) =

[

ΓF
cusp(αs) ln

x2
T µ2

4e−2γE
− 2γq(αs)

]

Bq/N (z, x2
T , µ) .

(14)

The first relation completely determines the scale dependence of Fqq̄. Note that the structure
of the evolution equation for Bi/N is completely analogous to that for the hard matching
coefficient in (12). As a side remark, let us note that for gluon-initiated processes such as
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Factorized Drell-Yan cross section

✦ Correct factorization formula reads: 

✦ For qT~xT-1~ΛQCD the functions        and           
are genuinely non-perturbative objects, which 
must be extracted from data, e.g.:
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where
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We have used that d4q θ(q0) δ(q2 − M2) = 1
2 d2q⊥ dy = π

2 dq2
T dy, where the last identity holds

after integration over the polar angle. In the factorization formula (16), the disparate scales M2

and q2
T ∼ x−2

T are now completely separated. Corrections to the leading term in this formula
are suppressed by powers of the ratio q2

T /M2 & 1. Also, as written above, the formula holds
irrespective of whether or not the transverse momentum is a perturbative scale. Taking a
Fourier transform of the cross section, it is possible to get direct access to the xT -dependent
PDFs as given in the factorization theorem (13). We find

9M2s

4πα2

∫ ∞

0

dq2
T J0(qT xT )

d3σ

dM2 dq2
T dy

=
∣

∣CV (−M2, µ)
∣

∣

2
(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

×
∑

q

e2
q

[

Bq/N1
(ξ1, x

2
T , µ) Bq̄/N2

(ξ2, x
2
T , µ) + (q ↔ q̄)

]

+ O
(

1

x2
T M2

)

.

(18)

By varying xT , M2, s, y, and the beam nuclei N1, N2, one can (at least in principle) map
out the functional dependences of Fqq̄ and certain combinations of transverse PDFs on x2

T and
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QCD the right-hand side of (18) can be calculated in terms of known

PDFs (see below), for xT ∼ Λ−1
QCD the above relation provides access to the non-perturbative

behavior of Fqq̄ and of the transverse PDFs. This can help to constrain phenomenological
models of these functions, which are needed e.g. for a precision determination of the mass
of the W boson. We emphasize that the above relation only holds for x2

T ' 1/M2, because
otherwise the power corrections to our factorization formula become large. It can therefore
not be used to study the xT → 0 limit of the functions Fqq̄ or Bi/N .
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Comparison with the CSS formula

✦ Classic result from Collins-Soper-Sterman: 

✦ Disadvantages compared with our result: 
✦    integral hits the Landau pole of running coupling 

and requires PDFs at arbitrarily low scales
✦ practical calculations employ an xT-space cutoff, 

which is model dependent and requires adding 
some ad hoc nonperturbative  corrections 

µb =
2e−γE

xT

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

1

4π

∫
d2x⊥ e−iq⊥·x⊥

∑

q
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q

∑

i=q,g

∑
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∫ 1
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dz1

z1
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ξ2

dz2

z2

× exp

{

−
∫ M2

µ2
b

dµ̄2

µ̄2
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ln

M2

µ̄2
A

(
αs(µ̄)

)
+ B

(
αs(µ̄)

)]
}

(71)

×
[
Pq/N1(ξ1, xT , µb)P q̄/N2(ξ2, xT , µb) + (q, i ↔ q̄, j)

]

It is a straightforward exercise to work out the relations between the various objects in
this formula and ours. We find

A
(
αs

)
= ΓF

cusp(αs) −
β(αs)

2

dg1(αs)

dαs
,

B
(
αs

)
= 2γq(αs) + g1(αs) −

β(αs)

2

dg2(αs)

dαs
,

Cij

(
z, αs(µb)

)
=

∣∣CV (−µ2
b , µb)

∣∣ Ii←j

(
z, 0, αs(µb)

)
,

(72)

where

g1(αs) = F (0, αs) =
∞∑

n=1

dq
n

(αs

4π

)n
,

g2(αs) = ln
∣∣CV (−µ2, µ)

∣∣2 =
∞∑

n=1

eq
n

(αs

4π

)n
.

(73)

The one-loop coefficients are dq
1 = 0 and

eq
1 = CF

(
7π2

3
− 16

)
. (74)

The two-loop coefficient dq
2 has been given in (51), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (72) are compatible with our perturbative results.

Note that according to (72) the coefficient A in the CSS formula differs from the cusp
anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
anomalous dimension 2γq starting at two-loop order.5 The first non-zero deviations are (here
A(n) and B(n) denote the n-th order coefficients in the expansion in powers of αs/(4π))

A(3) = ΓF
2 + 2β0d

q
2 , B(2) = 2γq

1 + dq
2 + β0e

q
1 . (75)

The two-loop expression for B(αs) was obtained a long time ago in [6], while for gluon-initiated
processes such as Higgs-boson production the corresponding coefficient was calculated in [7].

5The first relation in (72) can be found, in almost precisely this form, in equation (3.13) of [4], from which
it follows that Fqq̄(x2

T , µ) = −K(xT µ, αs) in the notation of that paper.
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orders. The integral K(η, a, r) and its derivative with respect to η can easily be evaluated
numerically. We have not succeeded to derive a suitable analytic expression for this integral
in the general case where r != 1 and η is not close to 1.

6 Comparison with the literature

The standard formalism for transverse-momentum resummation has been developed in a sem-
inal paper by Collins, Soper, and Sterman (CSS) [4]. According to this work, the resummed
differential cross section at leading power can be written in the form
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where µb = b0/xT is assumed to be in the perturbative domain. It is a straightforward exercise
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anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
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anomalous dimension 2γq starting at two-loop order.5 The first non-zero deviations are (here
A(n) and B(n) denote the n-th order coefficients in the expansion in powers of αs/(4π))

A(3) = ΓF
2 + 2β0d

q
2 , B(2) = 2γq

1 + dq
2 + β0e

q
1 . (74)

The two-loop expression for B(αs) was obtained a long time ago in [6], while for gluon-initiated
processes such as Higgs-boson production the corresponding coefficient was calculated in [7].
Using these results, we have derived the anticipated relation (51). Inserting the coefficients
dq,g

2 into (74), we obtain the coefficient A(3), which up to now was the last missing ingredient
for a full NNLL resummation of the qT spectrum. In the literature it is often assumed that
A(3) = ΓF

2 (see e. g. [21, 22]), which is true for soft gluon resummation, but our results
show that for transverse-momentum resummation an extra contribution arises because of the
collinear anomaly. Numerically, for the quark case with nf = 5, we find ΓF

2 = 239.2 while
A(3) = −413.7, so the extra term is much larger than the contribution from the cusp anomalous
dimension and has opposite sign. It will be interesting to see how this changes the numerical
predictions for the spectrum. Note also that, due to Casimir scaling, in the gluon case a similar
situation but with larger coefficients occurs, and we find ΓF

2 = 538.2 while A(3) = −930.8.
CSS also derive a formula for the resummed cross section at small qT in terms of transverse-

position dependent PDFs P i/N (ξ, xT ), which is equivalent to our result (12) once we identify

P i/N (ξ, xT ) =
∣∣CV (−µ2

b , µb)
∣∣Bi/N (ξ, x2

T , µb) . (75)

The definition of the function P i/N(ξ, xT ) proceeds in two steps. One first solves a differ-
ential equation governing the ζ dependence of the gauge-dependent distribution function
P̃i/N (ξ, xT , µ; ζ) mentioned earlier in our discussion in Section 2.2. This introduces a gauge-

independent boundary function P̂(ξ, xT , µ) [34]. The function P i/N (ξ, xT ) is obtained by
multiplying this function with an xT -dependent factor that cancels its scale dependence [53].

While we obtained the closed-form expressions (52), (60), and (69) for the cross section
directly in momentum space, the CSS formula (70) involves a Fourier integral over xT . The in-
herent scale choice µ = µb = b0/xT eliminates all L⊥ logarithms and thus automatically resums
the factorially divergent terms discussed in Section 5. However, since the integrand involves
αs(µb), the integration hits the Landau pole in the running coupling, so that a prescription is
needed to regularize the integral. In practical applications, the integration is cut off at large
xT values. To account for the missing long-distance contributions a non-perturbative model
function is used. For qT in the perturbative domain these contributions are formally power
suppressed, but it is irritating that an explicit prescription for how to deal with them is needed
even for qT values deep in the perturbative regime. Special care has to be taken in order not
to induce unphysical power corrections in the cut-off procedure [54]. The explicit cut-off also
makes it difficult to perform the matching to fixed-order computations, since resummation
effects persist even when the CSS formula is evaluated at large qT ∼ M , as discussed in [55].
All of these complications are absent in our resummed results (52), (60), and (69). Our ex-
pressions are given directly in momentum space and do not involve a Landau-pole singularity.

5The first relation in (71) can be found, in almost precisely this form, in equation (3.13) of [4], from which
it follows that Fqq̄(x2

T , µ) = −K(xT µ, αs) in the notation of that paper.
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orders. The integral K(η, a, r) and its derivative with respect to η can easily be evaluated
numerically. We have not succeeded to derive a suitable analytic expression for this integral
in the general case where r != 1 and η is not close to 1.

6 Comparison with the literature

The standard formalism for transverse-momentum resummation has been developed in a sem-
inal paper by Collins, Soper, and Sterman (CSS) [4]. According to this work, the resummed
differential cross section at leading power can be written in the form
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)
Cq̄j

(
z2, αs(µb)

)
φi/N1(ξ1/z1, µb) φj/N2(ξ2/z2, µb) + (q, i ↔ q̄, j)

]
,

where µb = b0/xT is assumed to be in the perturbative domain. It is a straightforward exercise
to work out the relations between the various objects in this formula and ours. We find

A
(
αs

)
= ΓF
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β(αs)

2

dg1(αs)
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,

(71)

where

g1(αs) = F (0, αs) =
∞∑

n=1

dq
n

(αs

4π

)n
,

g2(αs) = ln
∣∣CV (−µ2, µ)

∣∣2 =
∞∑

n=1

eq
n

(αs

4π

)n

.

(72)

The one-loop coefficients are dq
1 = 0 and

eq
1 = CF

(
7π2

3
− 16

)
. (73)

The two-loop coefficient dq
2 has been given in (51), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (71) are compatible with our perturbative results.

Note that according to (71) the coefficient A in the CSS formula differs from the cusp
anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
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It is a straightforward exercise to work out the relations between the various objects in
this formula and ours. We find
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The one-loop coefficients are dq
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The two-loop coefficient dq
2 has been given in (51), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (72) are compatible with our perturbative results.

Note that according to (72) the coefficient A in the CSS formula differs from the cusp
anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
anomalous dimension 2γq starting at two-loop order.5 The first non-zero deviations are (here
A(n) and B(n) denote the n-th order coefficients in the expansion in powers of αs/(4π))

A(3) = ΓF
2 + 2β0d

q
2 , B(2) = 2γq

1 + dq
2 + β0e

q
1 . (75)

5The first relation in (72) can be found, in almost precisely this form, in equation (3.13) of [4], from which
it follows that Fqq̄(x2

T , µ) = −K(xT µ, αs) in the notation of that paper.
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Comparison with the CSS formula

✦ Fact that                            was missed by all 
previous SCET analyses! 

✦ From known expression for B(αs) we can 
extract the two-loop result for F(0,αs)

✦ Can then predict the three-loop anomaly 
contribution to A(αs) coefficient, which was 
unknown before but is numerically important: 

The two-loop coefficient dq
2 has been given in (48), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (60) are compatible with our perturbative results.

Note that according to (60) the coefficient A in the CSS formula differs from the cusp
anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
anomalous dimension 2γq starting at two-loop order.2 The first non-zero deviations are (here
A(n) and B(n) denote the n-th order coefficients in the expansion in powers of αs/(4π))

A(3) = ΓF
2 + 2β0d

q
2 , B(2) = 2γq

1 + dq
2 + β0e

q
1 . (63)

The two-loop expression for B(αs) was obtained a long time ago in [6], while for gluon-initiated
processes such as Higgs-boson production the corresponding coefficient was calculated in [7].
Using these results, we have derived the anticipated relation (48). Inserting the coefficients
dq,g

2 into (63), we obtain the coefficient A(3), which up to now was the last missing ingredient
for a full NNLL resummation of the qT spectrum. In the literature it is commonly assumed
that A(3) = ΓF

2 (see e. g. [21, 22]), which is true for soft gluon resummation, but our results
show that for transverse-momentum resummation an extra contribution arises because of the
collinear anomaly. Numerically, for the quark case with nf = 5, we find ΓF

2 = 239.2 while
A(3) = −413.7, so the extra term is much larger than the contribution from the cusp anomalous
dimension and has opposite sign. It will be interesting to see how this changes the numerical
predictions for the spectrum. Note also that, due to Casimir scaling, in the gluon case a similar
situation but with larger coefficients occurs, and we find ΓF

2 = 538.2 while A(3) = −930.8.
While we obtained the closed-form expressions (49) and (57) for the cross section directly

in momentum space, the CSS formula (59) involves a Fourier integral over xT . Because of
the inherent scale choice µ = µb = b0/xT , this integration cannot be performed analytically.
Worse, since the integrand involves αs(µb), the integration hits the Landau pole in the running
coupling, so that a prescription is needed to regularize the integral. In practical applications,
the integration is cut off at large xT values. To account for the missing long-distance contri-
butions a non-perturbative model function is used. For qT in the perturbative domain these
contributions are formally power suppressed, but it is irritating that an explicit prescription
for how to deal with them is needed even for qT values deep in the perturbative regime. Special
care has to be taken in order not to induce unphysical power corrections in the cut-off proce-
dure [48]. The explicit cut-off also makes it difficult to perform the matching to fixed-order
computations, since resummation effects persist even when the CSS formula is evaluated at
large qT ∼ M , as discussed in [49]. All of these complications are absent in our resummed re-
sults (49) and (57). Our expressions are given directly in momentum space and do not involve
a Landau-pole singularity. In the spirit of effective field theory, we never perform scale setting
inside integrals over the running coupling αs(µ). Instead, the scales are chosen such that the
integrated result is free of large logarithms. The matching onto fixed-order computations is
completely trivial, since our analytic result (57) can easily be reexpanded in powers of a fixed
coupling αs(µ). Moreover, in contrast to the CSS formula, the resummation switches itself off
adiabatically when µ ∼ qT approaches M , since all the logarithms become small and the RG

2The first relation in (60) can be found, in almost precisely this form, in equation (3.13) of [4]. For reasons
that are not known to us, the fact that A #= ΓF

cusp is nevertheless largely ignored in the literature.
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The two-loop coefficient dq
2 has been given in (48), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (60) are compatible with our perturbative results.

Note that according to (60) the coefficient A in the CSS formula differs from the cusp
anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
anomalous dimension 2γq starting at two-loop order.2 The first non-zero deviations are (here
A(n) and B(n) denote the n-th order coefficients in the expansion in powers of αs/(4π))
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The two-loop expression for B(αs) was obtained a long time ago in [6], while for gluon-initiated
processes such as Higgs-boson production the corresponding coefficient was calculated in [7].
Using these results, we have derived the anticipated relation (48). Inserting the coefficients
dq,g

2 into (63), we obtain the coefficient A(3), which up to now was the last missing ingredient
for a full NNLL resummation of the qT spectrum. In the literature it is commonly assumed
that A(3) = ΓF

2 (see e. g. [21, 22]), which is true for soft gluon resummation, but our results
show that for transverse-momentum resummation an extra contribution arises because of the
collinear anomaly. Numerically, for the quark case with nf = 5, we find ΓF

2 = 239.2 while
A(3) = −413.7, so the extra term is much larger than the contribution from the cusp anomalous
dimension and has opposite sign. It will be interesting to see how this changes the numerical
predictions for the spectrum. Note also that, due to Casimir scaling, in the gluon case a similar
situation but with larger coefficients occurs, and we find ΓF

2 = 538.2 while A(3) = −930.8.
While we obtained the closed-form expressions (49) and (57) for the cross section directly

in momentum space, the CSS formula (59) involves a Fourier integral over xT . Because of
the inherent scale choice µ = µb = b0/xT , this integration cannot be performed analytically.
Worse, since the integrand involves αs(µb), the integration hits the Landau pole in the running
coupling, so that a prescription is needed to regularize the integral. In practical applications,
the integration is cut off at large xT values. To account for the missing long-distance contri-
butions a non-perturbative model function is used. For qT in the perturbative domain these
contributions are formally power suppressed, but it is irritating that an explicit prescription
for how to deal with them is needed even for qT values deep in the perturbative regime. Special
care has to be taken in order not to induce unphysical power corrections in the cut-off proce-
dure [48]. The explicit cut-off also makes it difficult to perform the matching to fixed-order
computations, since resummation effects persist even when the CSS formula is evaluated at
large qT ∼ M , as discussed in [49]. All of these complications are absent in our resummed re-
sults (49) and (57). Our expressions are given directly in momentum space and do not involve
a Landau-pole singularity. In the spirit of effective field theory, we never perform scale setting
inside integrals over the running coupling αs(µ). Instead, the scales are chosen such that the
integrated result is free of large logarithms. The matching onto fixed-order computations is
completely trivial, since our analytic result (57) can easily be reexpanded in powers of a fixed
coupling αs(µ). Moreover, in contrast to the CSS formula, the resummation switches itself off
adiabatically when µ ∼ qT approaches M , since all the logarithms become small and the RG

2The first relation in (60) can be found, in almost precisely this form, in equation (3.13) of [4]. For reasons
that are not known to us, the fact that A #= ΓF

cusp is nevertheless largely ignored in the literature.
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ignoring extra term reduces cross section by 1% at qT=4 GeV, 
raising to 2.6% at qT=2 GeV (larger effect for Higgs prod.)  

→ 
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A(αs) $= ΓF
cusp(αs)

It is a straightforward exercise to work out the relations between the various objects in
this formula and ours. We find
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where
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The one-loop coefficients are dq
1 = 0 and

eq
1 = CF

(
7π2

3
− 16

)
. (74)

The two-loop coefficient dq
2 has been given in (51), while eq

2 can be extracted from the results
compiled in [31], however it contributes to B(αs) at O(α3

s) only. We have checked that the
relations in (72) are compatible with our perturbative results.

Note that according to (72) the coefficient A in the CSS formula differs from the cusp
anomalous dimension starting at three-loop order, and the coefficient B differs from the quark
anomalous dimension 2γq starting at two-loop order.5 The first non-zero deviations are (here
A(n) and B(n) denote the n-th order coefficients in the expansion in powers of αs/(4π))

A(3) = ΓF
2 + 2β0d

q
2 , B(2) = 2γq

1 + dq
2 + β0e

q
1 . (75)

5The first relation in (72) can be found, in almost precisely this form, in equation (3.13) of [4], from which
it follows that Fqq̄(x2

T , µ) = −K(xT µ, αs) in the notation of that paper.
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Simplifications for large qT



Short-distance expansion for xT «ΛQCD

✦ Generalized PDFs at small transverse 
separation can be expanded in usual PDFs: 

✦ Expansion kernels are obtained from matching 
calculation

It will also be useful to study the total cross section defined with a cut qT ≤ QT , which vetoes
single jet emission. Neglecting the dependence of the variable τ in (17) on q2

T , which is a
power-suppressed effect, we obtain from (24)
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2
T , M2, µ) ffij

( M2

z1z2s
, µ

)

+ (q, i ↔ q̄, j)

]

.

3 Calculation of the kernels Iq←q and Iq←g

We now perform a perturbative calculation of the relevant kernels Ii←j entering the factor-
ization formula (22) at first non-trivial order in αs. Since we do not have explicit operator
definitions of the (good) transverse distribution functions Bi/N , we analyze instead the original
(bad) functions Bi/N defined in (11), keeping in mind that only products of two such functions
referring to different hadrons are well defined. If we write an operator-product expansion
analogous to (19)

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(z, x

2
T , µ) φj/N(ξ/z, µ) + O(Λ2

QCD x2
T ) , (27)

it follows that the products of two Ii←j functions are well defined and obey a factorization
formula analogous to (13).

3.1 One-loop results

Perturbative expansions for the kernels Ii←j can be derived from a matching calculation, in
which the matrix elements in (10) and (11) are evaluated using external parton states carrying
a fixed fraction of the nucleon momentum p. The tree-level result is obviously given by

Ii←j(z, x
2
T , µ) = δ(1 − z) δij + O(αs) . (28)

The relevant one-loop diagrams giving rise to the O(αs) corrections to the kernels Iq←q = Iq̄←q̄

are shown in the first row of Figure 1. There is no need to consider diagrams with external-leg
corrections on only one side of the cut, because these give identical contributions to Bi/N and
φi/N and thus do not change the tree-level result (28). Working in Feynman gauge, we find
that the contribution of the first diagram is

Ia
q←q(z, x

2
T , µ) = −

CF αs

2π
(1 − z)

(

1

ε
+ L⊥ − 1

)

, L⊥ = ln
x2

T µ2

4e−2γE
, (29)

while the fourth diagram gives a vanishing result, Id
q←q = 0. As before, αs ≡ αs(µ) always
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expressed as
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where

ξ1 =
√

τ ey , ξ2 =
√

τ e−y , with τ =
m2
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s
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M2 + q2
T

s
. (17)

We have used that d4q θ(q0) δ(q2 − M2) = 1
2 d2q⊥ dy = π

2 dq2
T dy, where the last identity holds

after integration over the polar angle. In the factorization formula (16), the disparate scales M2

and q2
T ∼ x−2

T are now completely separated. Corrections to the leading term in this formula
are suppressed by powers of the ratio q2

T /M2 & 1. Also, as written above, the formula holds
irrespective of whether or not the transverse momentum is a perturbative scale. Taking a
Fourier transform of the cross section, it is possible to get direct access to the xT -dependent
PDFs as given in the factorization theorem (13). We find
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(18)

By varying xT , M2, s, y, and the beam nuclei N1, N2, one can (at least in principle) map
out the functional dependences of Fqq̄ and certain combinations of transverse PDFs on x2

T and
ξi, much in the same way as the standard PDFs are constrained from fits to Drell-Yan cross
sections. While for xT & Λ−1

QCD the right-hand side of (18) can be calculated in terms of known

PDFs (see below), for xT ∼ Λ−1
QCD the above relation provides access to the non-perturbative

behavior of Fqq̄ and of the transverse PDFs. This can help to constrain phenomenological
models of these functions, which are needed e.g. for a precision determination of the mass
of the W boson. We emphasize that the above relation only holds for x2

T ' 1/M2, because
otherwise the power corrections to our factorization formula become large. It can therefore
not be used to study the xT → 0 limit of the functions Fqq̄ or Bi/N .

2.3 Simplifications at large q2
T

For given transverse momentum qT , the Fourier integral in (16) receives important contri-
butions from transverse separations xT ! q−1

T only. For large transverse momenta in the
perturbative domain, q2

T ' Λ2
QCD, we therefore need the xT -dependent PDFs at transverse

separation xT & Λ−1
QCD. In this case these functions obey an operator-product expansion of

the form [34]

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(ξ/z, x

2
T , µ) φj/N(z, µ) + O(Λ2

QCD x2
T ) . (19)
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Figure 1: One-loop diagrams contributing to the matching coefficients Iq←q (top row) and
Iq←g (bottom row). The vertical lines indicate cut propagators.

refers to the running coupling evaluated at the scale µ, unless indicated otherwise. The
dimensional regulator is defined by d = 4− 2ε, and we omit O(ε) terms. Moreover, µ denotes
the renormalization scale defined in the MS scheme. The remaining two diagrams turn out
to be ill-defined in dimensional regularization due to light-cone singularities. To give meaning
to the corresponding loop integrals requires introducing additional regulators. The simplest
possibility is to employ analytic regularization, as is common in the context of asymptotic
expansions [19, 20]. In the context of SCET this method has been used in [15, 44]. One starts
by reconsidering the QCD diagrams contributing to the process and raises all propagators
through which the external hard-collinear momentum p flows to a fractional power,

1

−(p − k)2 − iε
→

ν2α
1

[−(p − k)2 − iε]1+α , (30)

and similarly for the anti-hard-collinear propagators, but with a different regulator β and
associated scale ν2. For QCD diagrams, such as the first graph in Figure 2, the modification
is trivial in the sense that the limits α → 0 and β → 0 are smooth as long as ε is kept finite.
However, with the analytic regulators in place also the SCET diagrams in the (anti-)hard-
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of diagrams develop singularities in the limit β → 0 followed by α → 0 or vice versa, which
cancel in the sum of the results from both sectors.

With the analytic regulators in place, the remaining two diagrams in Figure 1 can now be
computed and both give the same result. For their sum, we obtain

Ib+c
q←q(z, x

2
T , µ) =

CFαs

2π
eεγE

(

µ2

ν2
1

)−α (

q2

ν2
2

)−β 2z

(1 − z)1−α+β

Γ(−ε − α)

Γ(1 + α)

(

x2
T µ2

4

)ε+α

. (32)

Like in full QCD, the analytic regulators must be taken to zero before taking the limit ε → 0.
The result depends on the order in which the limits α → 0 and β → 0 are performed. Ex-
panding first in β and then in α, the light-cone singularities are regulated by the α parameter,
and we find for the sum of all four one-loop diagrams

Iq←q(z, x
2
T , µ)

∣

∣

∣

α reg.
= −

CFαs

2π

{(

1

ε
+ L⊥

) [(

2

α
− 2 ln

µ2

ν2
1

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

. (33)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq←q(z, x
2
T , µ)

∣

∣

∣

β reg.
= −

CF αs

2π

{(

1

ε
+ L⊥

) [(

−
2

β
+ 2 ln

q2

ν2
2

)

δ(1 − z) +
1 + z2

(1 − z)+

]

−(1−z)

}

.

(34)
The above results refer to the kernel associated with hard-collinear partons, which propa-

gate along the n direction. Let us now consider what happens when we calculate the corre-
sponding kernel for anti-hard-collinear fields. In that case we get the same answer but with
α, ν1 and β, ν2 interchanged. We then find that in the product of a hard-collinear and an
anti-hard-collinear kernel function the analytic regulators disappear, no matter in which order
the limits α → 0 and β → 0 are taken. This product is thus regulator independent and well
defined in dimensional regularization. After MS subtractions, we obtain

[

Iq←q(z1, x
2
T , µ) Iq̄←q̄(z2, x

2
T , µ)

]

q2

= δ(1 − z1) δ(1 − z2)

[

1 −
CFαs

2π

(

2L⊥ ln
q2

µ2
+ L2

⊥ − 3L⊥ +
π2

6

)]

−
CF αs

2π

{

δ(1 − z1)

[

L⊥

(

1 + z2
2

1 − z2

)

+

− (1 − z2)

]

+ (z1 ↔ z2)

}

+ O(α2
s) .

(35)
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→
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1

[−(p − k)2 − iε]1+α , (30)

and similarly for the anti-hard-collinear propagators, but with a different regulator β and
associated scale ν2. For QCD diagrams, such as the first graph in Figure 2, the modification
is trivial in the sense that the limits α → 0 and β → 0 are smooth as long as ε is kept finite.
However, with the analytic regulators in place also the SCET diagrams in the (anti-)hard-
collinear sectors are now also well-defined. The diagrams in each sector involve divergences
in the analytical regulator, which cancel in the sum of all contributions. If the momentum
k in (30) is hard-collinear, as in the first SCET diagram in Figure 2, the regularization in
the effective theory takes the same form as in QCD. If, on the other hand, the momentum
k is anti-hard-collinear, then the propagator is far off-shell and in SCET is represented by a
Wilson line, as shown in the second diagram in Figure 2. Using the replacement rule (30) and
performing the appropriate expansions, we find that the Feynman rule for a gluon emission
from the anti-hard-collinear Wilson line Whc in the current operator (6) gets replaced by

nµ

n · k − iε
→

ν2α
1 nµ n̄ · p
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As seen in Figure 2, the regulator α plays a double role: it regularizes the fermion propagators
in hard-collinear diagrams and the Wilson lines in anti-hard-collinear diagrams. Both classes
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✦ Introducing analogous regulator β in anti-
collinear sector, we find:

✦ The product of two such functions is regulator 
independent:
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of diagrams develop singularities in the limit β → 0 followed by α → 0 or vice versa, which
cancel in the sum of the results from both sectors.

With the analytic regulators in place, the remaining two diagrams in Figure 1 can now be
computed and both give the same result. For their sum, we obtain

Ib+c
q←q(z, x

2
T , µ) =

CFαs

2π
eεγE

(

µ2

ν2
1

)−α (

q2

ν2
2

)−β 2z

(1 − z)1−α+β

Γ(−ε − α)

Γ(1 + α)

(

x2
T µ2

4

)ε+α

. (32)

Like in full QCD, the analytic regulators must be taken to zero before taking the limit ε → 0.
The result depends on the order in which the limits α → 0 and β → 0 are performed. Ex-
panding first in β and then in α, the light-cone singularities are regulated by the α parameter,
and we find for the sum of all four one-loop diagrams

Iq←q(z, x
2
T , µ)

∣

∣

∣

α reg.
= −

CFαs

2π

{(

1

ε
+ L⊥

) [(

2

α
− 2 ln

µ2

ν2
1

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

. (33)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq←q(z, x
2
T , µ)

∣

∣

∣

β reg.
= −

CF αs

2π

{(

1

ε
+ L⊥

) [(

−
2

β
+ 2 ln

q2

ν2
2

)

δ(1 − z) +
1 + z2

(1 − z)+

]

−(1−z)

}

.

(34)
The above results refer to the kernel associated with hard-collinear partons, which propa-

gate along the n direction. Let us now consider what happens when we calculate the corre-
sponding kernel for anti-hard-collinear fields. In that case we get the same answer but with
α, ν1 and β, ν2 interchanged. We then find that in the product of a hard-collinear and an
anti-hard-collinear kernel function the analytic regulators disappear, no matter in which order
the limits α → 0 and β → 0 are taken. This product is thus regulator independent and well
defined in dimensional regularization. After MS subtractions, we obtain

[

Iq←q(z1, x
2
T , µ) Iq̄←q̄(z2, x

2
T , µ)

]

q2

= δ(1 − z1) δ(1 − z2)

[

1 −
CFαs

2π

(

2L⊥ ln
q2

µ2
+ L2

⊥ − 3L⊥ +
π2

6

)]

−
CF αs

2π

{

δ(1 − z1)

[

L⊥

(

1 + z2
2

1 − z2

)

+

− (1 − z2)

]

+ (z1 ↔ z2)

}

+ O(α2
s) .

(35)
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of diagrams develop singularities in the limit β → 0 followed by α → 0 or vice versa, which
cancel in the sum of the results from both sectors.

With the analytic regulators in place, the remaining two diagrams in Figure 1 can now be
computed and both give the same result. For their sum, we obtain

Ib+c
q←q(z, x

2
T , µ) =

CFαs

2π
eεγE

(

µ2

ν2
1

)−α (

q2

ν2
2

)−β 2z

(1 − z)1−α+β

Γ(−ε − α)

Γ(1 + α)

(

x2
T µ2

4

)ε+α

. (32)

Like in full QCD, the analytic regulators must be taken to zero before taking the limit ε → 0.
The result depends on the order in which the limits α → 0 and β → 0 are performed. Ex-
panding first in β and then in α, the light-cone singularities are regulated by the α parameter,
and we find for the sum of all four one-loop diagrams

Iq←q(z, x
2
T , µ)

∣

∣

∣

α reg.
= −

CFαs

2π

{(

1

ε
+ L⊥

) [(

2

α
− 2 ln

µ2

ν2
1

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

. (33)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq←q(z, x
2
T , µ)

∣

∣

∣

β reg.
= −

CF αs

2π

{(

1

ε
+ L⊥

) [(

−
2

β
+ 2 ln

q2

ν2
2

)

δ(1 − z) +
1 + z2

(1 − z)+

]

−(1−z)

}

.

(34)
The above results refer to the kernel associated with hard-collinear partons, which propa-

gate along the n direction. Let us now consider what happens when we calculate the corre-
sponding kernel for anti-hard-collinear fields. In that case we get the same answer but with
α, ν1 and β, ν2 interchanged. We then find that in the product of a hard-collinear and an
anti-hard-collinear kernel function the analytic regulators disappear, no matter in which order
the limits α → 0 and β → 0 are taken. This product is thus regulator independent and well
defined in dimensional regularization. After MS subtractions, we obtain

[
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T , µ) Iq̄←q̄(z2, x

2
T , µ)

]

q2

= δ(1 − z1) δ(1 − z2)

[

1 −
CFαs

2π

(

2L⊥ ln
q2

µ2
+ L2

⊥ − 3L⊥ +
π2

6

)]

−
CF αs

2π

{

δ(1 − z1)

[

L⊥

(

1 + z2
2

1 − z2

)

+

− (1 − z2)

]

+ (z1 ↔ z2)

}

+ O(α2
s) .
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of diagrams develop singularities in the limit β → 0 followed by α → 0 or vice versa, which
cancel in the sum of the results from both sectors.

With the analytic regulators in place, the remaining two diagrams in Figure 1 can now be
computed and both give the same result. For their sum, we obtain

Ib+c
q←q(z, x

2
T , µ) =

CFαs

2π
eεγE

(

µ2

ν2
1

)−α (

q2

ν2
2

)−β 2z

(1 − z)1−α+β

Γ(−ε − α)

Γ(1 + α)

(

x2
T µ2

4

)ε+α

. (32)

Like in full QCD, the analytic regulators must be taken to zero before taking the limit ε → 0.
The result depends on the order in which the limits α → 0 and β → 0 are performed. Ex-
panding first in β and then in α, the light-cone singularities are regulated by the α parameter,
and we find for the sum of all four one-loop diagrams

Iq←q(z, x
2
T , µ)

∣

∣

∣

α reg.
= −

CFαs

2π

{(

1

ε
+ L⊥

) [(

2

α
− 2 ln

µ2

ν2
1

)

δ(1 − z) +
1 + z2

(1 − z)+

]

+ δ(1 − z)

(

−
2

ε2
+ L2

⊥ +
π2

6

)

− (1 − z)

}

. (33)

If the expansions are performed in the opposite order, then β acts as the analytic regulator,
and we obtain

Iq←q(z, x
2
T , µ)

∣

∣

∣

β reg.
= −

CF αs

2π

{(

1

ε
+ L⊥

) [(

−
2

β
+ 2 ln

q2

ν2
2

)

δ(1 − z) +
1 + z2

(1 − z)+

]

−(1−z)

}

.

(34)
The above results refer to the kernel associated with hard-collinear partons, which propa-

gate along the n direction. Let us now consider what happens when we calculate the corre-
sponding kernel for anti-hard-collinear fields. In that case we get the same answer but with
α, ν1 and β, ν2 interchanged. We then find that in the product of a hard-collinear and an
anti-hard-collinear kernel function the analytic regulators disappear, no matter in which order
the limits α → 0 and β → 0 are taken. This product is thus regulator independent and well
defined in dimensional regularization. After MS subtractions, we obtain

[

Iq←q(z1, x
2
T , µ) Iq̄←q̄(z2, x

2
T , µ)

]

q2

= δ(1 − z1) δ(1 − z2)

[

1 −
CFαs

2π

(

2L⊥ ln
q2

µ2
+ L2

⊥ − 3L⊥ +
π2

6

)]

−
CF αs

2π

{

δ(1 − z1)

[

L⊥

(

1 + z2
2

1 − z2

)

+

− (1 − z2)

]

+ (z1 ↔ z2)

}

+ O(α2
s) .

(35)
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It will also be useful to study the total cross section defined with a cut qT ≤ QT , which vetoes
single jet emission. Neglecting the dependence of the variable τ in (17) on q2

T , which is a
power-suppressed effect, we obtain from (24)

dσ

dM2

∣

∣

∣

∣

qT ≤QT

=
4πα2

3NcM2s

∑

q

e2
q

∑

i=q,g

∑

j=q̄,g

∫∫

z1z2≥M2/s

dz1

z1

dz2

z2
(26)

×
[

min(Q2
T , z1z2s−M2)
∫

0

dq2
T Cqq̄→ij(z1, z2, q

2
T , M2, µ) ffij

( M2

z1z2s
, µ

)

+ (q, i ↔ q̄, j)

]

.

3 Calculation of the kernels Iq←q and Iq←g

We now perform a perturbative calculation of the relevant kernels Ii←j entering the factor-
ization formula (22) at first non-trivial order in αs. Since we do not have explicit operator
definitions of the (good) transverse distribution functions Bi/N , we analyze instead the original
(bad) functions Bi/N defined in (11), keeping in mind that only products of two such functions
referring to different hadrons are well defined. If we write an operator-product expansion
analogous to (19)

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(z, x

2
T , µ) φj/N(ξ/z, µ) + O(Λ2

QCD x2
T ) , (27)

it follows that the products of two Ii←j functions are well defined and obey a factorization
formula analogous to (13).

3.1 One-loop results

Perturbative expansions for the kernels Ii←j can be derived from a matching calculation, in
which the matrix elements in (10) and (11) are evaluated using external parton states carrying
a fixed fraction of the nucleon momentum p. The tree-level result is obviously given by

Ii←j(z, x
2
T , µ) = δ(1 − z) δij + O(αs) . (28)

The relevant one-loop diagrams giving rise to the O(αs) corrections to the kernels Iq←q = Iq̄←q̄

are shown in the first row of Figure 1. There is no need to consider diagrams with external-leg
corrections on only one side of the cut, because these give identical contributions to Bi/N and
φi/N and thus do not change the tree-level result (28). Working in Feynman gauge, we find
that the contribution of the first diagram is

Ia
q←q(z, x

2
T , µ) = −

CF αs

2π
(1 − z)

(

1

ε
+ L⊥ − 1

)

, L⊥ = ln
x2

T µ2

4e−2γE
, (29)

while the fourth diagram gives a vanishing result, Id
q←q = 0. As before, αs ≡ αs(µ) always
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✦ From previous result we read off:

✦ Two-loop result for                                      :

-1

Next we calculate the kernel Iq←g at one-loop order. This function vanishes at tree level,
and at one-loop order it follows from the evaluation of a single diagram shown in the second
row of Figure 1. There is no need for analytic regularization in this case, and after MS
subtractions we find

Iq←g(z, x
2
T , µ) = −

TF αs

2π

{

L⊥

[

z2 + (1 − z)2
]

− 2z(1 − z)
}

+ O(α2
s) . (36)

From (35) and (36) we can extract the one-loop expressions for the renormalized function
Fqq̄ and the renormalized kernels Ii←j relevant for Drell-Yan production. We obtain

Fqq̄(L⊥, αs) =
CF αs

π
L⊥ + O(α2

s) , (37)

and

Iq←q(z, L⊥, αs) = δ(1 − z)

[

1 +
CFαs

4π

(

L2
⊥ + 3L⊥ −

π2

6

)]

−
CFαs

2π

[

L⊥Pq←q(z) − (1 − z)
]

+ O(α2
s) ,

Iq←g(z, L⊥, αs) = −
TF αs

2π

[

L⊥Pq←g(z) − 2z(1 − z)
]

+ O(α2
s) ,

(38)

with L⊥ as defined in (29). The kernel Iq̄→q̄ is given by the same expression as Iq→q, and
Iq̄→g has the same form as Iq→g. Note that, with a slight abuse of notation, we have changed
the arguments x2

T and µ in Fqq̄ and the kernel functions to L⊥ and αs, as this will be more
convenient from now on. In the above expressions
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+

, Pq←g(z) = z2 + (1 − z)2 (39)

are the one-loop Altarelli-Parisi splitting functions, defined as

Pq←q(x, µ) =
CFαs

π
Pq←q(x) + O(α2

s) , Pq←g(x, µ) =
TF αs

π
Pq←g(x) + O(α2

s) . (40)

It is straightforward to check that our one-loop results (35) and (36) satisfy the general evo-
lution equations (21).

3.2 All-order dependence on the hard momentum transfer

The appearance of a logarithm of the large momentum transfer q2 in the matching condition
(35) appears strange at first sight, since it arises from the evaluation of hard-collinear and anti-
hard-collinear loop graphs in the effective theory, in which these two sectors are decoupled from
each other at the Lagrangian level. Naively we would thus expect a dependence on the scale
xT only. For µ of order a typical hard-collinear scale the resulting logarithm is parametrically
large, so that αs ln(q2/µ2) ∼ 1 in RG power counting. The question then arises if higher
powers of such logarithms appear in higher orders of perturbation theory, and if this is the
case, how these logarithms can be resummed to all orders.
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Altarelli-Parisi splitting functions

These conditions enforce that Hi and Hj are linear in their last two arguments with coefficients
that are independent of ξ1 and ξ2, and hence we are free to write

lnBi/N1
Bj/N2

= Hi

(

ξ2, L⊥, αs(µ)
)

+ Hj

(

ξ2, L⊥, αs(µ)
)

− Fij

(

L⊥, αs(µ)
)

(

ln
q2

µ2
+ L⊥

)

. (43)

We have used the freedom that the decomposition is unique up to a function of L⊥ to make the
coefficient of Fqq̄ scale independent. With the identification Hi = lnBi/N1

and Hj = ln Bj/N2

this proves relation (13), where we have considered the special case i = q, j = q̄.
Let us now collect what can be said about the function Fqq̄ based on general principles.

Generalizing our one-loop result to higher orders, we can write the perturbative expansion of
Fqq̄ in the form

Fqq̄(L⊥, αs) =
∞

∑

n=1

dq
n(L⊥)

(αs

4π

)n
, (44)

where dq
1(L⊥) = 4CF L⊥. The first evolution equation in (14) then implies the recursion

relation

dq
n
′(L⊥) = ΓF

n−1 +
n−1
∑

m=1

m βn−1−m dq
m(L⊥) , n ≥ 1 , (45)

where the prime denotes a derivative with respect to L⊥, and as usual we have expanded the
cusp anomalous dimension and β(αs) = µ dαs/dµ as

ΓF
cusp(αs) =

∞
∑

n=1

ΓF
n−1

(αs

4π

)n

, β(αs) = −2αs

∞
∑

n=1

βn−1

(αs

4π

)n

. (46)

For the first two expansion coefficients, we obtain

dq
1(L⊥) = ΓF

0 L⊥ + dq
1 , dq

2(L⊥) =
ΓF

0 β0

2
L2
⊥ + ΓF

1 L⊥ + dq
2 , (47)

where dq
n ≡ dq

n(0) with dq
1 = 0. The expansion of the corresponding function Fgg for Higgs

production can be written as in (44) but with coefficients dg
n, which obey analogous equations

in which ΓF
cusp is replaced by ΓA

cusp. We will later discuss how the two-loop coefficients dq,g
2

can be extracted from existing calculations of higher-order corrections to Drell-Yan and Higgs
production cross sections derived in fixed-order perturbation theory [6, 7]. The result is

dq
2

CF
=

dg
2

CA
= CA

(

808

27
− 28ζ3

)

−
224

27
TFnf . (48)

These coefficients contain only maximally non-abelian color structures, and it is natural to
conjecture that also in higher orders they are constrained by the non-abelian exponentiation
theorem [37, 38], as is the case for the cusp anomalous dimension. This would imply that the
Casimir scaling relation dq

n/CF = dg
n/CA continues to hold at least to three-loop order. Since

the cusp anomalous dimension obeys the same relation, Casimir scaling to three-loop order
holds for the entire Fqq̄ and Fgg functions, as shown in (15). Note that there are arguments
indicating that for the cusp anomalous dimension Casimir scaling should hold at four loops
and perhaps even to all orders of perturbation theory [36].
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Factorized Drell-Yan cross section

✦ Final factorization formula reads: 

✦ Hard-scattering kernels:

✦ Final task is to perform the Fourier transform, 
which can be done either numerically or in 
quasi-closed form

For SCET beam functions, an analogous expansion was considered in [17] and an expression
for the one-loop kernel of the quark beam function was derived in [18]. The evolution equations
for the new kernels Ii←j follow when we combine (14) with the standard DGLAP equations

d

d ln µ
φi/N(z, µ) =

∑

j

∫ 1

z

du

u
Pi←j(z/u, µ) φj/N(u, µ) . (20)

We obtain

d

d lnµ
Iq←i(z, x

2
T , µ) =

[

ΓF
cusp(αs) ln

x2
T µ2

4e−2γE
− 2γq(αs)

]

Iq←i(z, x
2
T , µ)

−
∑

j

∫ 1

z

du

u
Iq←j(u, x2

T , µ)Pj←i(z/u, µ) .

(21)

Because of the complicated form of the DGLAP equations, no closed solution can be derived.
Neglecting power corrections of order Λ2

QCD/q2
T , we can use relation (19) to express the dif-

ferential cross section (16) as a convolution of perturbative, factorized hard-scattering kernels

Cqq̄→ij(z1, z2, q
2
T , M2, µ) =

∣

∣CV (−M2, µ)
∣

∣

2 1

4π

∫

d2x⊥ e−iq⊥·x⊥

(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

× Iq←i(z1, x
2
T , µ) Iq̄←j(z2, x

2
T , µ)

(22)

with ordinary PDFs. The result reads

d3σ

dM2 dq2
T dy

=
4πα2

3NcM2s

∑

q

e2
q

∑

i=q,g

∑

j=q̄,g

∫ 1

ξ1

dz1

z1

∫ 1

ξ2

dz2

z2

×
[

Cqq̄→ij

(

ξ1

z1
,
ξ2

z2
, q2

T , M2, µ

)

φi/N1
(z1, µ) φj/N2

(z2, µ) + (q, i ↔ q̄, j)

]

.

(23)

This formula, as well as relations (24) and (26) below, receive power corrections in the two
small ratios q2

T /M2 and Λ2
QCD/q2

T . This will not be indicated explicitly.
Integrating this result over rapidity, with |y| ≤ ln(1/τ), we obtain

d2σ

dM2 dq2
T

=
4πα2

3NcM2s

∑

q

e2
q

∑

i=q,g

∑

j=q̄,g

∫∫

z1z2≥τ

dz1

z1

dz2

z2

×
[

Cqq̄→ij(z1, z2, q
2
T , M2, µ) ffij

( τ

z1z2
, µ

)

+ (q, i ↔ q̄, j)

]

,

(24)

where the parton luminosities are defined as

ffij(u, µ) =

∫ 1

u

dz

z
φi/N1

(z, µ) φj/N2
(u/z, µ) . (25)
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Subtleties and surprises



Asymptotic divergence

✦ Leading behavior follows from (           ):

where                         and 

✦ With proper choice of scale                   it looks 
like one could expand the quadratic term in   , 
but this generates strong factorial growth 

larger than about 2GeV. Note that the higher-derivative terms in (59) are accompanied by
powers of 1/(1 − η), so that for η very close to 1 a reorganization of the perturbative series
becomes necessary. This will be discussed in detail in a forthcoming article [41].

Using the above result, we obtain a closed-form expression for the resummed hard-scattering
kernels, which reads

Cqq̄→ij(z1, z2, q
2
T , M2, µ) =

∣∣CV (−M2, µ)
∣∣2 Iq←i(z1,−∂η, αs) Iq̄←j(z2,−∂η, αs)

× Eqq̄(−∂η, αs, ηF )
1

q2
T

(
q2
T

µ2

)η Γ(1 − η)

e2ηγE Γ(η)

∣∣∣∣
η=ηF

,
(60)

where ηF ≡ ηF (M2, µ), and the arguments of the Ii←j(z, L⊥, αs) functions are those shown in
(41). It is understood that for |CV |2 one uses the resummed expression in (52). All remaining
quantities have perturbative expansions in powers of αs = αs(µ) free of large logarithms. In
writing the above result we have introduced the function

Eqq̄(L⊥, αs, η) = exp
[
− L⊥Fqq̄(L⊥, αs) − η fqq̄(L⊥, αs)

]

= 1 −
αs

4π

[
ΓF

0 L2
⊥ + η

(
β0

2
L2
⊥ +

ΓF
1

ΓF
0

L⊥ +
dq

2

ΓF
0

)]
+ O(α2

s) ,
(61)

which is completely determined in terms of Fqq̄. The two-loop coefficients dq
2 and ΓF

1 enter here
already at next-to-leading order in αs. For a consistent resummation at NNLL order (or next-
to-leading order in RG-improved perturbation theory), we need the one-loop expressions for
the matching coefficients CV and Ii←j, the two-loop expression for the exponent Fqq̄, the two-
loop expression for the anomalous dimension γq, and the three-loop cusp anomalous dimension
and β function. All of these ingredients are known.

Note also that, owing to the simple q2
T dependence of the resummed result (60), it is trivial

to perform the integral over transverse momentum required to calculate the cross section (27)
defined with a cut on transverse momentum.

5 Asymptotic divergence and reorganized expansion

Despite the fact that it correctly resums all large logarithmic terms in the perturbative series,
the elegant formula (60) just derived is of limited practical use. The reason is a strong factorial
divergence of the perturbative expansion coefficients resulting from terms in the functions Ii→j

and Eqq̄ of order
(
αsL2

⊥

)n
. To understand the origin of this effect, we recall from (61) that

before expansion in powers of αs the hard-scattering kernels contain quadratic terms in L⊥

in the exponent. The same is true for the O
[(

αsL2
⊥

)n]
terms in the kernels Ii→j, which

exponentiate as a consequence of the cusp logarithm in the evolution equation (22). Let us
then consider, instead of (59), the Fourier integral

1

4π

∫
d2x⊥ e−iq⊥·x⊥ e−ηL⊥− 1

4aL2
⊥ =

e−2γE

µ2

∫ ∞

−∞

d' J0

(
e#/2 b0

qT

µ

)
e(1−η)#− 1

4a#2 ≡
e−2γE

µ2
K

(
η, a,

q2
T

µ2

)
,

(62)

19
η =

CF αs

π
ln

M2

µ2 a ∼ αs

� = L⊥

L⊥ = O(1)
�

where b0 = 2e−γE , and in the case at hand

a =
αs(µ)

2π

[
ΓF

0 + ηF (M2, µ) β0

]
. (63)

Some useful properties of the function K(η, a, r) are summarized in Appendix C. The above
definition is such that for a = 0 we recover, up to a trivial factor, the result (59) with n = 0:

K(η, 0, r) = rη−1 Γ(1 − η)

e2(η−1)γE Γ(η)
. (64)

Keeping the quadratic term in the exponent vastly improves the convergence behavior of
the Fourier integral. For a = 0 (i.e., without the quadratic term) the integral on the left-hand
side of (62) converges in the ultraviolet (for xT → 0) only if η < 1, and for η < 1

4 its value
must be defined by analytic continuation. For a > 0, on the other hand, the integral converges
for all values of η. It is then perhaps not surprising that any attempt to expand the Gaussian
weight factor in a perturbative series leads to a badly behaved expansion. Indeed, writing the
formal series

K(η, a, r)
∣∣
exp

=
∞∑

n=0

1

n!

(
−

a

4

)n
∂2n

η K(η, 0, r) =
∞∑

n=0

1

n!

(
−

a

4

)n
∂2n

η rη−1 Γ(1 − η)

e2(η−1)γE Γ(η)
, (65)

it is not difficult to see that the series is factorially divergent. To illustrate this point, we
consider the special case where r = 1 (corresponding to the default scale choice µ = qT ) and
η is close to the critical value 1. One then has

Γ(1 − η)

e2(η−1)γE Γ(η)
=

1

1 − η
−

2ζ3

3
(1 − η)2 −

2ζ5

5
(1 − η)4 + . . . , (66)

and taking 2n derivatives of the leading term generates (2n)!/(1 − η)2n+1. A more careful
analysis reveals that

K(η, a, 1)
∣∣
exp

=
∞∑

n=0

(2n)!

n!

(
−

a

4

)n
[

1

(1 − η)2n+1
− e−2γE

]
+

∞∑

n=0

kn an + O(1 − η) , (67)

where the coefficients kn do not exhibit the strong factorial growth of the terms in the first
sum. While this series is badly divergent, the fact that it has alternating sign implies that it
can be Borel-summed. We obtain

K(η, a, 1)
∣∣
Borel

=

√
π

a

{
e

(1−η)2

a

[
1 − Erf

(
1 − η√

a

)]
− e−2γE+ 1

a

[
1 − Erf

(
1√
a

)]}

+
∞∑

n=0

kn an + O(1 − η) ,

(68)

where Erf(x) is the error function. Note that the singularity at η = 1 has disappeared after
Borel summation. Expressions for the first few kn coefficients can be readily derived in terms of
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Asymptotic divergence

✦ Series is Borel summable (just keep quadratic 
term in exponent)

✦ Gives rise to highly non-trivial dependence on a:

✦ Perturbative expansion of this result has zero 
radius if convergence

✦ Hints at important non-perturbative effect of 
short-distance nature! Precise meaning?
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Asymptotically large M2

✦ Careful analysis shows that the appropriate 
choice of µ eliminating large logarithms from 
integral is                                       , where:

corresponding to 
✦ For M=mZ, one finds that                    is in the 

perturbative domain

q∗ = M exp
�

π

2CF αs(q∗)

�
µ ∼ �x−1

T � ∼ max (qT , q∗)

→ spectrum can be calculated down to qT=0    
using short-distance methods ! 

η = 1

q∗ ≈ 2 GeV



Intercept at qT=0

✦ Dedicated analysis of              limit yields:

✦ Were for the first time we are able to compute 
the normalization      and NLO coefficient

✦ Expression cannot be expanded about  
(essential singularity)

dσ

dq2
T

∼ N
√

αs
e−#/αs (1 + c1αs + . . . )

qT → 0

N c1

αs = 0

Parisi, Petronzio 1979; 
Collins, Soper, Sterman 1985; Ellis, Veseli 1998



The big picture

✦ Borel resummation at moderate qT interpolates 
between the non-perturbative result at qT=0 
and the perturbative result at large qT

✦ Essential features are non-perturbative!

non-perturbative

no
n-

pe
rt

ur
ba

ti
ve

perturbative

area
= total cross section

= perturbative!



More surprises

✦ Once we can calculate the intercept at qT=0, 
what about derivatives w.r.t. qT

2 (i.e., entire 
spectrum at very small qT)?

✦ Analyzing once again the leading behavior

we find an extremely strong divergent 
behavior:

larger than about 2GeV. Note that the higher-derivative terms in (59) are accompanied by
powers of 1/(1 − η), so that for η very close to 1 a reorganization of the perturbative series
becomes necessary. This will be discussed in detail in a forthcoming article [41].

Using the above result, we obtain a closed-form expression for the resummed hard-scattering
kernels, which reads

Cqq̄→ij(z1, z2, q
2
T , M2, µ) =

∣∣CV (−M2, µ)
∣∣2 Iq←i(z1,−∂η, αs) Iq̄←j(z2,−∂η, αs)

× Eqq̄(−∂η, αs, ηF )
1

q2
T

(
q2
T

µ2

)η Γ(1 − η)

e2ηγE Γ(η)

∣∣∣∣
η=ηF

,
(60)

where ηF ≡ ηF (M2, µ), and the arguments of the Ii←j(z, L⊥, αs) functions are those shown in
(41). It is understood that for |CV |2 one uses the resummed expression in (52). All remaining
quantities have perturbative expansions in powers of αs = αs(µ) free of large logarithms. In
writing the above result we have introduced the function

Eqq̄(L⊥, αs, η) = exp
[
− L⊥Fqq̄(L⊥, αs) − η fqq̄(L⊥, αs)

]

= 1 −
αs

4π

[
ΓF

0 L2
⊥ + η

(
β0

2
L2
⊥ +

ΓF
1

ΓF
0

L⊥ +
dq

2

ΓF
0

)]
+ O(α2

s) ,
(61)

which is completely determined in terms of Fqq̄. The two-loop coefficients dq
2 and ΓF

1 enter here
already at next-to-leading order in αs. For a consistent resummation at NNLL order (or next-
to-leading order in RG-improved perturbation theory), we need the one-loop expressions for
the matching coefficients CV and Ii←j, the two-loop expression for the exponent Fqq̄, the two-
loop expression for the anomalous dimension γq, and the three-loop cusp anomalous dimension
and β function. All of these ingredients are known.

Note also that, owing to the simple q2
T dependence of the resummed result (60), it is trivial

to perform the integral over transverse momentum required to calculate the cross section (27)
defined with a cut on transverse momentum.

5 Asymptotic divergence and reorganized expansion

Despite the fact that it correctly resums all large logarithmic terms in the perturbative series,
the elegant formula (60) just derived is of limited practical use. The reason is a strong factorial
divergence of the perturbative expansion coefficients resulting from terms in the functions Ii→j

and Eqq̄ of order
(
αsL2

⊥

)n
. To understand the origin of this effect, we recall from (61) that

before expansion in powers of αs the hard-scattering kernels contain quadratic terms in L⊥

in the exponent. The same is true for the O
[(

αsL2
⊥

)n]
terms in the kernels Ii→j, which

exponentiate as a consequence of the cusp logarithm in the evolution equation (22). Let us
then consider, instead of (59), the Fourier integral

1

4π

∫
d2x⊥ e−iq⊥·x⊥ e−ηL⊥− 1

4aL2
⊥ =

e−2γE

µ2

∫ ∞

−∞

d' J0

(
e#/2 b0

qT

µ

)
e(1−η)#− 1

4a#2 ≡
e−2γE

µ2
K

(
η, a,

q2
T

µ2

)
,

(62)
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n=0

(−1)n

n!
e#n2/αs

�
q2
T

q2
∗

�n

incredibly violent divergence!



More surprises

✦ Spectrum can be calculated numerically, even 
though power expansion in qT

2 is absolutely 
meaningless (not even Borel summable)!

✦ Find smooth behavior down to very small qT

LO+NLL

NLO+NNLL



More surprises

✦ Spectrum can be calculated numerically, even 
though power expansion in qT

2 is absolutely 
meaningless (not even Borel summable)!

✦ Find smooth behavior down to very small qT

LO+NLL

NLO+NNLL



Yet more surprises

✦ Related question is that about the impact of 
long-distance power correction in matching 
relation

✦ Find that these cannot be analyzed order by 
order, but only numerically using functions 
that vanish at large xT

2, such as             or

✦ Fixed-order OPE in xT2 is again extremely 
divergent  

The disparate scales M2 and q2
T ∼ x−2

T are now completely separated, and all large logarithms
can be resummed by choosing µ ∼ qT (or µ ∼ µ0 = few GeV in the case where qT ∼ ΛQCD)
and employing the RG-improved expression for CV (−M2, µ) given in relation (52) below.
Corrections to the leading term in the factorization formula are suppressed by powers of the
ratio q2

T /M2 # 1. Also, as written above, the formula holds irrespective of whether or not the
transverse momentum is a perturbative scale. Taking a Fourier transform of the cross section,
it is possible to get direct access to the xT -dependent PDFs as given in the factorization
theorem (15). We find

9M2s

4πα2

∫ ∞

0

dq2
T J0(qT xT )

d3σ

dM2 dq2
T dy

=
∣∣CV (−M2, µ)

∣∣2
(

x2
T M2

4e−2γE

)−Fqq̄(x2
T ,µ)

×
∑

q

e2
q

[
Bq/N1(ξ1, x

2
T , µ) Bq̄/N2(ξ2, x

2
T , µ) + (q ↔ q̄)

]
+ O

(
1

x2
T M2

)
.

(19)

By varying xT , M2, s, y, and the beam nuclei N1, N2, one can (at least in principle) map
out the functional dependences of Fqq̄ and certain combinations of transverse PDFs on x2

T and
ξi, much in the same way as the standard PDFs are constrained from fits to Drell-Yan cross
sections. While for xT # Λ−1

QCD the right-hand side of (19) can be calculated in terms of known
PDFs (see below), for xT ∼ Λ−1

QCD the above relation provides access to the non-perturbative
behavior of Fqq̄ and of the transverse PDFs. This can help to constrain phenomenological
models of these functions, which are needed e.g. for a precision determination of the mass
of the W boson. We emphasize that the above relation only holds for x2

T & 1/M2, because
otherwise the power corrections to our factorization formula become large. It can therefore
not be used to study the xT → 0 limit of the functions Fqq̄ or Bi/N .

2.3 Simplifications at large q2
T

For given transverse momentum qT , the Fourier integral in (18) receives important contri-
butions from transverse separations xT ! q−1

T only. For large transverse momenta in the
perturbative domain, q2

T & Λ2
QCD, we therefore need the xT -dependent PDFs at transverse

separation xT # Λ−1
QCD. In this case these functions obey an operator-product expansion of

the form [4, 34, 35]

Bi/N (ξ, x2
T , µ) =

∑

j

∫ 1

ξ

dz

z
Ii←j(z, x

2
T , µ) φj/N(ξ/z, µ) + O(Λ2

QCD x2
T ) . (20)

In the context of SCET, generalized PDFs defined in terms of hadron matrix elements in
which collinear fields are separated by distances that are not light-like are referred to as beam
functions. For such functions an analogous expansion was considered in [17], and an expression
for the one-loop kernel of the quark beam function was derived in [18]. The evolution equations
for the new kernels Ii←j follow when we combine (16) with the standard DGLAP equations

d

d ln µ
φi/N(z, µ) =

∑

j

∫ 1

z

du

u
Pi←j(z/u, µ) φj/N(u, µ) . (21)

9

e−Λ2x2
T

θ(1− Λ2x2
T )



Yet more surprises

✦ Yet resummed behavior is smooth and rather 
insensitive to the way in which the cutoff is 
introduced:

✦ Indications that long-distance effects are very 
small already above qT=2 GeV



Yet more surprises

✦ Resulting power correction has a complicated 
shape, but is approximately linear:

✦ Cannot be described in terms of a single 
operator matrix element

∼
�

1− 0.7× ΛNP

qT

�



Conclusions

✦ Effective field theory provides efficient tools for 
addressing difficult collider-physics problems 

✦ Systematic “derivation” of factorization theorems  
and simple, transparent resummation techniques

✦ Detailed applications exist for Drell-Yan, Higgs,  
and top-quark pair production; first result for 
jets at hadron colliders emerging recently



Conclusions

✦ Correct SCET analysis reproduces CSS formula 
with a nontrivial relation between A and Γcusp

✦ Transverse PDFs do not exist as individual 
objects,*) but only products are well defined

✦ Such products carry anomalous dependence on 
hard momentum transfer q2

✦ Implications for phenomenology of transverse 
momentum-dependent PDFs under study

*) They are gauge dependent in the standard treatment and
affected by (dim. unregularized) “rapidity divergences”


