

Drell-Yan production

* Drell-Yan processes such as $\mathrm{pp} \rightarrow \mathrm{W}, \mathrm{Z}, \mathrm{H}$ are of great importance to collider physics:
+ measurement of W-boson mass
+ determination of PDFs
+ discovery of Higgs boson
* Important kinematical situation:

$$
M \gg q_{T}
$$

with q_{T} either much larger than Λ_{QCD} or even comparable to it
\rightarrow classical two-scale problem with large Sudakov
logarithms $\sim\left(\alpha_{s} \ln ^{2} M / q_{T}\right)^{n}$, which need to be resummed

Drell-Yan production

* Transverse momentum of Drell-Yan object (W, Z, H) due to initial-state radiation (ISR) off collinear partons
* Simple example of beam jets described by beam functions in SCET Stewart, Tackmann, Waalewin 2009
+ Yet many surprises and subtleties arise (collinear anomaly, divergent expansions), which may be relevant also for other applications of beam functions in jet processes

A tale of many scales

* Effective field theories provide an elegant approach to this problem, based on scale separation (factorization) and RG evolution
+ Factorize cross sections:

$$
\sigma \sim H\left(\mu_{h}\right) \prod J_{i}\left(\mu_{i}\right) \otimes S\left(\mu_{s}\right)
$$

* Define components in terms of effective theory objects
+ Resum large Sudakov logarithms directly in momentum space by solving $R G$ equations
Becher, MN 2006

Drell-Yan cross section in SCET

+ Expect factorization theorem:

$$
\begin{array}{r}
M^{2} \begin{array}{c}
\text { hard } \\
q_{T}^{2} \underline{\text { hard-collinear }} \\
\Lambda_{s}^{2}=\frac{q_{T}^{4}}{M^{2}} \frac{\text { soft }}{}
\end{array} .=\begin{array}{l}
\end{array} .
\end{array}
$$

* Matching of the current onto SCET (integrate out hard quantum fluctuations):

$$
\begin{aligned}
J^{\mu} & =\sum_{q}\left(g_{L}^{q} \bar{q} \gamma^{\mu} \frac{1-\gamma_{5}}{2} q+g_{R}^{q} \bar{q} \gamma^{\mu} \frac{1+\gamma_{5}}{2} q\right) \\
& \rightarrow C^{C_{V}\left(-q^{2}-i \varepsilon, \mu\right) \sum_{q}\left(g_{L}^{q} \bar{\chi}_{\overline{h c}} S_{\bar{n}}^{\dagger} \gamma^{\mu} \frac{1-\gamma_{5}}{2} S_{n} \chi_{h c}+g_{R}^{q} \bar{\chi}_{\overline{h c}} S_{\bar{n}}^{\dagger} \gamma^{\mu} \frac{1+\gamma_{5}}{2} S_{n} \chi_{h c}\right)}
\end{aligned}
$$

Drell-Yan cross section in SCET

* But soft interactions cancel out (KLN)

$q_{T}^{2} \underline{\text { hard-collinear }}$
* Result after multipole expansion:

$$
\begin{aligned}
d \sigma= & \frac{4 \pi \alpha^{2}}{3 N_{c} q^{2} s} \frac{d^{4} q}{(2 \pi)^{4}} \int d^{4} x e^{-i q \cdot x}\left|C_{V}\left(-q^{2}, \mu\right)\right|^{2} \sum_{q} \frac{\left|g_{L}^{q}\right|^{2}+\left|g_{R}^{q}\right|^{2}}{2} \\
& \times\left\langle N_{1}(p)\right| \bar{\chi}_{h c}\left(x_{+}+x_{\perp}\right) \frac{\hbar}{2} \chi_{h c}(0)\left|N_{1}(p)\right\rangle\left\langle N_{2}(\bar{p})\right| \bar{\chi}_{\overline{h c}}(0) \frac{h}{2} \chi_{\overline{h c}}\left(x_{-}+x_{\perp}\right)\left|N_{2}(\bar{p})\right\rangle
\end{aligned}
$$

Drell-Yan cross section in SCET

A side remark:

* Absence of semi-soft contributions $\mathrm{k} \sim(\lambda, \lambda, \lambda)$ follows after proper multipole expansion using that $\mathrm{x} \sim\left(1,1, \lambda^{-1}\right)$, which implies:

$$
(p-k) \cdot x=p \cdot x-k_{\perp} \cdot x_{\perp}+\mathcal{O}(\lambda)
$$

*Relevant loops integrals such as

$$
\int d^{d} k \frac{1}{(n \cdot k-i \epsilon)^{1+\alpha}} \frac{1}{(\bar{n} \cdot k-i \epsilon)^{1+\beta}} \delta\left(k^{2}\right) \theta\left(k^{0} e^{i p p x-i k_{-} \cdot x_{\perp}}\right.
$$

are scaleless and vanish in dimensional regularization \rightarrow difference with: Mantry, Petriello 2009

Drell-Yan cross section in SCET

* Hadronic matrix elements define transverse position dependent (generalized) PDFs:

$$
\begin{aligned}
\phi_{q / N}(z, \mu) & =\frac{1}{2 \pi} \int d t e^{-i z t \bar{n} \cdot p}\langle N(p)| \bar{\chi}(t \bar{n}) \frac{\hbar}{2} \chi(0)|N(p)\rangle & & \text { ordinary PDF } \\
\mathcal{B}_{q / N}\left(z, x_{T}^{2}, \mu\right) & =\frac{1}{2 \pi} \int d t e^{-i z t \bar{n} \cdot p}\langle N(p)| \bar{\chi}\left(t \bar{n}+x_{\perp}\right) \frac{\hbar}{2} \chi(0)|N(p)\rangle & & \text { transverse PDF }
\end{aligned}
$$

* Differential cross section:

$$
\begin{aligned}
\frac{d^{3} \sigma}{d M^{2} d q_{T}^{2} d y}= & \frac{4 \pi \alpha^{2}}{3 N_{c} M^{2} s}\left|C_{V}\left(-M^{2}, \mu\right)\right|^{2} \frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}} \\
& \times \sum_{q} e_{q}^{2}\left[\mathcal{B}_{q / N_{1}}\left(\xi_{1}, x_{T}^{2}, \mu\right) \mathcal{B}_{\bar{q} / N_{2}}\left(\xi_{2}, x_{T}^{2}, \mu\right)+(q \leftrightarrow \bar{q})\right]+\mathcal{O}\left(\frac{q_{T}^{2}}{M^{2}}\right)
\end{aligned}
$$

where:

$$
\xi_{1}=\sqrt{\tau} e^{y}, \quad \xi_{2}=\sqrt{\tau} e^{-y}, \quad \text { with } \quad \tau=\frac{m_{\perp}^{2}}{s}=\frac{M^{2}+q_{T}^{2}}{s}
$$

Drell-Yan cross section in SCET

+ Differential cross section:

$$
\begin{aligned}
\frac{d^{3} \sigma}{d M^{2} d q_{T}^{2} d y}= & \frac{4 \pi \alpha^{2}}{3 N_{c} M^{2} s} \underbrace{\left|\left|C_{V}\left(-M^{2}, \mu\right)\right|^{2}\right.} \frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-i q_{\perp} x_{\perp}} \\
& \times \sum_{q} e_{q}^{2}\left[B_{q / N_{1}}\left(\xi_{1}, x_{T}^{2}, \mu\right) \mathcal{B}_{q / N_{2}}\left(\xi_{2}, x_{T}^{2}, \mu\right)+(q \leftrightarrow \bar{q}]\right]+\mathcal{O}\left(\frac{q_{T}^{2}}{M^{2}}\right)
\end{aligned}
$$

where:

$$
\xi_{1}=\sqrt{\tau} e^{y}, \quad \xi_{2}=\sqrt{\tau} e^{-y}, \quad \text { with } \quad \tau=\frac{m_{\perp}^{2}}{s}=\frac{M^{2}+q_{T}^{2}}{s}
$$

* Resummation of large logarithms $\left(\alpha_{s} \ln ^{2} M / q_{T}\right)^{n}$ is accomplished by solving $\operatorname{RGE}\left(q^{2}=M^{2}\right)$:

$$
\frac{d}{d \ln \mu} C_{V}\left(-q^{2}, \mu\right)=\left[\Gamma_{\text {cusp }}^{F}\left(\alpha_{s}\right) \ln \frac{-q^{2}}{\mu^{2}}+2 \gamma^{q}\left(\alpha_{s}\right)\right] C_{V}\left(-q^{2}, \mu\right)
$$

\rightarrow see SCET papers: Gao, Li, Liu 2005; Idilbi, Ji, Yuan 2005

Drell-Yan cross section in SCET

* Differential cross section:

$$
\begin{aligned}
& \frac{d^{3} \sigma}{\left(2 d_{T}^{2} d y\right.}=\frac{4 \pi a^{2}}{3 N_{c} M^{2}}\left[\frac{\left[V_{V}\left(-M^{2}, \mu\right)^{2}\right.}{}{ }^{1} \int\right. \text { is Wrong! } \\
& \text { This formula is }
\end{aligned}
$$ whe

$$
\xi_{1}=\sqrt{\tau} e^{y}, \quad \xi_{2}=\sqrt{\tau} e^{-y}, \quad \text { with } \quad \tau=\frac{m_{\perp}^{2}}{s}=\frac{M^{2}+q_{T}^{2}}{s}
$$

* Resummation of large logarithms $\left(\alpha_{s} \ln ^{2} M / q_{T}\right)^{n}$ is accomplished by solving $\operatorname{RGE}\left(q^{2}=M^{2}\right)$:

$$
\frac{d}{d \ln \mu} C_{V}\left(-q^{2}, \mu\right)=\left[\Gamma_{\text {cusp }}^{F}\left(\alpha_{s}\right) \ln \frac{-q^{2}}{\mu^{2}}+2 \gamma^{q}\left(\alpha_{s}\right)\right] C_{V}\left(-q^{2}, \mu\right)
$$

\rightarrow see SCET papers: Gao, Li, Liu 2005; Idilbi, Ji, Yuan 2005

Collinear anomaly

* RG invariance of the cross section requires that the product $\mathcal{B}_{q / N_{1}}\left(\xi_{1}, x_{T}^{2}, \mu\right) \mathcal{B}_{\bar{q} / N_{2}}\left(\xi_{2}, x_{T}^{2}, \mu\right)$ of generalized PDFs must carry an anomalous dependence on hard momentum transfer $\mathrm{q}^{2}:$:")

$$
\left[\mathcal{B}_{q / N_{1}}\left(z_{1}, x_{T}^{2}, \mu\right) \mathcal{B}_{\bar{q} / N_{2}}\left(z_{2}, x_{T}^{2}, \mu\right)\right]_{q^{2}}=\left(\frac{x_{T}^{2} q^{2}}{4 e^{-2 \gamma_{E}}}\right) \underbrace{-F_{q \bar{q}\left(x_{T}^{2}, \mu\right)}} B_{q / N_{1}}\left(z_{1}, x_{T}^{2}, \mu\right) B_{\bar{q} / N_{2}}\left(z_{2}, x_{T}^{2}, \mu\right)
$$

with:

$$
\frac{d F_{q \bar{q}}\left(x_{T}^{2}, \mu\right)}{d \ln \mu}=2 \Gamma_{\mathrm{cusp}}^{F}\left(\alpha_{s}\right)
$$

${ }^{\text {o }}$) Similar effect (in simpler setting) occurs for Sudakov form factor of a massive vector boson, see: Giu, Golf, Kelley, Manohar 2007

Collinear anomaly

* RG invariance of the cross section requires that the product $\mathcal{B}_{q / N_{1}}\left(\xi_{1}, x_{T}^{2}, \mu\right) \mathcal{B}_{\bar{q} / N_{2}}\left(\xi_{2}, x_{T}^{2}, \mu\right)$ of generalized PDFs must carry an anomalous dependence on hard momentum transfer q^{2} :
$\left[\mathcal{B}_{q / N_{1}}\left(z_{1}, x_{T}^{2}, \mu\right) \mathcal{B}_{\bar{q} / N_{2}}\left(z_{2}, x_{T}^{2}, \mu\right)\right]_{q^{2}}=\left(\frac{x_{T}^{2} q^{2}}{4 e^{-2 \gamma_{E}}}\right)^{-F_{q \bar{q}\left(x_{T}^{2}, \mu\right)}} B_{q / N_{1}}\left(z_{1}, x_{T}^{2}, \mu\right) B_{\bar{q} / N_{2}}\left(z_{2}, x_{T}^{2}, \mu\right)$.
with:

$$
\frac{d F_{q \bar{q}}\left(x_{T}^{2}, \mu\right)}{d \ln \mu}=2 \Gamma_{\text {cusp }}^{F}\left(\alpha_{s}\right)
$$

+ Refactorization theorem:

Collinear anomaly

* Hard-collinear SCET loops graphs such as

are not defined in dimensional regularization and require analytic regularization
* Not a new quantum anomaly of QCD, but a feature of the effective theory relevant to derivations of QCD factorization theorems

Collinear anomaly

* In SCET, a quantum anomaly in the usual sense, that a symmetry of the classical Lagrangian is broken by regularization: $\mathcal{L}_{h c}\left(\mathcal{L}_{\overline{h c}}\right)$ invariant under: $\bar{p} \rightarrow \bar{\lambda} \bar{p} \quad(p \rightarrow \lambda p)$
* Regularization breaks this to subgroup $\lambda \bar{\lambda}=1$, allowing for anomalous dependence on $q^{2}=2 p \cdot \bar{p}$
* Consequence is that only the product of all generalized PDFs in a process is well defined, but individual transverse PDFs are not!

Collinear anomaly

* In SCET, a quantum anomaly in the usual sense, that a symmetry of the classical Lagrangian is broken by regularization: $\mathcal{L}_{h c}\left(\mathcal{L}_{\overline{h c}}\right)$ invariant under: $\bar{p} \rightarrow \bar{\lambda} \bar{p} \quad(p \rightarrow \lambda p)$
* Regularization breaks this to subgroup $\lambda \bar{\lambda}=1$, allowing for anomalous dependence on $q^{2}=2 p \cdot \bar{p}$
+ New functions $B_{i / N}$ obey well-defined RGEs:

$$
\left.\frac{d}{d \ln \mu} B_{q / / N}\left(z, x_{T}^{2}, \mu\right)=\left[\Gamma_{\text {cusp }}^{F}\left(\alpha_{s}\right) \ln \frac{x_{T}^{2} \mu^{2}}{4 e^{-2 \gamma / \in}}-2 \gamma^{q}\left(\alpha_{s}\right)\right]\right]_{q / N}\left(z, x_{T}^{2}, \mu\right)
$$

* Solves decade-old problem of how to make sense of transverse PDFs!
\rightarrow see e.g. review: Collins 2003

Factorized Drell-Yan cross section

* Correct factorization formula reads:

$$
\begin{aligned}
\frac{d^{3} \sigma}{d M^{2} d q_{T}^{2} d y}= & \frac{4 \pi \alpha^{2}}{3 N_{c} M^{2} s} \underbrace{\left|C_{V}\left(-M^{2}, \mu\right)\right|^{2}} \frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}}\left(\frac{x_{T}^{2} M^{2}}{4 e^{-2 \gamma_{E}}}\right) \underbrace{-F_{q \bar{q}\left(x_{T}^{2}, \mu\right)}} \\
& \times \sum_{q} e_{q}^{2}\left[B_{q / N_{1}}\left(\xi_{1}, x_{T}^{2}, \mu\right) B_{\bar{q} / N_{2}}\left(\xi_{2}, x_{T}^{2}, \mu\right)+(q \leftrightarrow \bar{q})\right]+\mathcal{O}\left(\frac{q_{T}^{2}}{M^{2}}\right)
\end{aligned}
$$

* For qT $\sim \mathrm{xT}^{-1} \sim \Lambda_{\mathrm{QCD}}$ the functions $F_{q \bar{q}}$ and $B_{i / N}$ are genuinely non-perturbative objects, which must be extracted from data, e.g.:

$$
\begin{aligned}
& \frac{9 M^{2} s}{4 \pi \alpha^{2}} \int_{0}^{\infty} d q_{T}^{2} J_{0}\left(q_{T} x_{T}\right) \frac{d^{3} \sigma}{d M^{2} d q_{T}^{2} d y}=\left|C_{V}\left(-M^{2}, \mu\right)\right|^{2}\left(\frac{x_{T}^{2} M^{2}}{4 e^{-2 \gamma_{E}}}\right)^{-F_{q \bar{q}}\left(x_{T}^{2}, \mu\right)} \\
& \quad \times \sum_{q} e_{q}^{2}\left[B_{q / N_{1}}\left(\xi_{1}, x_{T}^{2}, \mu\right) B_{\bar{q} / N_{2}}\left(\xi_{2}, x_{T}^{2}, \mu\right)+(q \leftrightarrow \bar{q})\right]+\mathcal{O}\left(\frac{1}{x_{T}^{2} M^{2}}\right)
\end{aligned}
$$

Comparison with the CSS formula

+ Classic result from Collins-Soper-Sterman: 1985

$$
\begin{aligned}
\frac{d^{3} \sigma}{d M^{2} d q_{T}^{2} d y} & =\frac{4 \pi \alpha^{2}}{3 N_{c} M^{2} s} \frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}} \sum_{q} e_{q}^{2} \sum_{i=q, g} \sum_{j=\bar{q}, g} \int_{\xi_{1}}^{1} \frac{d z_{1}}{z_{1}} \int_{\xi_{2}}^{1} \frac{d z_{2}}{z_{2}} \\
& \times \exp \left\{-\int_{\mu_{b}^{2}}^{M^{2}} \frac{d \bar{\mu}^{2}}{\bar{\mu}^{2}}\left[\ln \frac{M^{2}}{\bar{\mu}^{2}} A\left(\alpha_{s}(\bar{\mu})\right)+B\left(\alpha_{s}(\bar{\mu})\right)\right]\right\} \\
& \times\left[\overline{\mathcal{P}}_{q / N_{1}}\left(\xi_{1}, x_{T}, \mu_{b}\right) \overline{\mathcal{P}}_{\bar{q} / N_{2}}\left(\xi_{2}, x_{T}, \mu_{b}\right)+(q, i \leftrightarrow \bar{q}, j)\right]
\end{aligned}
$$

Disadvantages compared with our result:

+ $\bar{\mu}$ integral hits the Landau pole of running coupling and requires PDFs at arbitrarily low scales
* practical calculations employ an x_{T}-space cutoff, which is model dependent and requires adding some ad hoc nonperturbative corrections

Comparison with the CSS formula

+ Classic result from Collins-Soper-Sterman: 1985

$$
\begin{aligned}
\frac{d^{3} \sigma}{d M^{2} d q_{T}^{2} d y} & =\frac{4 \pi \alpha^{2}}{3 N_{c} M^{2} s} \frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}} \sum_{q} e_{q}^{2} \sum_{i=q, g} \sum_{j=\bar{q}, g} \int_{\xi_{1}}^{1} \frac{d z_{1}}{z_{1}} \int_{\xi_{2}}^{1} \frac{d z_{2}}{z_{2}} \\
& \times \exp \left\{-\int_{\mu_{b}^{2}}^{M^{2}} \frac{d \bar{\mu}^{2}}{\bar{\mu}^{2}}\left[\ln \frac{M^{2}}{\bar{\mu}^{2}} A\left(\alpha_{s}(\bar{\mu})\right)+B\left(\alpha_{s}(\bar{\mu})\right)\right]\right\} \quad \mu_{b}=\frac{2 e^{-\gamma_{E}}}{x_{T}} \\
& \times\left[\overline{\mathcal{P}}_{q / N_{1}}\left(\xi_{1}, x_{T}, \mu_{b}\right) \overline{\mathcal{P}}_{\bar{q} / N_{2}}\left(\xi_{2}, x_{T}, \mu_{b}\right)+(q, i \leftrightarrow \bar{q}, j)\right] \quad
\end{aligned}
$$

Equivalence to our result, once we identify:

$$
\begin{array}{ll}
A\left(\alpha_{s}\right)=\Gamma_{\text {cusp }}^{F}\left(\alpha_{s}\right)-\frac{\beta\left(\alpha_{s}\right)}{2} \frac{d g_{1}\left(\alpha_{s}\right)}{d \alpha_{s}}, & g_{1}\left(\alpha_{s}\right)=F\left(0, \alpha_{s}\right) \\
B\left(\alpha_{s}\right)=2 \gamma^{q}\left(\alpha_{s}\right)+\underbrace{g_{1}\left(\alpha_{s}\right)}-\frac{\beta\left(\alpha_{s}\right)}{2} \frac{d g_{2}\left(\alpha_{s}\right)}{d \alpha_{s}}, & g_{2}\left(\alpha_{s}\right)=\ln \left|C_{V}\left(-\mu^{2}, \mu\right)\right|^{2} \\
N\left(\xi, x_{T}\right)=\left|C_{V}\left(-\mu_{b}^{2}, \mu_{b}\right)\right| B_{i / N}\left(\xi, x_{T}^{2}, \mu_{b}\right) & \text { anomaly contributions }
\end{array}
$$

* Important that $A\left(\alpha_{s}\right) \neq \Gamma_{\text {cusp }}^{F}\left(\alpha_{s}\right)$ in this case!

Comparison with the CSS formula

* Fact that $A\left(\alpha_{s}\right) \neq \Gamma_{\text {cusp }}^{F}\left(\alpha_{s}\right)$ was missed by all previous SCET analyses! Gao, Li, Liu 2005; Idilli, Ji, Yuan 2005; Mantry, Petriello 2009
* From known expression for $\mathrm{B}\left(\alpha_{\mathrm{s}}\right)$ we can extract the two-loop result for $\mathrm{F}\left(0, \alpha_{\mathrm{s}}\right)$
* Can then predict the three-loop anomaly contribution to $\mathrm{A}\left(\alpha_{\mathrm{s}}\right)$ coefficient, which was unknown before but is numerically important:

$$
A^{(3)}=\Gamma_{2}^{F}+2 \beta_{0} d_{2}^{q} \quad \Rightarrow \quad \Gamma_{2}^{F}=538.2 \text { while } A^{(3)}=-930.8
$$

\rightarrow ignoring extra term reduces cross section by 1% at $q_{T}=4 \mathrm{GeV}$, raising to 2.6% at $\mathrm{q}_{\mathrm{T}}=2 \mathrm{GeV}$ (larger effect for Higgs prod.)

Simplifications for large qT

Short-distance expansion for $\mathrm{x}_{\mathrm{T}}<\Lambda_{\mathrm{QCD}}^{-1}$

+ Generalized PDFs at small transverse separation can be expanded in usual PDFs:

$$
\begin{aligned}
\mathcal{B}_{i / N}\left(\xi, x_{T}^{2}, \mu\right) & =\sum_{j} \int_{\xi}^{1} \frac{d z}{z} \mathcal{I}_{i \leftarrow j}\left(z, x_{T}^{2}, \mu\right) \phi_{j / N}(\xi / z, \mu)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} x_{T}^{2}\right) \\
B_{i / N}\left(\xi, x_{T}^{2}, \mu\right) & =\sum_{j} \int_{\xi}^{1} \frac{d z}{z} I_{i \leftarrow j}\left(\xi / z, x_{T}^{2}, \mu\right) \phi_{j / N}(z, \mu)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} x_{T}^{2}\right)
\end{aligned}
$$

* Expansion kernels are obtained from matching calculation

$$
\begin{aligned}
& \mathcal{I}_{q \leftarrow q}: \\
& \text { Raco } \\
& \text { - [ace } \\
& \mathcal{I}_{q \leftarrow g}:
\end{aligned}
$$

Short-distance expansion for $\mathrm{x}_{\mathrm{T}}<\Lambda_{\mathrm{QCD}}^{-1}$

* Collinear loops are not defined and require a regulator beyond dimensional regularization
+ Most economic possibility is to use analytic regularization scheme: Smirnov 1993

$$
\frac{1}{-(p-k)^{2}-i \varepsilon} \rightarrow \frac{\nu_{1}^{2 \alpha}}{\left[-(p-k)^{2}-i \varepsilon\right]^{1+\alpha}}
$$

+ Adaption to SCET collinear propagators:

$$
\frac{1}{-(p-k)^{2}-i \varepsilon} \rightarrow \frac{\nu_{1}^{2 \alpha}}{\left[-(p-k)^{2}-i \varepsilon\right]^{1+\alpha}}
$$

regularized Wilson lines
regularized propagator

Short-distance expansion for $\mathrm{x}_{\mathrm{T}}<\Lambda_{\mathrm{QCD}}^{-1}$

* Introducing analogous regulator β in anticollinear sector, we find:

$$
\begin{aligned}
&\left.\mathcal{I}_{q \leftarrow q}\left(z, x_{T}^{2}, \mu\right)\right|_{\alpha \text { reg. }}=-\frac{C_{F} \alpha_{s}}{2 \pi}\{ \left(\frac{1}{\epsilon}+L_{\perp}\right)\left[\left(\frac{2}{\alpha}-2 \ln \frac{\mu^{2}}{\nu_{1}^{2}}\right) \delta(1-z)+\frac{1+z^{2}}{(1-z)_{+}}\right] \quad L_{\perp}=1 \\
&\left.+\delta(1-z)\left(-\frac{2}{\epsilon^{2}}+L_{\perp}^{2}+\frac{\pi^{2}}{6}\right)-(1-z)\right\} . \\
&\left.\mathcal{I}_{q \leftarrow q}\left(z, x_{T}^{2}, \mu\right)\right|_{\beta \text { reg. }}=-\frac{C_{F} \alpha_{s}}{2 \pi}\left\{\left(\frac{1}{\epsilon}+L_{\perp}\right)\left[\left(-\frac{2}{\beta}+2 \ln \frac{q^{2}}{\nu_{2}^{2}}\right) \delta(1-z)+\frac{1+z^{2}}{(1-z)_{+}}\right]-(1-z)\right\}
\end{aligned}
$$

$$
L_{\perp}=\ln \frac{x_{T}^{2} \mu^{2}}{4 e^{-2 \gamma_{E}}}
$$

* The product of two such functions is regulator independent:

$$
\begin{aligned}
& {\left[\mathcal{I}_{q \leftarrow q}\left(z_{1}, x_{T}^{2}, \mu\right) \mathcal{I}_{\bar{q} \leftarrow \bar{q}}\left(z_{2}, x_{T}^{2}, \mu\right)\right]_{q^{2}}} \\
& =\delta\left(1-z_{1}\right) \delta\left(1-z_{2}\right)\left[1-\frac{C_{F} \alpha_{s}}{2 \pi}\left(2 L_{\perp} \ln \frac{q^{2}}{\mu^{2}}+L_{\perp}^{2}-3 L_{\perp}+\frac{\pi^{2}}{6}\right)\right] \\
& \quad-\frac{C_{F} \alpha_{s}}{2 \pi}\left\{\delta\left(1-z_{1}\right)\left[L_{\perp}\left(\frac{1+z_{2}^{2}}{1-z_{2}}\right)_{+}-\left(1-z_{2}\right)\right]+\left(z_{1} \leftrightarrow z_{2}\right)\right\}+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

Short-distance expansion for $\mathrm{x}_{\mathrm{T}}<\Lambda_{\mathrm{QCD}}^{-1}$

+ From previous result we read off:

$$
\begin{aligned}
F_{q \bar{q}}\left(L_{\perp}, \alpha_{s}\right)= & \frac{C_{F} \alpha_{s}}{\pi} L_{\perp}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
I_{q \leftarrow q}\left(z, L_{\perp}, \alpha_{s}\right)= & \delta(1-z)\left[1+\frac{C_{F} \alpha_{s}}{4 \pi}\left(L_{\perp}^{2}+3 L_{\perp}-\frac{\pi^{2}}{6}\right)\right] \\
& -\frac{C_{F} \alpha_{s}}{2 \pi}\left[L_{\perp} P_{q \leftarrow q}(z)-(1-z)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
I_{q \leftarrow g}\left(z, L_{\perp}, \alpha_{s}\right)= & -\frac{T_{F} \alpha_{s}}{2 \pi}\left[L_{\perp} P_{q \leftarrow g}(z)-2 z(1-z)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

Two-loop result for $F_{q \bar{q}}\left(L_{\perp}, \alpha_{s}\right)=\sum_{n=1}^{\infty} d_{n}^{q}\left(L_{\perp}\right)\left(\frac{\alpha_{s}}{4 \pi}\right)^{n}$:

$$
d_{2}^{q}\left(L_{\perp}\right)=\frac{\Gamma_{0}^{F} \beta_{0}}{2} L_{\perp}^{2}+\Gamma_{1}^{F} L_{\perp}+d_{2}^{q}, \quad d_{2}^{q}=C_{F} C_{A}\left(\frac{808}{27}-28 \zeta_{3}\right)-\frac{224}{27} C_{F} T_{F} n_{f}
$$

Factorized Drell-Yan cross section

* Final factorization formula reads:

$$
\begin{aligned}
& \frac{d^{3} \sigma}{d M^{2} d q_{T}^{2} d y}=\frac{4 \pi \alpha^{2}}{3 N_{C N} M^{2} s} \sum_{q} e_{q}^{2} \sum_{i=q, q j=q, q)} \int_{\xi_{1}}^{1} \frac{d z_{1}}{z_{1}} \int_{\xi_{2}}^{1} \frac{d z_{2}}{z_{2}}
\end{aligned}
$$

+ Hard-scattering kernels:

$$
\begin{aligned}
C_{q \bar{q} \rightarrow i j}\left(z_{1}, z_{2}, q_{T}^{2}, M^{2}, \mu\right)= & \underbrace{\left|C_{V}\left(-M^{2}, \mu\right)\right|^{2}} \frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}}(\underbrace{\left.\frac{x_{T}^{2} M^{2}}{4 e^{-2 \gamma_{E}}}\right)^{-F_{q \bar{q}}\left(x_{T}^{2}, \mu\right)}} \\
& \times I_{q \leftarrow i}\left(z_{1}, x_{T}^{2}, \mu\right) I_{\bar{q} \leftarrow j}\left(z_{2}, x_{T}^{2}, \mu\right)
\end{aligned}
$$

* Final task is to perform the Fourier transform, which can be done either numerically or in quasi-closed form

Subtleties and surprises

Asymptotic divergence

* Leading behavior follows from $\left(\ell=L_{\perp}\right)$:

$$
\frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}} e^{-\eta L_{\perp}-\frac{1}{2}\left(L_{L}\right)}=\frac{e^{-2 \tau_{E}}}{\mu^{2}} \int_{-\infty}^{\infty} d \ell J_{0}\left(e^{(/ 2} b_{0} \frac{q_{T}}{\mu}\right) e^{(1-\eta) \ell-\frac{-1}{4} a^{2}}
$$

where $\eta=\frac{C_{F} \alpha_{s}}{\pi} \ln \frac{M^{2}}{\mu^{2}}$ and $a \sim \alpha_{s}$

* With proper choice of scale $L_{\perp}=\mathcal{O}(1)$ it looks like one could expand the quadratic term in ℓ, but this generates strong factorial growth

$$
\sum_{n=0}^{\infty} \frac{(2 n)!}{n!}\left(-\frac{a}{4}\right)^{n}\left[\frac{1}{(1-\eta)^{2 n+1}}-e^{-2 \gamma_{E}}\right]
$$

Asymptotic divergence

* Series is Borel summable (just keep quadratic term in exponent)
* Gives rise to highly non-trivial dependence on a:

$$
\sqrt{\frac{\pi}{a}}\left\{e^{\frac{(1-\eta)^{2}}{a}}\left[1-\operatorname{Erf}\left(\frac{1-\eta}{\sqrt{a}}\right)\right]-e^{-2 \gamma_{E}+\frac{1}{a}}\left[1-\operatorname{Erf}\left(\frac{1}{\sqrt{a}}\right)\right]\right\}
$$

* Perturbative expansion of this result has zero radius if convergence
* Hints at important non-perturbative effect of short-distance nature! Precise meaning?

Asymptotically large M^{2}

* Careful analysis shows that the appropriate choice of μ eliminating large logarithms from integral is $\mu \sim\left\langle x_{T}^{-1}\right\rangle \sim \max \left(q_{T}, q_{*}\right)$, where:

$$
q_{*}=M \exp \left(\frac{\pi}{2 C_{F} \alpha_{s}\left(q_{*}\right)}\right)
$$

corresponding to $\eta=1$

* For $\mathrm{M}=\mathrm{m}_{\mathrm{Z}}$, one finds that $q_{*} \approx 2 \mathrm{GeV}$ is in the perturbative domain
\rightarrow spectrum can be calculated down to $\mathrm{qT}=0$ using short-distance methods !

Intercept at qT=0

* Dedicated analysis of $q_{T} \rightarrow 0$ limit yields:

$$
\frac{d \sigma}{d q_{T}^{2}} \sim \frac{\mathcal{N}}{\sqrt{\alpha_{s}}} e^{-\# / \alpha_{s}}\left(1+c_{1} \alpha_{s}+\ldots\right)
$$

Collins, Soper, Sterman 1985; Ellis, Veseli 1998

* Were for the first time we are able to compute the normalization \mathcal{N} and NLO coefficient c_{1}
* Expression cannot be expanded about $\alpha_{s}=0$ (essential singularity)

The big picture

* Borel resummation at moderate qT interpolates between the non-perturbative result at $\mathrm{q}_{\mathrm{T}}=0$ and the perturbative result at large q_{T}

Z production, Tevatron

* Essential features are non-perturbative!

More surprises

* Once we can calculate the intercept at qT=0, what about derivatives w.r.t. qT^{2} (i.e., entire spectrum at very small qт)?
* Analyzing once again the leading behavior

$$
\frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-q_{\perp} \cdot x_{\perp}} e^{-\eta L_{\perp}-\frac{1}{4} a L_{\perp}^{2}}=\frac{e^{-2 \gamma_{E}}}{\mu^{2}} \int_{-\infty}^{\infty} d \ell J_{0}\left(e^{\ell / 2} b_{0} \frac{q_{T}}{\mu}\right) e^{(1-\eta) \ell-\frac{1}{4} a \ell^{2}}
$$

we find an extremely strong divergent behavior:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} e^{\# n^{2} / \alpha_{s}}\left(\frac{q_{T}^{2}}{q_{*}^{2}}\right)^{n}
$$

More surprises

+ Spectrum can be calculated numerically, even though power expansion in qT^{2} is absolutely meaningless (not even Borel summable)!
* Find smooth behavior down to very small qT

More surprises

* Spectrum can be calculated numerically, even though power expansion in qT^{2} is absolutely meaningless (not even Borel summable)!
* Find smooth behavior down to very small qT

Yet more surprises

* Related question is that about the impact of long-distance power correction in matching relation

$$
B_{i / N}\left(\xi, x_{T}^{2}, \mu\right)=\sum_{j} \int_{\xi}^{1} \frac{d z}{z} I_{i \leftarrow j}\left(z, x_{T}^{2}, \mu\right) \phi_{j / N}(\xi / z, \mu)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} x_{T}^{2}\right)
$$

* Find that these cannot be analyzed order by order, but only numerically using functions that vanish at large x^{2}, such as $e^{-\Lambda^{2} x_{T}^{2}}$ or $\theta\left(1-\Lambda^{2} x_{T}^{2}\right)$
* Fixed-order OPE in xT^{2} is again extremely divergent

Yet more surprises

+ Yet resummed behavior is smooth and rather insensitive to the way in which the cutoff is introduced:

Indications that long-distance effects are very small already above $\mathrm{qT}=2 \mathrm{GeV}$

Yet more surprises

+ Resulting power correction has a complicated shape, but is approximately linear:

* Cannot be described in terms of a single operator matrix element

Conclusions

* Effective field theory provides efficient tools for addressing difficult collider-physics problems
* Systematic "derivation" of factorization theorems and simple, transparent resummation techniques
* Detailed applications exist for Drell-Yan, Higgs, and top-quark pair production; first result for jets at hadron colliders emerging recently

Conclusions

+ Correct SCET analysis reproduces CSS formula with a nontrivial relation between A and $\Gamma_{\text {cusp }}$
+ Transverse PDFs do not exist as individual objects,") but only products are well defined
+ Such products carry anomalous dependence on hard momentum transfer q^{2}
+ Implications for phenomenology of transverse momentum-dependent PDFs under study
*) They are gauge dependent in the standard treatment and affected by (dim. unregularized) "rapidity divergences"

