Higgs searches with rest frame subjet algorithm and N-subjettiness.

Jihun Kim

¹Dept. of Physics, Seoul National University, Korea ²Theory division, CERN, Switzerland

12 January 2011

Main Objectives

- Finding Higgs via fully hadronic decay channels of $pp \rightarrow H + W/Z$.
- N-subjettiness : to identify fat-jets.
- Rest frame subjet : to provide a subjet definition for N-subjettiness.
- The jet rest frame : to define the rest frame subjet.

This talk is based on arXiv:1011.1493.

Standard Model Higgs Searches.

2 Jet Rest Frame, Rest Frame Subjet and N-subjettiness

- 3 Higgs Search with Rest Frame Subjet and N-subjettiness
- 4 Summary

Constraints on the SM Higgs

 $m_H \sim 120 {
m GeV}$ is preferred. $\Rightarrow H \to b \bar{b}$ becomes a dominant decay channel. \Rightarrow huge QCD background.

Fat jet signals from boosthed Higgs via $pp \rightarrow H + W/Z$

Pioneered by Jonathan M. Butterworth, Adam R. Davison, Mathieu Rubin, Gavin P. Salam, Phys.Rev.Lett.100:242001,2008 (BDRS).

Another fat jet signals from $pp \rightarrow H + W/Z$.

- Two fat jets, instead of one fat jet + one lepton pair ⇒ involves higher uncertainties.
- $\sigma_{hadronic}(pp \rightarrow H + W/Z)$: several times larger than $\sigma_{(semi)leptonic}(pp \rightarrow H + W/Z)$ \Rightarrow large σ compensates the uncertainties of the jets.

The problem is that QCD background is too large even if existing jet substructure algorithms are applied.

N-subjettiness: brief introduction

- A variation of 'N-jettiness', a global event shape introduced by lain W. Stewart, Frank J. Tackmann, Wouter J. Waalewijn, Phys.Rev.Lett.105:092002,2010.
- A jet shape observable.
- Identify boosted heavy particles which decay to N partons.
- Discriminates the fat jets from QCD jets.
- Defined in terms of constituent particles and rest frame subjets of a jet.

This talk focuses on 'two'-subjettiness with SISCone jet for the standard model Higgs searches via $pp \to H + W/Z$:

Rest frame subjet : definition.

Rest frame subjet.

Rest frame subjet: Higgs jet case.

The jet rest frame: QCD jet case

Colored partons hadronize

 \Rightarrow causes their shape in the jet rest frame more irregular. Moreover,

Corresponds to hard gluon splitting & ⇒ no more hard radiation. Least probable.

Less hard gluon splitting & ⇒ additional radiation.

More probable.

Soft gluon splitting & ⇒ additional radiations. Most probable.

Difference between fat jets and QCD jets.

Boosted H / W / Z jets are likely to give

- Two energetic subjets
- Narrower subjets.
- $\theta_s \sim \pi/2$.

QCD jets are likely to give

- Several subjets.
- Broader subjets.
- $\theta_s \sim 0$, or π .

How to identify fat jets which have 'two' 'narrow' subjets?

N-subjettiness, τ_N^{rest} .

$$\tau_N^{rest} = \frac{2}{M_{jet}^2} \sum_{i \in J} min(p_i \cdot q_1, p_i \cdot q_2, \dots, p_i \cdot q_N)$$

$$M_{iet}^2 \equiv (p_j^{iet})^2$$

q,: momenta of subjets.

p: momenta of the constituents particles.

- N infinitely narrow subjets $\Rightarrow \tau_N^{rest} \rightarrow 0$.
- Broader subjets \Rightarrow larger τ_N^{rest} .
- Additional undesired subjets \Rightarrow larger τ_N^{rest} .

Boosted H/W/Z jets : small τ_2^{rest} . QCD jets : large τ_2^{rest} .

Effects of underlying event, plieup on N-subjettiness.

- Leading subjets are less affected by underlying event, and pileup.
- 10% changes of jet mass \Rightarrow 20% changes of τ_N^{rest} .
- Note that, very soft particles can change τ_N^{rest} only a little bit : τ_N^{rest} is infra red safe.

Before and after τ_N^{rest} -cut : W/Z + jets case.

120 140 160

m_{Inv} [GeV]

Higgs searches: event selection scheme.

Both of two leading jets are required to satisfy :

- $\bullet \ \tau_2^{\textit{rest}} < 0.08 \ \text{cut}.$
- $\cos \theta_s < 0.8$ cut.

And two leading subjets of the Higgs candidate jets are required to be b-tagged.

The results

PYTHIA 6.4.23 + ATLAS MC09 parameter tune.

Jet clustering : SISCone jet, R = 0.8, f = 0.75 (f = overlab threshold). Subjet clustering : SISCone jet in spherical coordinate, R = 0.7, f = 0.75.

- 30fb⁻¹ of LHC 14 TeV,
- With a jet mass resolution $\pm 10\,GeV$: $S/B \sim 30/200$ and $S/\sqrt{B} \sim 2\sigma$.

Summary

- $au_2^{\textit{rest}}$ cut, $\cos heta_s$ cut identify boosted H / W / Z jet.
- Rest frame subjet algorithm provides

 a subjet definition for SISCone jet and any jet algorithm.
- With τ_2^{rest} , $\cos\theta_s$, the statistical significance of the signals from $pp \to H + W/Z$ is expected to be about 2σ for $30fb^{-1}$ at LHC 14 TeV.
- The scheme is rather a proof of concept version. It will be improved further to increase the significance: work in progress.
- Rest subjet algorithm can also be combined with other subjet techniques.