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• Plenty of experimental data available

• To study the properties of Quark Gluon 
Plasma, predicted by QCD

• Connection to Early Universe (a few 
microseconds after the Big Bang)

Motivation to study heavy-ion collisions

Picture from http://www-subatech.in2p3.fr/~theo/qmd/hic/hic3.html

AA at 10GeV
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Figure 3: RAA in central (0–5%) and peripheral (70–80%) Pb–Pb collisions at
√
s
NN

= 2.76 TeV. Error bars

indicate the statistical uncertainties. The boxes contain the systematic errors in the data and the pT dependent

systematic errors on the pp reference, added in quadrature. The histograms indicate, for central collisions only,

the result for RAA at pT > 6.5 GeV/c using alternative pp references obtained by the use of the pp̄ measurement

at
√
s
NN

= 1.96 TeV [26] in the interpolation procedure (solid) and by applying NLO scaling to the pp data at 0.9

TeV (dashed) (see text). The vertical bars around RAA = 1 show the pT independent uncertainty on 〈Ncoll〉.
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Figure 4: Comparison of RAA in central Pb–Pb collisions at LHC to measurements at
√
s
NN

= 200 GeV by the

PHENIX [30] and STAR [31] experiments at RHIC. The error representation of the ALICE data is as in Fig. 3.

The statistical and systematic errors of the PHENIX data are shown as error bars and boxes, respectively. The

statistical and systematic errors of the STAR data are combined and shown as boxes. The vertical bars around

RAA = 1 indicate the pT independent scaling errors on RAA.
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High energy heavy-ion collisions enable the study of strongly interacting matter under extreme condi-

tions. At sufficiently high collision energies Quantum-Chromodynamics (QCD) predicts that hot and

dense deconfined matter, commonly referred to as the Quark-Gluon Plasma (QGP), is formed. With the

advent of a new generation of experiments at the CERN Large Hadron Collider (LHC) [1] a new energy

domain is accessible to study the properties of this state.

Previous experiments at the Relativistic Heavy Ion Collider (RHIC) reported that hadron production

at high transverse momentum (pT ) in central (head-on) Au–Au collisions at a centre-of-mass energy

per nucleon pair
√
s
NN
of 200 GeV is suppressed by a factor 4–5 compared to expectations from an

independent superposition of nucleon-nucleon (NN) collisions [2, 3, 4, 5]. The dominant production

mechanism for high-pT hadrons is the fragmentation of high-pT partons that originate in hard scatterings

in the early stage of the nuclear collision. The observed suppression at RHIC is generally attributed to

energy loss of the partons as they propagate through the hot and dense QCD medium [6, 7, 8, 9, 10].

To quantify nuclear medium effects at high pT , the so called nuclear modification factor RAA is used.

RAA is defined as the ratio of the charged particle yield in Pb–Pb to that in pp, scaled by the number of

binary nucleon–nucleon collisions 〈Ncoll〉

RAA(pT ) =
(1/NAA

evt )d
2NAA

ch /d!dpT
〈Ncoll〉(1/Npp

evt )d2N
pp

ch /d!dpT
,

where ! = − ln(tan"/2) is the pseudo-rapidity and " is the polar angle between the charged particle
direction and the beam axis. The number of binary nucleon–nucleon collisions 〈Ncoll〉 is given by the
product of the nuclear overlap function 〈TAA〉 [11] and the inelastic NN cross section #NN

inel . If no nuclear

modification is present, RAA is unity at high pT .

At the larger LHC energy the density of the medium is expected to be higher than at RHIC, leading to a

larger energy loss of high pT partons. On the other hand, the less steeply falling spectrum at the higher

energy will lead to a smaller suppression in the pT spectrum of charged particles, for a given magnitude

of partonic energy loss [9, 10]. Both the value of RAA in central collisions as well as its pT dependence

may also in part be influenced by gluon shadowing and saturation effects, which in general decrease with

increasing x and Q2.

This Letter reports the measurement of the inclusive primary charged particle transverse momentum

distributions at mid-rapidity in central and peripheral Pb–Pb collisions at
√
s
NN

= 2.76 TeV by the ALICE
experiment [12]. Primary particles are defined as prompt particles produced in the collision, including

decay products, except those from weak decays of strange particles. The data were collected in the first

heavy-ion collision period at the LHC. A detailed description of the experiment can be found in [12].

For the present analysis, charged particle tracking utilizes the Inner Tracking System (ITS) and the Time

Projection Chamber (TPC) [13], both of which cover the central region in the pseudo-rapidity range

|! | < 0.9. The ITS and TPC detectors are located in the ALICE central barrel and operate in the 0.5 T
magnetic field of a large solenoidal magnet. The TPC is a cylindrical drift detector with two readout

planes on the endcaps. The active volume covers 85< r < 247 cm and −250< z< 250 cm in the radial
and longitudinal directions, respectively. A high voltage membrane at z = 0 divides the active volume

into two halves and provides the electric drift field of 400 V/cm, resulting in a maximum drift time of

94 µs.

The ITS is used for charged particle tracking and trigger purposes. It is composed of six cylindrical layers

of high resolution silicon tracking detectors with radial distances to the beam line from 3.9 to 43 cm. The

two innermost layers are the Silicon Pixel Detectors (SPD) with a total of 9.8 million pixels, read out by

1200 chips. Each chip provides a fast signal if at least one of its pixels is hit. The signals from the 1200

chips are combined in a programmable logic unit which supplies a trigger signal. The SPD contributes

to the minimum-bias trigger, if hits are detected on at least two chips on the outer layer. The SPD is

New LHC heavy ion data!

ALICE collaboration, 11-12/2010

the number of binary nucleon-nucleon collisions
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Bjorken (1+1)D expansion of the plasma is accounted for
as follows:

ρ(zk) = ρ(z0)
z0

zk
,

µ(zk) = µ(z0)

(

z0

zk

)1/3

, λg(zk) = λg(z0)

(

zk

z0

)1/3

, (13)

and the kinematic constraints,

µ/Q ≤ x = k+/E+ ≈ ω/E ≤ 1 ,

µ ≤ |k| ≤
√

Q2 min(x, 1 − x) , (14)

have been incorporated for consistency with our previous
work [12]. It was recently shown that for physical on-
shell final state gluons the medium induced radiation is
infrared and collinear safe [11]. This allows relaxation of
the µ/Q ≤ x, µ ≤ |k| constraints in the future, though
it should be noted that the Debye screening scale still
controls the small k and ω cancellation between the single
and double Born diagrams in the opacity expansion [10].

To evaluate the effect of multiple gluon emission and
arrive at a probabilistic distribution P (ε) for the frac-
tional energy loss ε = ∆E/E =

∑n
i=1 εi, εi = ωi/E, we

are motivated by an independent Poisson gluon emission
ansatz, but incorporate kinematic constraints [13]:

P (ε) =
∞
∑

n=0

Pn(ε) , P0(ε) = e−〈Ng〉δ(ε) ,

Pn(ε) =
1

n

∫ ε

0
dε′ Pn−1(ε − ε′)

dNg

dε′
(ε′ = ω/E) . (15)

We normalize this probability density to unity and
Eq. (15) ensures that at every step energy is conserved.
As a consequence, for small jet energies and large ∆E/E
the gluon distribution is distinctly non-Poisson. We eval-
uate the mean energy loss as follows:

∫ 1

0
dε P (ε) = 1 ,

∫ 1

0
dε ε P (ε) =

〈

∆E

E

〉

. (16)

In Ref. [12] we considered jet production following the
binary collision density TAA(b) in central Au+Au re-
actions at

√
s = 200 GeV. In an elementary hard in-

teraction inclusive jets are distributed uniformly in az-
imuth relative to the reaction plane. We calculated
〈〈∆E 〉〉geom. using the line integral, Eq. (10), through
the (1+1)D Bjorken expanding medium density by cor-
rectly weighing the amount of lost energy with the jet
production rate. Cylindrical geometry with radius L =
6 fm that gives the same mean energy loss 〈∆E 〉 for
uniform initial soft parton rapidity density was then con-
strained. Using Eqs. (4) and (5) we can determine the
effective length L, transverse area A⊥ = πL2, gluon ra-
pidity density dNg/dy and effective atomic mass Aeff

for shadowing applications [14] in interacting heavy ion
systems of different size. Table II summarizes the pa-
rameters used in our calculation of central, mid-central
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FIG. 2: Left panel: mean energy loss for Au+Au and Cu+Cu
soft parton densities at RHIC corresponding to centralities
given in Table II and Pb+Pb soft parton densities at the
LHC corresponding to central collisions versus the jet energy.
Right panel: mean gluon number versus Ejet for the same
heavy ion systems.

and peripheral Au+Au and Cu+Cu collisions at
√

s =
200 GeV at RHIC. For central collisions with

√
s =

5.5 TeV at the LHC, we use dNg/dy = 2000, 3000 and
4000 to test the sensitivity of jet quenching to the QGP

Centrality 0 − 10% 20 − 30% 60 − 80%

Npart 328 167 21

dNg/dy 800 - 1175 410 - 600 50 - 75

L [fm] 6 4.8 2.4

Aeff 197 99 12

Centrality 0 − 10% 20 − 30% 60 − 80%

Npart 103 55 9

dNg/dy 255 - 370 135 - 195 20 - 30

L [fm] 4.1 3.3 1.8

Aeff 64 34 6

TABLE II: Estimated dNg/dy, L and Aeff versus Npart for
central, semi-central and peripheral Au+Au (top table) and
Cu+Cu (bottom table) at RHIC.

Energy loss ~40% in agreement 
with prediction in Vitev, 06
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• RAA suppression (RHIC, LHC)

• Azimuthal angle di-hadron(Jet) correlations IAA 
(RHIC, LHC)

• Elliptic flow v2 (RHIC, LHC)

Strong indications of QGP production

So far RAA and IAA have been analyzed using leading particle approach

Using jets is a new promising direction in heavy ion collisions 

Measurement of elliptic flow (v2)!
of charged particles in Pb-Pb at 2.76 TeV"

!!Data sample: ~50 000 m.b. events collected on Nov 9 

!!9 centrality classes in 0-80% 

!!v2 extracted based on 2 and 4 particle cumulants 

"!methods well established based on RHIC experience 

!!Using TPC-only tracks (cross-check with global tracks)  

LHCC meeting, CERN, 17.11.10                             Andrea Dainese! 19!

!! Medium geometry asymmetric in 

non-central collisions 

!! Hydro-dynamic models: 

"! expansion under azimuth-dep. 

pressure gradient 

"! results in azimuth-dep. momentum 

distributions 

!! Measured by the elliptic flow  

parameter v2(pt) = <cos(2!)>(pt)  

!"
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Figure 3: RAA in central (0–5%) and peripheral (70–80%) Pb–Pb collisions at
√
s
NN

= 2.76 TeV. Error bars

indicate the statistical uncertainties. The boxes contain the systematic errors in the data and the pT dependent

systematic errors on the pp reference, added in quadrature. The histograms indicate, for central collisions only,

the result for RAA at pT > 6.5 GeV/c using alternative pp references obtained by the use of the pp̄ measurement

at
√
s
NN

= 1.96 TeV [26] in the interpolation procedure (solid) and by applying NLO scaling to the pp data at 0.9

TeV (dashed) (see text). The vertical bars around RAA = 1 show the pT independent uncertainty on 〈Ncoll〉.
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Figure 4: Comparison of RAA in central Pb–Pb collisions at LHC to measurements at
√
s
NN

= 200 GeV by the

PHENIX [30] and STAR [31] experiments at RHIC. The error representation of the ALICE data is as in Fig. 3.

The statistical and systematic errors of the PHENIX data are shown as error bars and boxes, respectively. The

statistical and systematic errors of the STAR data are combined and shown as boxes. The vertical bars around

RAA = 1 indicate the pT independent scaling errors on RAA.
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• PQCD

• Thermal Field Theory

• Lattice QCD

• Hydrodynamics

• AdS/CFT symmetry

Theoretical Approaches
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• The medium is modeled with a finite number 
of scattering centers with static Debye-
screened potential

H =
N∑

n=1

H(q;xn) = 2πδ(q0) v(q)
N∑

n=1

eiqxn T a(R)⊗ T a(n)

v(q) =
4παs

q2z + q2 + µ2

Gyulassy, Wang, 94
Gyulassy-Wang model
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• The medium is modeled with a finite number 
of scattering centers with static Debye-
screened potential

H =
N∑

n=1

H(q;xn) = 2πδ(q0) v(q)
N∑

n=1

eiqxn T a(R)⊗ T a(n)

v(q) =
4παs

q2z + q2 + µ2

x1 xi ......

Gyulassy, Wang, 94

• The momentum scaling of the exchange 
gluon is that of the Glauber gluon:  

q(λ2,λ2,λ)

Gyulassy-Wang model
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Gyulassy-Levai-Vitev reaction operator

x1 xi ......

x1 xi ......

Jet broadening

Radiative energy loss

algebraic classification of diagrams given in Ref. [ 27] to include virtual double Born amplitudes needed
in the inclusive case. Sec. III C summarizes the rules of diagrammatic calculus that emerge from detailed
analysis of diagrams in Appendix A through Appendix E.

In Sec. IV the new reaction operator formalism is developed. First, operators D̂n, V̂n in Eqs. (76,81) are
constructed from the diagrammatic rules. Products of these operators create partial sums of direct and
virtual amplitudes from the initial hard vacuum amplitude. Those partial sums, Eq. (60), form 3n classes
of diagrams that can be conveniently enumerated via a tensor notation and used to construct recursion
relations. In Sec. IV B, the reaction operator, R̂n = D̂†

nD̂n + V̂n + V̂ †
n , is constructed to relate the nth order

in opacity inclusive radiation probability distribution to classes of diagrams of order n − 1. The resulting
simple recursion relation, Eq. (97), can be solved in closed form. The general solution, Eq. (101), is suitable
for implementation in Monte Carlo event generators to study observable consequences of jet quenching in
nuclear collisions.

Color triviality of the inclusive distribution is proven to all orders algebraically with Eq. (101). The proof
is much simpler and more transparent than in the path integral formulations [ 13, 20, 34] and is not limited
to quark jets.

In Sec IV C a compact general expression for the momentum transfer averaged inclusive distributions,
Eq. (113) is derived. Appendix F provides an independent check of this solution through second order
starting from the amplitude iteration technique. Numerical results comparing angular distributions of gluons
up to the first three orders in opacity are presented in Sec. V A. Analytic and numerical results for the
angular integrated intensity distributions are compared in Sec. V B. It is shown that the induced intensity
is dominated by the first order in opacity result that is already quadratic in L.

A brief summary of these results up to second order in opacity was reported in Ref. [ 28]. The main result
of this paper is the new reaction operator derivation of the solutions, Eq. (101,113), that specify the inclusive
non-abelian radiation distribution to any order in opacity.

II. ELASTIC SCATTERING AND UNITARITY

To illustrate how the double Born graphs cancel direct contributions to preserve unitarity we review here
the simplest case of elastic scattering. Consider a wave packet j(p) of a parton prepared at time t0 and
localized at !x0 = (z0,x0) in color representation R. The (color matrix) amplitude to measure its momentum
as !p in the absence of final state interactions is

M0 ≡ ieipx0j(p) × 1 . (7)

Multiplying |M0|2 by the invariant one particle phase space element d3!p/((2π)32|!p|) and taking the color
trace gives the unperturbed inclusive distribution of jets in the wave packet:

d3N0 = Tr |M0|2
d3!p

2|!p|(2π)3
= |j(p)|2

dR d3!p

2|!p|(2π)3
. (8)

Consider next the effect of final state elastic interactions with an array of static potentials localized at
!xi = (zi,bi) using

HI(t) =

∫

d3!x
N

∑

i=1

v(!x − !x1)Ta(i)φ†(!x, t)Ta(R)D̂(t)φ(!x, t) , (9)

where D̂(t) = i
↔
∂t and TrTa(i)Tb(j) = δijδabC2(T )dT /dA. We will compute the three graphs in Fig. 1. The

first order, direct amplitude to scatter with one of the (static) target partons is

M1 = ieipx0

∫

d4q

(2π)4
j(p − q)∆(p − q)v(q)D(2p − q)

N
∑

j=1

eiq(xj−x0)Ta(j)Ta(R) , (10)

where ∆(p) ≡ (p2 + iε)−1 and D(p) = p0. The sum of double Born amplitudes in the same external potential
is

4

Gyulassy, Levai, Vitev, 00
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analysis of diagrams in Appendix A through Appendix E.
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relations. In Sec. IV B, the reaction operator, R̂n = D̂†

nD̂n + V̂n + V̂ †
n , is constructed to relate the nth order

in opacity inclusive radiation probability distribution to classes of diagrams of order n − 1. The resulting
simple recursion relation, Eq. (97), can be solved in closed form. The general solution, Eq. (101), is suitable
for implementation in Monte Carlo event generators to study observable consequences of jet quenching in
nuclear collisions.

Color triviality of the inclusive distribution is proven to all orders algebraically with Eq. (101). The proof
is much simpler and more transparent than in the path integral formulations [ 13, 20, 34] and is not limited
to quark jets.

In Sec IV C a compact general expression for the momentum transfer averaged inclusive distributions,
Eq. (113) is derived. Appendix F provides an independent check of this solution through second order
starting from the amplitude iteration technique. Numerical results comparing angular distributions of gluons
up to the first three orders in opacity are presented in Sec. V A. Analytic and numerical results for the
angular integrated intensity distributions are compared in Sec. V B. It is shown that the induced intensity
is dominated by the first order in opacity result that is already quadratic in L.

A brief summary of these results up to second order in opacity was reported in Ref. [ 28]. The main result
of this paper is the new reaction operator derivation of the solutions, Eq. (101,113), that specify the inclusive
non-abelian radiation distribution to any order in opacity.

II. ELASTIC SCATTERING AND UNITARITY

To illustrate how the double Born graphs cancel direct contributions to preserve unitarity we review here
the simplest case of elastic scattering. Consider a wave packet j(p) of a parton prepared at time t0 and
localized at !x0 = (z0,x0) in color representation R. The (color matrix) amplitude to measure its momentum
as !p in the absence of final state interactions is

M0 ≡ ieipx0j(p) × 1 . (7)

Multiplying |M0|2 by the invariant one particle phase space element d3!p/((2π)32|!p|) and taking the color
trace gives the unperturbed inclusive distribution of jets in the wave packet:

d3N0 = Tr |M0|2
d3!p

2|!p|(2π)3
= |j(p)|2

dR d3!p

2|!p|(2π)3
. (8)

Consider next the effect of final state elastic interactions with an array of static potentials localized at
!xi = (zi,bi) using

HI(t) =

∫

d3!x
N

∑

i=1

v(!x − !x1)Ta(i)φ†(!x, t)Ta(R)D̂(t)φ(!x, t) , (9)

where D̂(t) = i
↔
∂t and TrTa(i)Tb(j) = δijδabC2(T )dT /dA. We will compute the three graphs in Fig. 1. The

first order, direct amplitude to scatter with one of the (static) target partons is

M1 = ieipx0

∫

d4q

(2π)4
j(p − q)∆(p − q)v(q)D(2p − q)

N
∑

j=1

eiq(xj−x0)Ta(j)Ta(R) , (10)

where ∆(p) ≡ (p2 + iε)−1 and D(p) = p0. The sum of double Born amplitudes in the same external potential
is

4

Gyulassy, Levai, Vitev, 00

meson dissociation, electromagnetic energy loss
Other applications:
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algebraic classification of diagrams given in Ref. [ 27] to include virtual double Born amplitudes needed
in the inclusive case. Sec. III C summarizes the rules of diagrammatic calculus that emerge from detailed
analysis of diagrams in Appendix A through Appendix E.

In Sec. IV the new reaction operator formalism is developed. First, operators D̂n, V̂n in Eqs. (76,81) are
constructed from the diagrammatic rules. Products of these operators create partial sums of direct and
virtual amplitudes from the initial hard vacuum amplitude. Those partial sums, Eq. (60), form 3n classes
of diagrams that can be conveniently enumerated via a tensor notation and used to construct recursion
relations. In Sec. IV B, the reaction operator, R̂n = D̂†

nD̂n + V̂n + V̂ †
n , is constructed to relate the nth order

in opacity inclusive radiation probability distribution to classes of diagrams of order n − 1. The resulting
simple recursion relation, Eq. (97), can be solved in closed form. The general solution, Eq. (101), is suitable
for implementation in Monte Carlo event generators to study observable consequences of jet quenching in
nuclear collisions.

Color triviality of the inclusive distribution is proven to all orders algebraically with Eq. (101). The proof
is much simpler and more transparent than in the path integral formulations [ 13, 20, 34] and is not limited
to quark jets.

In Sec IV C a compact general expression for the momentum transfer averaged inclusive distributions,
Eq. (113) is derived. Appendix F provides an independent check of this solution through second order
starting from the amplitude iteration technique. Numerical results comparing angular distributions of gluons
up to the first three orders in opacity are presented in Sec. V A. Analytic and numerical results for the
angular integrated intensity distributions are compared in Sec. V B. It is shown that the induced intensity
is dominated by the first order in opacity result that is already quadratic in L.

A brief summary of these results up to second order in opacity was reported in Ref. [ 28]. The main result
of this paper is the new reaction operator derivation of the solutions, Eq. (101,113), that specify the inclusive
non-abelian radiation distribution to any order in opacity.

II. ELASTIC SCATTERING AND UNITARITY

To illustrate how the double Born graphs cancel direct contributions to preserve unitarity we review here
the simplest case of elastic scattering. Consider a wave packet j(p) of a parton prepared at time t0 and
localized at !x0 = (z0,x0) in color representation R. The (color matrix) amplitude to measure its momentum
as !p in the absence of final state interactions is

M0 ≡ ieipx0j(p) × 1 . (7)

Multiplying |M0|2 by the invariant one particle phase space element d3!p/((2π)32|!p|) and taking the color
trace gives the unperturbed inclusive distribution of jets in the wave packet:

d3N0 = Tr |M0|2
d3!p

2|!p|(2π)3
= |j(p)|2

dR d3!p

2|!p|(2π)3
. (8)

Consider next the effect of final state elastic interactions with an array of static potentials localized at
!xi = (zi,bi) using

HI(t) =

∫

d3!x
N

∑

i=1

v(!x − !x1)Ta(i)φ†(!x, t)Ta(R)D̂(t)φ(!x, t) , (9)

where D̂(t) = i
↔
∂t and TrTa(i)Tb(j) = δijδabC2(T )dT /dA. We will compute the three graphs in Fig. 1. The

first order, direct amplitude to scatter with one of the (static) target partons is

M1 = ieipx0

∫

d4q

(2π)4
j(p − q)∆(p − q)v(q)D(2p − q)

N
∑

j=1

eiq(xj−x0)Ta(j)Ta(R) , (10)

where ∆(p) ≡ (p2 + iε)−1 and D(p) = p0. The sum of double Born amplitudes in the same external potential
is
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• Our goal is to construct an effective theory for highly energetic quarks and 
gluons in the medium

• Soft Collinear Effective Theory(SCET) is a good start

• Need to add the transverse(Glauber) gluons to the SCET lagrangian: SCETG

• We want to go beyond the static source approximation

• Check gauge invariance of the broadening and bremsstrahlung 
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SCETG=SCET+Glauber gluons
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The initial state of the incoming nucleus is defined as |A; p〉. The general final hadronic or partonic state is defined
as |X〉. As a result, the semi-inclusive hadronic tensor may be defined as

Wµν=
∑

X

(2π4)δ4(q+PA−pX)〈A; p|Jµ(0)|X〉〈X |Jν(0)|A; p〉 = 2Im

[
∫

d4yeiq·y〈A; p|Jµ(y)Jν(0)|A; p〉
]

, (32)

where the sum (
∑

X) runs over all possible hadronic states and Jµ is the hadronic electromagnetic current i.e.,
Jµ = Qq ξ̄n̄γµξn, where Qq is the charge of a quark of flavor q in units of the positron charge e. It is understood
that the factors of the electromagnetic coupling constant have already been extracted and included in Eq. (30). The
leptonic tensor will not be discussed further. The focus in the remaining shall lie exclusively on the hadronic tensor.

In a full QCD calculation of Eq. (32), one computes the hadronic tensor, order by order, in the strong coupling.
This leads to the introduction of a variety of processes leading to a modification of the structure of the jet. Such
processes include radiative branchings, flavor changes of propagating partons, as well as transverse diffusion of the
partons in the shower which ensues from the quark produced in the hard scattering. In this article, we will focus
solely on the processes which lead to the transverse momentum diffusion or transverse broadening of the produced
hard quark.

In Ref. [30], the leading contributions to transverse broadening without induced radiation, at all orders in coupling,
were identified as those of Fig. 5. These diagrams depict processes where the propagating parton engenders multiple
scattering off the glue field inside the various nucleons through which it propagates. However, scatterings do not
change the small off-shellness of the propagating parton; as a result, large transverse momentum radiations do not
occur. Using simple kinematics, the relation between the momentum components of the glue field ki may be surmised
by insisting that the off-shellness of the i + 1th quark line be of the same order as the ith line,

(p + ki)
2 = p2 + k2

i + 2p+k−
i + 2p−k+

i − 2%p⊥ · %ki
⊥. (33)

Insisting that (p+ki)2 ∼ p2 ∼ λ2Q2 and given the known scaling of the quark momenta (i.e., p+ ∼ λ2Q, p− ∼ Q, %p⊥ ∼
λQ), we obtain that %ki

⊥ ∼ λQ, k+
i ∼ λ2Q and k−

i may scale with a range of different choices Q, λQ, λ2Q etc. The first
two cases for the scaling of k− represent gluons which are emanated with large (−)-momentum from a nucleon moving
with large (+)-momentum. The number of such gluons must be vanishingly small. The first non-trivial population of
gluons emanating from a nucleon moving with a large (+)-momentum, are those which scale as k ∼ [λ2, λ2, λ], which
essentially constitute the Glauber sector.

q q

APAP y

p’
0

p
0

1 2 3 y3 2 y1

1q2q3q3q’2q’1q’

y’ y’ y’ y

FIG. 5: An order n diagram which contributes solely to transverse broadening.

Using the Feynman rules derived for Glauber gluons in section 2, the leading component of nth order diagrams such

LG(ξn, AG)_

• n-collinear source

• covariant, light-cone gauge
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identify

|Mβα|2 =
1

L2 Nc

∫

d2x⊥ e−ik⊥·x⊥

×
〈

Tr
[(

W †
F [0, x⊥]− 1

)

(WF [0, 0]− 1)
]〉

. (5.37)

We now have all the ingredients in place to use (3.8) to
obtain the probability distribution P (k⊥). We find

P (k⊥) =

∫

d2x⊥ e−ik⊥·x⊥ WF (x⊥) (5.38)

where we have defined

WF [x⊥] ≡
1

Nc

〈

Tr
[

W †
F [0, x⊥]WF [0, 0]

]〉

. (5.39)

To demonstrate that (5.38) is correct it suffices to check
first that P (k⊥)/L2 and (5.37) are identical when k⊥ $= 0,
which is the case since their difference is proportional to
δ2(k⊥), and second that (5.38) is correctly normalized as
in (1.1), which is the case since

∫

d2k⊥
(2π)2

∫

d2x⊥ e−ik⊥·x⊥ WF (x⊥) = WF (0) = 1.

(5.40)
It is also straightforward to check that

2 ImMαα = 2− 1

Nc

〈

TrW †
F [0, 0] + TrWF [0, 0]

〉

(5.41)

and

P (0)

L2
= |Sαα|2

= |Mαα|2 +
1

Nc

〈

TrW †
F [0, 0] + TrWF [0, 0]

〉

− 1

= 1− 2 ImMαα + |Mαα|2 , (5.42)

as in (3.8). The expression (5.38) with (5.39) is our cen-
tral technical result.
The analysis of this section can be applied completely

analogously to the case in which the hard parton is a
collinear gluon, instead of a collinear quark. The only
changes are that A+ is now in the adjoint representation
and the 1/Nc factor in (5.39) becomes 1

N2
c−1 . We con-

clude that whether the hard parton is a collinear quark
or gluon, the probability distribution takes the form

P (k⊥) =

∫

d2x⊥ e−ik⊥·x⊥ WR(x⊥) (5.43)

with

WR(x⊥) =
1

d (R)

〈

Tr
[

W †
R[0, x⊥]WR[0, 0]

]〉

(5.44)

where R is the SU(N) representation to which the
collinear particle belongs and d (R) is the dimension of
this representation. Eq. (5.43) is an elegant expression

ti tf

tf − iεti − iε

ti − iβ

FIG. 5: Schwinger-Keldysh contour that must be used in the
evaluation of WR(x⊥).

saying that the probability for the quark to obtain trans-
verse momentum k⊥ is simply given by the Fourier trans-
form in x⊥ of the expectation value (5.44) of two light-
like Wilson lines separated in the transverse plane by the
vector x⊥. Eq. (5.43) has been obtained previously by
Casalderrey-Solana and Salgado and by Liang, Wang and
Zhou using different methods [17, 24].

VI. q̂ FROM LIGHT-LIKE WILSON LINES

The jet quenching parameter q̂ is the mean transverse
momentum picked up by the hard parton per unit dis-
tance travelled, or equivalently per unit time. We repro-
duce its definition (1.2) here:

q̂ ≡ 1

L

∫

d2k⊥
(2π)2

k2⊥ P (k⊥) . (6.1)

Substituting our result (5.43) for P (k⊥) in (6.1), we find
that

q̂ =

√
2

L−

∫

d2k⊥
(2π)2

k2⊥

∫

d2x⊥ e−ik⊥·x⊥ WR(x⊥) , (6.2)

where we have replaced L by the distance along the light-
cone L− =

√
2L. Upon evaluating q̂ in Section VII, we

shall see that it is L−-independent.
It is important to notice that the expectation value

of the trace of the product of two light-like Wilson lines
that arises in P (k⊥) and hence in q̂, namely WR(x⊥) of
(5.44), has a different operator ordering from that in a
standard Wilson loop. Each of the A+’s in (5.27) can be
written as the product of an operator and a group matrix:
A+ = (A+)ata. It is clear from the explicit expression
(5.27) that in WR(x⊥) both the operators and the group
matrices are path ordered. In contrast, in a conventional
Wilson loop the group matrices are path ordered but the
operators are time ordered. Because the operators in
(5.44) are path ordered, the expectation value in (5.44)
should be described using the Schwinger-Keldysh contour
in Fig. 5 with one of the light-like Wilson lines on the
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× θ(y−n − y−n−1) · · · θ(y
−
2 − y−1 ) igA

+(y+, y−n , y⊥) · · · igA+(y+, y−1 , y⊥)
]

. (5.27)

Now, summing over all m and n, we obtain

∞
∑

m=1,n=1

d2Anm

d2k⊥
=

√
2

L3 Nc

∫

dy+dy⊥dy
′
⊥ e−ik⊥·(y⊥−y′

⊥
)
〈

Tr
[(

W †
F [y

+, y′⊥]− 1
)

(

WF [y
+, y⊥]− 1

)

]〉

(5.28)

where we have introduced the fundamental Wilson line
along the lightcone

WF

[

y+, y⊥
]

≡ P

{

exp

[

ig

∫ L−

0
dy− A+(y+, y−, y⊥)

]}

(5.29)
with P denoting path-ordering, and where we have now
restored the expectation value in the medium. Recall
that to this point we have been calculating how the hard
parton propagates through one background gauge field
configuration. Now that in (5.28) we have pushed this
calculation through to the point that the gauge field ap-
pears only in the Wilson lines along the lightcone, we can
complete the story by averaging over gauge field configu-
rations. If the medium is quark-gluon plasma in equilib-
rium, then the average represented by 〈. . .〉 is a thermal
average. In our derivation of (5.28) it makes no differ-
ence whether the medium is strongly coupled or weakly
coupled; this distinction, or indeed any properties of the
medium, only become relevant when one seeks to evalu-
ate the thermal average.

We have made a leap in going from (5.27), in which
the gluon fields A+ describe Glauber gluons, to (5.28),
in which we are taking a thermal average over all gluon
fields. By gauge invariance, we know that (5.28) must be
the correct generalization of (5.27) in the present context.
But, in future when the effects of soft gluons and radi-
ation (processes 1 and 3 from Section II) are computed,
it is possible that additional separately gauge invariant
contributions to transverse momentum broadening may
arise. As an aside, note that the expression (5.28) is valid
in any covariant gauge but not, for example, in a light-
cone gauge in which A+ = 0 and the lightlike Wilson
lines in (5.28) are given by the identity. Upon redoing
the calculation in such a gauge, (5.28) would contain the
expectation value of a transverse Wilson line joining the
ends of the two lightlike Wilson lines.

Because the medium is translation-invariant, the ex-
pectation value of the trace of the product of Wilson
lines that arises in (5.28) must be independent of y+ and
can only depend on the difference y⊥−y′⊥. Upon making
the change of variables

X⊥ =
1

2
(y′⊥ + y⊥), x⊥ = y⊥ − y′⊥, (5.30)

we find

∞
∑

m=1,n=1

d2Anm

d2k⊥
= a

∫

d2x⊥ e−ik⊥·x⊥

×
〈

Tr
[(

W †
F [0, x⊥]− 1

)

(WF [0, 0]− 1)
]〉

(5.31)

with

a =

√
2

L3Nc

∫

dy+d2X⊥ =

√
2

LNc

∫

dy+ . (5.32)

We now have to find a way to regularize the integral
over y+. We assume that we throw particles toward the
medium for a time interval ∆t, which is arbitrary and
much larger than the box size L. We have normalized
our states such that they describe one particle per volume
L3. And, the particles they describe move at the speed
of light. Therefore, the incident flux is 1/L3. The total
number of particles which propagate through the medium
in the time interval ∆t is then given by

1

L3
L2 ∆t =

∆t

L
, (5.33)

which means that in order to obtain the probability dis-
tribution for a single particle to acquire transverse mo-
mentum k⊥ we must divide (5.31) by ∆t/L. The integral
over y+ is the projection of the time interval along the
y+-axis, namely ∆t/

√
2, and we have

a → L

∆t
a =

√
2

∆tNc

∫

dy+ =
1

Nc
. (5.34)

We therefore finally obtain

∞
∑

m=1,n=1

d2Anm

d2k⊥
=

1

Nc

∫

d2x⊥ e−ik⊥·x⊥

×
〈

Tr
[(

W †
F [0, x⊥]− 1

)

(WF [0, 0]− 1)
]〉

. (5.35)

Recall from (3.9) that the forward scattering amplitude
which appears in the unitarity relation (3.6) is given by

2 ImMαα =

∫

d2k⊥
(2π)2

∞
∑

m=1,n=1

d2Anm

d2k⊥
. (5.36)

As anticipated in Section III, we can now use the uni-
tarity relation (3.6) as well as (3.7), (5.35) and (5.36) to
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of Table 4.1, where we have defined Γ1...Γ4,Σ1...Σ3 as follows:

Γµ
1 = igT a nµ n̄/

2
, (4.6)

Γµ
2 = igT a γ

µ
⊥p/⊥ + p/′⊥γ

µ
⊥

n̄·p
n̄/

2
, (4.7)

Γµ
3 = igT a vµ, (4.8)

Γµ
4 = igT a γµ, (4.9)

Σµ,ν,λ
1 = gfabc nµ

[
gνλ n̄·q1 + n̄ν

(
qλ2⊥ − qλ1⊥

)
− n̄λ (qν2⊥ − qν1⊥)−

1− 1
ξ

2

(
n̄λqν1 + n̄νqλ2

)]
, (4.10)

Σµ,ν,λ
2 = gfabc

[
gµλ⊥ (qν1⊥ − 2qν2⊥) + gµν⊥ (qλ2⊥ − 2qλ1⊥) + gνλ⊥

(
nµ n̄·q1 + qµ1⊥ + qµ2⊥

)]
, (4.11)

Σµ,ν,λ
3 = gfabc

[
gµλ⊥ (qν1⊥ − 2qν2⊥) + gµν⊥ (qλ2⊥ − 2qλ1⊥) + gνλ⊥

(
qµ1⊥ + qµ2⊥

)]
. (4.12)

The derived rules allow us to write down the effective Lagrangian of SCETG . As a result, we obtain

the following interaction term between SCET collinear fields and the vector potential Aµ
G(x) of the Glauber

gluons:

LSCETG (ξn, An, AG) = LSCET(ξn, An) + LG (ξn, An, AG) , (4.13)

LG (ξn, An, AG) =
∑

p,p′

e−i(p−p′)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
AGµ,a(x) , . (4.14)

Depending on the gauge and the source, the vertexes and the vector potential are different and are provided

in the table above. The Lagrangian of this form for the collinear source in Rξ and A− = 07 gauges was

derived in [32] and agrees with our expressions for corresponding two entries for ΓqqAG in Table 4.1. We

slso note that for the covariant gauge and ξ = 1 our Feynman rule for ΓggAG(Rξ) = Σµνλ
1 disagrees with

that of [33].

Finally, in order to have a manifestly gauge invariant Lagrangian, we can rewrite Eq. (4.14) including

the source fields (see Eq. (4.1)):

LG (ξn, An, η) =
∑

p,p′,q

e−i(p−p′+q)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
η̄ Γν,a

s η∆µν(q),

(4.15)

where all the vertexes for the target and the source are provided conveniently in Table 4.1. In order to

make this Lagrangian collinear gauge invariant one needs to dress the quarks and gluons with collinear

Wilson lines Wn(x). As a result the Lagrangian that includes the Wilson lines can be obtained as follows:

LG (ξn, An, η) → LG

(
W †

nξn,Bn(An), η
)
≡ LG (χn,Bn, η) , (4.16)

where W †
nξn(≡ χn), Bn(An) are the dressed collinear gauge invariant quark and gluon fields correspond-

ingly. In the next two subsections we will show that Lagrangian in Eq. (4.16) is invariant under the BPS

transformation [11] and the soft and collinear gauge transformations.

7In order to avoid confusion we note that in [32] the source was in the n direction while the target jet in the n̄ direction,

thus our formulas agree with that reference if n ↔ n̄ as expected. For example in [32] the light-cone gauge A+ = 0 was

considered, while it is analogous to our A− = 0 gauge.
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• Use full QCD fields to derive 
the scaling of the vector 
potential created by the 
source of the Glauber gluons

• Consider collinear, static and 
soft quark sources

• Use background field method 
to deduce the Feynman rules 
of interaction of the target jet 
with the Glauber vector 
potential

Gauge Object Collinear source Static source Soft source

p
[
λ2, 1,λ

]
[1, 1,λ] [λ,λ,λ]

ap, a
†
p λ−1 λ−3/2 λ−3/2

u(p) 1 1 λ1/2

ū(p2)γνu(p1)
[
λ2, 1,λ

]
[1, 1,λ] [λ,λ,λ]

Rξ Aµ(x)
[
λ4,λ2,λ3

] [
λ2,λ2,λ3

] [
λ2,λ2,λ2

]

ΓqqAG Γµ
1 Γµ

1 Γµ
1

ΓggAG Σµνλ
1 Σµνλ

1 Σµνλ
1

Γs Γµ
1 (n ↔ n̄) Γµ

3 Γµ
4

A+ = 0 Aµ(x)
[
0,λ2,λ3

] [
0,λ2,λ

] [
0,λ2,λ

]

ΓqqAG Γµ
1 Γµ

1 + Γµ
2 Γµ

1 + Γµ
2

ΓggAG Σµνλ
2 Σµνλ

2 Σµνλ
2

Γs Γµ
2 (n ↔ n̄) Γµ

3 Γµ
4

A− = 0 Aµ(x)
[
λ2, 0,λ

] [
λ2, 0,λ

] [
λ2, 0,λ

]

ΓqqAG Γµ
2 Γµ

2 Γµ
2

ΓggAG Σµνλ
3 Σµνλ

3 Σµνλ
3

Γs Γµ
1 (n ↔ n̄) Γµ

3 Γµ
4

Table 1: Summary of the scaling behavior of the Glauber gluon source ingredients, the Glauber vector potential and
the Feynman rules for the newly constructed theory SCETG in the covariant Rξ gauge and two different lightcone
gauges A+ = 0, A− = 0.

rules Γs for the interaction between the source fields and the Glauber gluons. This is achieved by noting

that we can view the jet moving in the direction of n as a source of Glauber gluons for the target fields η̄, η.

Thus, the Feynman rules Γs can be found by using our scaling rules for Aµ
G(x) with the collinear source in

the n−direction6. Also, note that for the collinear source we use SCET current in the n̄ direction, for the

static source we use the HQET current and, finally, for the soft source we use the unexpanded vertex γµ
consistent with the soft quark interaction with the background field. As a result we fill in all the elements

6Note that in the table we have derived the Feynman rules generated by the collinear source moving in the n̄ direction.

However, since our target is a collinear current in the n−direction, it’s effect on the source can be derived from our table by

reversing the n ↔ n̄ in the collinear source column.
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of Table 4.1, where we have defined Γ1...Γ4,Σ1...Σ3 as follows:

Γµ
1 = igT a nµ n̄/

2
, (4.6)

Γµ
2 = igT a γ

µ
⊥p/⊥ + p/′⊥γ

µ
⊥

n̄·p
n̄/

2
, (4.7)

Γµ
3 = igT a vµ, (4.8)

Γµ
4 = igT a γµ, (4.9)

Σµ,ν,λ
1 = gfabc nµ

[
gνλ n̄·q1 + n̄ν

(
qλ2⊥ − qλ1⊥

)
− n̄λ (qν2⊥ − qν1⊥)−

1− 1
ξ

2

(
n̄λqν1 + n̄νqλ2

)]
, (4.10)

Σµ,ν,λ
2 = gfabc

[
gµλ⊥ (qν1⊥ − 2qν2⊥) + gµν⊥ (qλ2⊥ − 2qλ1⊥) + gνλ⊥

(
nµ n̄·q1 + qµ1⊥ + qµ2⊥

)]
, (4.11)

Σµ,ν,λ
3 = gfabc

[
gµλ⊥ (qν1⊥ − 2qν2⊥) + gµν⊥ (qλ2⊥ − 2qλ1⊥) + gνλ⊥

(
qµ1⊥ + qµ2⊥

)]
. (4.12)

The derived rules allow us to write down the effective Lagrangian of SCETG . As a result, we obtain

the following interaction term between SCET collinear fields and the vector potential Aµ
G(x) of the Glauber

gluons:

LSCETG (ξn, An, AG) = LSCET(ξn, An) + LG (ξn, An, AG) , (4.13)

LG (ξn, An, AG) =
∑

p,p′

e−i(p−p′)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
AGµ,a(x) , . (4.14)

Depending on the gauge and the source, the vertexes and the vector potential are different and are provided

in the table above. The Lagrangian of this form for the collinear source in Rξ and A− = 07 gauges was

derived in [32] and agrees with our expressions for corresponding two entries for ΓqqAG in Table 4.1. We

slso note that for the covariant gauge and ξ = 1 our Feynman rule for ΓggAG(Rξ) = Σµνλ
1 disagrees with

that of [33].

Finally, in order to have a manifestly gauge invariant Lagrangian, we can rewrite Eq. (4.14) including

the source fields (see Eq. (4.1)):

LG (ξn, An, η) =
∑

p,p′,q

e−i(p−p′+q)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
η̄ Γν,a

s η∆µν(q),

(4.15)

where all the vertexes for the target and the source are provided conveniently in Table 4.1. In order to

make this Lagrangian collinear gauge invariant one needs to dress the quarks and gluons with collinear

Wilson lines Wn(x). As a result the Lagrangian that includes the Wilson lines can be obtained as follows:

LG (ξn, An, η) → LG

(
W †

nξn,Bn(An), η
)
≡ LG (χn,Bn, η) , (4.16)

where W †
nξn(≡ χn), Bn(An) are the dressed collinear gauge invariant quark and gluon fields correspond-

ingly. In the next two subsections we will show that Lagrangian in Eq. (4.16) is invariant under the BPS

transformation [11] and the soft and collinear gauge transformations.

7In order to avoid confusion we note that in [32] the source was in the n direction while the target jet in the n̄ direction,

thus our formulas agree with that reference if n ↔ n̄ as expected. For example in [32] the light-cone gauge A+ = 0 was

considered, while it is analogous to our A− = 0 gauge.
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Elements in the table:

n

source

g

• Our Glauber Lagrangian is invariant under the gauge 
symmetries of SCET

• We derived the Feynman rules for three types of 
sources: collinear, static, and soft quarks and three 
gauges: covariant,  A+=0 and A-=0 gauges.

of Table 4.1, where we have defined Γ1...Γ4,Σ1...Σ3 as follows:

Γµ
1 = igT a nµ n̄/

2
, (4.6)

Γµ
2 = igT a γ

µ
⊥p/⊥ + p/′⊥γ

µ
⊥

n̄·p
n̄/

2
, (4.7)

Γµ
3 = igT a vµ, (4.8)

Γµ
4 = igT a γµ, (4.9)

Σµ,ν,λ
1 = gfabc nµ

[
gνλ n̄·q1 + n̄ν

(
qλ2⊥ − qλ1⊥

)
− n̄λ (qν2⊥ − qν1⊥)−

1− 1
ξ

2

(
n̄λqν1 + n̄νqλ2

)]
, (4.10)

Σµ,ν,λ
2 = gfabc

[
gµλ⊥

(
−nν

2
q+1 + qν1⊥ − 2qν2⊥

)
+ gµν⊥

(
−nλ

2
q+1 + qλ2⊥ − 2qλ1⊥

)
+ gνλ⊥

(
nµ n̄·q1 + qµ1⊥ + qµ2⊥

)]
,

Σµ,ν,λ
3 = gfabc

[
gµλ⊥

(
n̄ν

2
(q−1 − 2q−2 ) + qν1⊥ − 2qν2⊥

)
+ gµν⊥

(
n̄λ

2
(q−2 − 2q−1 ) + qλ2⊥ − 2qλ1⊥

)
+ gνλ⊥

(
qµ1⊥ + qµ2⊥

)]
.

(4.11)

The derived rules allow us to write down the effective Lagrangian of SCETG . As a result, we obtain

the following interaction term between SCET collinear fields and the vector potential Aµ
G(x) of the Glauber

gluons:

LSCETG (ξn, An, AG) = LSCET(ξn, An) + LG (ξn, An, AG) , (4.12)

LG (ξn, An, AG) =
∑

p,p′

e−i(p−p′)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
AGµ,a(x) , . (4.13)

Depending on the gauge and the source, the vertexes and the vector potential are different and are provided

in the table above. The Lagrangian of this form for the collinear source in Rξ and A− = 06 gauges was

derived in [32] and agrees with our expressions for corresponding two entries for ΓqqAG in Table 4.1. We

slso note that for the covariant gauge and ξ = 1 our Feynman rule for ΓggAG(Rξ) = Σµνλ
1 disagrees with

that of [33].

Finally, in order to have a manifestly gauge invariant Lagrangian, we can rewrite Eq. (4.13) including

the source fields (see Eq. (4.1)):

LG (ξn, An, η) =
∑

p,p′,q

e−i(p−p′+q)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
η̄ Γν,a

s η∆µν(q),

(4.14)

where all the vertexes for the target and the source are provided conveniently in Table 4.1. In order to

make this Lagrangian collinear gauge invariant one needs to dress the quarks and gluons with collinear

Wilson lines Wn(x). As a result the Lagrangian that includes the Wilson lines can be obtained as follows:

LG (ξn, An, η) → LG

(
W †

nξn,Bn(An), η
)
≡ LG (χn,Bn, η) , (4.15)

6In order to avoid confusion we note that in [32] the source was in the n direction while the target jet in the n̄ direction,

thus our formulas agree with that reference if n ↔ n̄ as expected. For example in [32] the light-cone gauge A+ = 0 was

considered, while it is analogous to our A− = 0 gauge.
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of Table 4.1, where we have defined Γ1...Γ4,Σ1...Σ3 as follows:

Γµ
1 = igT a nµ n̄/

2
, (4.6)

Γµ
2 = igT a γ

µ
⊥p/⊥ + p/′⊥γ

µ
⊥

n̄·p
n̄/

2
, (4.7)

Γµ
3 = igT a vµ, (4.8)

Γµ
4 = igT a γµ, (4.9)

Σµ,ν,λ
1 = gfabc nµ

[
gνλ n̄·q1 + n̄ν

(
qλ2⊥ − qλ1⊥

)
− n̄λ (qν2⊥ − qν1⊥)−

1− 1
ξ

2

(
n̄λqν1 + n̄νqλ2

)]
, (4.10)

Σµ,ν,λ
2 = gfabc

[
gµλ⊥

(
−nν

2
q+1 + qν1⊥ − 2qν2⊥

)
+ gµν⊥

(
−nλ

2
q+1 + qλ2⊥ − 2qλ1⊥

)
+ gνλ⊥

(
nµ n̄·q1 + qµ1⊥ + qµ2⊥

)]
,

Σµ,ν,λ
3 = gfabc

[
gµλ⊥

(
n̄ν

2
(q−1 − 2q−2 ) + qν1⊥ − 2qν2⊥

)
+ gµν⊥

(
n̄λ

2
(q−2 − 2q−1 ) + qλ2⊥ − 2qλ1⊥

)
+ gνλ⊥

(
qµ1⊥ + qµ2⊥

)]
.

(4.11)

The derived rules allow us to write down the effective Lagrangian of SCETG . As a result, we obtain

the following interaction term between SCET collinear fields and the vector potential Aµ
G(x) of the Glauber

gluons:

LSCETG (ξn, An, AG) = LSCET(ξn, An) + LG (ξn, An, AG) , (4.12)

LG (ξn, An, AG) =
∑

p,p′

e−i(p−p′)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
AGµ,a(x) , . (4.13)

Depending on the gauge and the source, the vertexes and the vector potential are different and are provided

in the table above. The Lagrangian of this form for the collinear source in Rξ and A− = 06 gauges was

derived in [32] and agrees with our expressions for corresponding two entries for ΓqqAG in Table 4.1. We

slso note that for the covariant gauge and ξ = 1 our Feynman rule for ΓggAG(Rξ) = Σµνλ
1 disagrees with

that of [33].

Finally, in order to have a manifestly gauge invariant Lagrangian, we can rewrite Eq. (4.13) including

the source fields (see Eq. (4.1)):

LG (ξn, An, η) =
∑

p,p′,q

e−i(p−p′+q)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
η̄ Γν,a

s η∆µν(q),

(4.14)

where all the vertexes for the target and the source are provided conveniently in Table 4.1. In order to

make this Lagrangian collinear gauge invariant one needs to dress the quarks and gluons with collinear

Wilson lines Wn(x). As a result the Lagrangian that includes the Wilson lines can be obtained as follows:

LG (ξn, An, η) → LG

(
W †

nξn,Bn(An), η
)
≡ LG (χn,Bn, η) , (4.15)

6In order to avoid confusion we note that in [32] the source was in the n direction while the target jet in the n̄ direction,

thus our formulas agree with that reference if n ↔ n̄ as expected. For example in [32] the light-cone gauge A+ = 0 was

considered, while it is analogous to our A− = 0 gauge.
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ξ
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(
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[
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(
−nν

2
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)
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2
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)
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,
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[
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)
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(
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2
(q−2 − 2q−1 ) + qλ2⊥ − 2qλ1⊥

)
+ gνλ⊥

(
qµ1⊥ + qµ2⊥

)]
.

(4.11)

The derived rules allow us to write down the effective Lagrangian of SCETG . As a result, we obtain

the following interaction term between SCET collinear fields and the vector potential Aµ
G(x) of the Glauber

gluons:

LSCETG (ξn, An, AG) = LSCET(ξn, An) + LG (ξn, An, AG) , (4.12)

LG (ξn, An, AG) =
∑

p,p′

e−i(p−p′)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
AGµ,a(x) , . (4.13)

Depending on the gauge and the source, the vertexes and the vector potential are different and are provided

in the table above. The Lagrangian of this form for the collinear source in Rξ and A− = 06 gauges was

derived in [32] and agrees with our expressions for corresponding two entries for ΓqqAG in Table 4.1. We

slso note that for the covariant gauge and ξ = 1 our Feynman rule for ΓggAG(Rξ) = Σµνλ
1 disagrees with

that of [33].

Finally, in order to have a manifestly gauge invariant Lagrangian, we can rewrite Eq. (4.13) including

the source fields (see Eq. (4.1)):

LG (ξn, An, η) =
∑

p,p′,q

e−i(p−p′+q)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
η̄ Γν,a

s η∆µν(q),

(4.14)

where all the vertexes for the target and the source are provided conveniently in Table 4.1. In order to

make this Lagrangian collinear gauge invariant one needs to dress the quarks and gluons with collinear

Wilson lines Wn(x). As a result the Lagrangian that includes the Wilson lines can be obtained as follows:

LG (ξn, An, η) → LG

(
W †

nξn,Bn(An), η
)
≡ LG (χn,Bn, η) , (4.15)

6In order to avoid confusion we note that in [32] the source was in the n direction while the target jet in the n̄ direction,

thus our formulas agree with that reference if n ↔ n̄ as expected. For example in [32] the light-cone gauge A+ = 0 was

considered, while it is analogous to our A− = 0 gauge.
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The derived rules allow us to write down the effective Lagrangian of SCETG . As a result, we obtain

the following interaction term between SCET collinear fields and the vector potential Aµ
G(x) of the Glauber

gluons:

LSCETG (ξn, An, AG) = LSCET(ξn, An) + LG (ξn, An, AG) , (4.12)

LG (ξn, An, AG) =
∑

p,p′

e−i(p−p′)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
AGµ,a(x) , . (4.13)

Depending on the gauge and the source, the vertexes and the vector potential are different and are provided

in the table above. The Lagrangian of this form for the collinear source in Rξ and A− = 06 gauges was

derived in [32] and agrees with our expressions for corresponding two entries for ΓqqAG in Table 4.1. We

slso note that for the covariant gauge and ξ = 1 our Feynman rule for ΓggAG(Rξ) = Σµνλ
1 disagrees with

that of [33].

Finally, in order to have a manifestly gauge invariant Lagrangian, we can rewrite Eq. (4.13) including

the source fields (see Eq. (4.1)):

LG (ξn, An, η) =
∑

p,p′,q

e−i(p−p′+q)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
η̄ Γν,a

s η∆µν(q),

(4.14)

where all the vertexes for the target and the source are provided conveniently in Table 4.1. In order to

make this Lagrangian collinear gauge invariant one needs to dress the quarks and gluons with collinear

Wilson lines Wn(x). As a result the Lagrangian that includes the Wilson lines can be obtained as follows:

LG (ξn, An, η) → LG

(
W †

nξn,Bn(An), η
)
≡ LG (χn,Bn, η) , (4.15)

6In order to avoid confusion we note that in [32] the source was in the n direction while the target jet in the n̄ direction,

thus our formulas agree with that reference if n ↔ n̄ as expected. For example in [32] the light-cone gauge A+ = 0 was

considered, while it is analogous to our A− = 0 gauge.
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SCETG Lagrangian

of Table 4.1, where we have defined Γ1...Γ4,Σ1...Σ3 as follows:
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2 = igT a γ
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⊥p/⊥ + p/′⊥γ
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⊥
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2
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Γµ
3 = igT a vµ, (4.8)
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4 = igT a γµ, (4.9)

Σµ,ν,λ
1 = gfabc nµ
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gνλ n̄·q1 + n̄ν
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− n̄λ (qν2⊥ − qν1⊥)−
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ξ
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, (4.10)
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)
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q+1 + qλ2⊥ − 2qλ1⊥

)
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(
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)]
,

Σµ,ν,λ
3 = gfabc

[
gµλ⊥

(
n̄ν

2
(q−1 − 2q−2 ) + qν1⊥ − 2qν2⊥
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2
(q−2 − 2q−1 ) + qλ2⊥ − 2qλ1⊥

)
+ gνλ⊥

(
qµ1⊥ + qµ2⊥

)]
.

(4.11)

The derived rules allow us to write down the effective Lagrangian of SCETG . As a result, we obtain

the following interaction term between SCET collinear fields and the vector potential Aµ
G(x) of the Glauber

gluons:

LSCETG (ξn, An, AG) = LSCET(ξn, An) + LG (ξn, An, AG) , (4.12)

LG (ξn, An, AG) =
∑

p,p′

e−i(p−p′)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
AGµ,a(x) , . (4.13)

Depending on the gauge and the source, the vertexes and the vector potential are different and are provided

in the table above. The Lagrangian of this form for the collinear source in Rξ and A− = 06 gauges was

derived in [32] and agrees with our expressions for corresponding two entries for ΓqqAG in Table 4.1. We

slso note that for the covariant gauge and ξ = 1 our Feynman rule for ΓggAG(Rξ) = Σµνλ
1 disagrees with

that of [33].

Finally, in order to have a manifestly gauge invariant Lagrangian, we can rewrite Eq. (4.13) including

the source fields (see Eq. (4.1)):

LG (ξn, An, η) =
∑

p,p′,q

e−i(p−p′+q)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
η̄ Γν,a

s η∆µν(q),

(4.14)

where all the vertexes for the target and the source are provided conveniently in Table 4.1. In order to

make this Lagrangian collinear gauge invariant one needs to dress the quarks and gluons with collinear

Wilson lines Wn(x). As a result the Lagrangian that includes the Wilson lines can be obtained as follows:

LG (ξn, An, η) → LG

(
W †

nξn,Bn(An), η
)
≡ LG (χn,Bn, η) , (4.15)

6In order to avoid confusion we note that in [32] the source was in the n direction while the target jet in the n̄ direction,

thus our formulas agree with that reference if n ↔ n̄ as expected. For example in [32] the light-cone gauge A+ = 0 was

considered, while it is analogous to our A− = 0 gauge.
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x1 xi ......

x1 xi ......

Jet broadening

Radiative energy loss

Diagrams to be evaluated

R(xi)
(n) =

B(xi)
(n) =

n−opacity

What kinematics should we assume for the source term?
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Kinematics of the source

μ~g T~1GeV
m1

m2

!0.5 0.0 0.5 1.0

10!7

10!4

cos(θ)

dσ

d cos(θ)

σ(m2 = 1000GeV)− σ(m2 = 1GeV)

σ(m2 = 1000GeV)
≈ 13%

σ(m2 = 1000GeV)− σ(m2 = 1GeV)

σ(m2 = 1000GeV)
≈ 2%

RHIC, E=10GeV:

LHC, E=100GeV:
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Kinematics of the source

μ~g T~1GeV
m1

m2

!0.5 0.0 0.5 1.0

10!7

10!4

cos(θ)

dσ

d cos(θ)

σ(m2 = 1000GeV)− σ(m2 = 1GeV)

σ(m2 = 1000GeV)
≈ 13%

σ(m2 = 1000GeV)− σ(m2 = 1GeV)

σ(m2 = 1000GeV)
≈ 2%

RHIC, E=10GeV:

LHC, E=100GeV:

Static source is a realistic assumption
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Gauge invariance
Broadening

Prescription 1
[k+] ∆A+ ∆A−

+i0 1
k++i0 1 0

-i0 1
k+−i0 0 −1

PV 1
2

(
1

k++i0 + 1
k+−i0

)
1
2 −1

2

ML 1
k++i0sign(k−)

1
2 −1

2

Table 2: Summary of the calculation of!(q)
1 in light-cone gauges"+ = 0,"− = 0 for four different prescriptions.

where ω =ʯ− − (ʯ⊥ − ⊥˿)2 ʯ+. Using the Feynman rules in the remaining two gauges under the consid-

eration we get identical expression with the only substitution:

"+ = 0 gauge: (ɏµ · µͯ) →
(
ɏµ +

γµ⊥(ʯ ⊥ −  ˿⊥) +ʯ ⊥γ
µ
⊥

ʯ+

)
·
(

µͯ − µ˿

[ +˿]

)
≡ 1 +

ʯ− − −˿ − (p⊥−q⊥)2

p+

[ +˿]
'

"− = 0 gauge: (ɏµ · µͯ) →
(
γµ⊥(ʯ ⊥ −  ˿⊥) +ʯ ⊥γ

µ
⊥

ʯ+

)
·
(

µͯ − µ˿

[ −˿]

)
≡ 1 +

ʯ− − −˿ − (p⊥−q⊥)2

p+

[ −˿]
( (5.2)

Working out the longitudinal integral we get in these two gauges:

(
!

(q)
1

)

(A+,A−)
= −eipx0)ar)

a
r′*(ʯ)

∫
�2q⊥
(2π)2

˜ͯ(q⊥) e
−iq⊥(x−x0)⊥

[
eiω(z−z0) +∆(A+,A−)

]
' (5.3)

where the gauge invariance violating term ∆ is given in the Table 5.1.1 for four different light-cone pre-

scriptions. Clearly something has to cancel this spurious pole. The)−Wilson line [45] could be a suitable

solution. One needs to check.

5.1.2 Gluon jet (all gauges)

Analogously to the previous subsection we proceed with the gluon jet diagram in three gauges9:

(
!

(g)
1

)

(Rξ)
= eipx0ÿabc)br′

∫
�4˿

(2π)4
ελ( 2˿) (ͯq⊥)

(
(Σ1)µνλ ·ͯ

µ
)
(−ſ)∆( 1˿)

νν1
(Rξ)
ſ*ν1( 1˿)'

(
!

(g)
1

)

(A+)
= eipx0ÿabc)br′

∫
�4˿

(2π)4
ελ( 2˿) (ͯq⊥)

(
(Σ2)µνλ ·

(
ͯµ −

µ˿

[ +˿]

))
(−ſ)∆( 1˿)

νν1
(A+)ſ*ν1( 1˿)'

(
!

(g)
1

)

(A−)
= eipx0ÿabc)br′

∫
�4˿

(2π)4
ε̃λ( 2˿) (ͯq⊥)

(
(Σ3)µνλ ·

(
ͯµ −

µ˿

[ −˿]

))
(−ſ)∆( 1˿)

νν1
(A−) ſ̃*ν1( 1˿)'

(5.4)

where we defined 1˿ ≡ʯ− ,˿ 2˿ ≡ʯ. To work out the contraction of vertexes the following identities are

useful:

9Note that in the Rξ and A+ gauges we choose identical polarization vectors for the external (physical) gluons:

ε
(
0, 2ε⊥p⊥

p+
, ε⊥

)
, while for the A− gauge we choose ε̃

(
2ε⊥p⊥

p− , 0, ε⊥

)
. Similarly the Jν1 and J̃ν1 are different for the two

cases.
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qµ (Σ2)µνλ = gfabc g⊥νλ
(
q22 − q21

)
+ (...), (5.5)

qµ (Σ3)µνλ = gfabcg⊥νλ
(
q22 − q21 − q+1

(
q−2 − q−1

))
+ (...), (5.6)

∆(q1)
νν1
(Rξ,A+,A−) =

gνν1

p+
(
p− − q− − (p⊥−q⊥)2

p+

) + (...), (5.7)

where the omitted terms correspond to those that vanish once contracted with the vectors ελ, Jν1 because

of the following identities:

ε+ = 0, q2 ·ε(q2) = 0, (5.8)

J+(q1) = 0, q1 ·J(q1) = 0, (5.9)

ε̃−(q2) = 0, q2 ·ε̃(q2) = 0, (5.10)

J̃−(q1) = 0, q1 ·J̃(q1) = 0. (5.11)

Taking all of the above into account we obtain the result for the gluon jet single Glauber diagram for all

three gauges:

(
M (g)

1

)

(Rξ,A+,A−)
= −i eipx0 fabcT b

r′ J(p)ν1

∫
d2q⊥
(2π)2

ṽ(q⊥) ελ(q2)
(
gν1λ⊥

)
e−iq⊥(x−x0)⊥

[
eiω(z−z0) +∆(Rξ,A+,A−)

]
,

(5.12)

where ∆(Rξ) ≡ 0, and ∆(A+,A−) are identical to those for the quark jet, that we gave above in Table 5.1.1.

5.2 Bremsstrahlung

In this section we use the Feynman rules of Soft-Collinear-Effective-Theory to derive the splitting cross-

section of an energetic quark into a quark and a gluon. We do it first in vacuum and later in the medium.

qn
qn

gn

p0 p

k

Ω

Figure 3: The diagram in SCET describing splitting of a collinear quark into a collinear quark and a collinear
gluon.

5.2.1 Obtaining Altarelli-Parisi splitting function in SCET

This calculation has been performed in Ref.[46] and we review it in this subsection. Using SCET Feynman

rules in terms of gauge invariant fields χn and Bµ for quarks and gluons (see [47]) we get for the amplitude
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of Table 4.1, where we have defined Γ1...Γ4,Σ1...Σ3 as follows:

Γµ
1 = igT a nµ n̄/

2
, (4.6)

Γµ
2 = igT a γ

µ
⊥p/⊥ + p/′⊥γ

µ
⊥

n̄·p
n̄/

2
, (4.7)

Γµ
3 = igT a vµ, (4.8)

Γµ
4 = igT a γµ, (4.9)

Σµ,ν,λ
1 = gfabc nµ

[
gνλ n̄·q1 + n̄ν

(
qλ2⊥ − qλ1⊥

)
− n̄λ (qν2⊥ − qν1⊥)−

1− 1
ξ

2

(
n̄λqν1 + n̄νqλ2

)]
, (4.10)

Σµ,ν,λ
2 = gfabc

[
gµλ⊥ (qν1⊥ − 2qν2⊥) + gµν⊥ (qλ2⊥ − 2qλ1⊥) + gνλ⊥

(
nµ n̄·q1 + qµ1⊥ + qµ2⊥

)]
, (4.11)

Σµ,ν,λ
3 = gfabc

[
gµλ⊥ (qν1⊥ − 2qν2⊥) + gµν⊥ (qλ2⊥ − 2qλ1⊥) + gνλ⊥

(
qµ1⊥ + qµ2⊥

)]
. (4.12)

The derived rules allow us to write down the effective Lagrangian of SCETG . As a result, we obtain

the following interaction term between SCET collinear fields and the vector potential Aµ
G(x) of the Glauber

gluons:

LSCETG (ξn, An, AG) = LSCET(ξn, An) + LG (ξn, An, AG) , (4.13)

LG (ξn, An, AG) =
∑

p,p′

e−i(p−p′)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
AGµ,a(x) , . (4.14)

Depending on the gauge and the source, the vertexes and the vector potential are different and are provided

in the table above. The Lagrangian of this form for the collinear source in Rξ and A− = 07 gauges was

derived in [32] and agrees with our expressions for corresponding two entries for ΓqqAG in Table 4.1. We

slso note that for the covariant gauge and ξ = 1 our Feynman rule for ΓggAG(Rξ) = Σµνλ
1 disagrees with

that of [33].

Finally, in order to have a manifestly gauge invariant Lagrangian, we can rewrite Eq. (4.14) including

the source fields (see Eq. (4.1)):

LG (ξn, An, η) =
∑

p,p′,q

e−i(p−p′+q)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
η̄ Γν,a

s η∆µν(q),

(4.15)

where all the vertexes for the target and the source are provided conveniently in Table 4.1. In order to

make this Lagrangian collinear gauge invariant one needs to dress the quarks and gluons with collinear

Wilson lines Wn(x). As a result the Lagrangian that includes the Wilson lines can be obtained as follows:

LG (ξn, An, η) → LG

(
W †

nξn,Bn(An), η
)
≡ LG (χn,Bn, η) , (4.16)

where W †
nξn(≡ χn), Bn(An) are the dressed collinear gauge invariant quark and gluon fields correspond-

ingly. In the next two subsections we will show that Lagrangian in Eq. (4.16) is invariant under the BPS

transformation [11] and the soft and collinear gauge transformations.

7In order to avoid confusion we note that in [32] the source was in the n direction while the target jet in the n̄ direction,

thus our formulas agree with that reference if n ↔ n̄ as expected. For example in [32] the light-cone gauge A+ = 0 was

considered, while it is analogous to our A− = 0 gauge.
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∆µν(q) =
(−dµν)

q2 − µ2

and pc ∼ [1,λ2,λ]. As we see from the definition of LG(χ,B, hv), since it is explicitly built out of the gauge

invariant collinear fields, the Lagrangian is invariant under collinear gauge transformation:

LG(χ,B, hv)
collinear gauge transformation−−−−−−−−−−−−−−−−−−→ LG(χ,B, hv). (4.23)

The soft transformation of SCET looks like[11]:

ξn → Vs ξn, (4.24)

Aµ
n → VsA

µ
n V

†
s , (4.25)

hv → Vs hv, (4.26)

χn ≡ W †
n ξn → Vs χn, (4.27)

Bµ
n ≡ 1

g

[
W †

n iD
µWn

]
→ Vs Bµ

n V
†
s , (4.28)

where Vs = eiα
a(x)Ta

, such that ∂µVs(x) = O(λ2). By repeating the proof of invariance of LG under BPS

transformation with substitution Y → Vs we arrive to the invariance of LG under soft gauge transformation

as well8:

LG(χ,B, hv)
soft gauge transformation−−−−−−−−−−−−−−−→ LG(χ,B, hv). (4.29)

5. Reaction operator from effective theory

5.1 Jet broadening

In this subsection we derive the first order in opacity interaction of the quark and gluon jet with the

medium. The effective theory SCETG Feynman rules for three different sources have been derived in the

Section 4. We consider the static source and three gauge choices: covariant, A+ = 0 and A− = 0 light-cone

gauges correspondingly. We calculate the diagrams in Figure 2 in each of the gauges and as a result the

gauge invariance of our results we discuss explicitly.

q p
×

x0

x, 0, b

p− q q p
×

x0

x, 0, b

p− q
M (g)

1 =M (q)
1 =

Figure 2: Single Glauber gluon exchange diagram of a quark jet (left) and of a gluon jet (right).

5.1.1 Quark jet (all gauges)

Using the Feynman rules derived in Section 4 we get in the Rξ gauge:

(
M (q)

1

)

(Rξ)
= eipx0 T a

r T
a
r′

∫
d4q

(2π)4
iv(q⊥) (n

µ ·vµ)
i

p− − q− − (p⊥−q⊥)2

p+

iJ(p− q) ≡

−eipx0 T a
r T

a
r′ J(p)

∫
d2q⊥
(2π)2

ṽ(q⊥) e
−iq⊥(x−x0)⊥

[
eiω(z−z0)

]
, (5.1)

8Indeed the only property of Y , that was used in previous section, was unitarity: Y Y † = 1, which is also true for Vs.
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and pc ∼ [1,λ2,λ]. As we see from the definition of LG(χ,B, hv), since it is explicitly built out of the gauge

invariant collinear fields, the Lagrangian is invariant under collinear gauge transformation:

LG(χ,B, hv)
collinear gauge transformation−−−−−−−−−−−−−−−−−−→ LG(χ,B, hv). (4.23)

The soft transformation of SCET looks like[11]:
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s , (4.25)

hv → Vs hv, (4.26)
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n ξn → Vs χn, (4.27)
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n ≡ 1
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[
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µWn

]
→ Vs Bµ

n V
†
s , (4.28)

where Vs = eiα
a(x)Ta

, such that ∂µVs(x) = O(λ2). By repeating the proof of invariance of LG under BPS

transformation with substitution Y → Vs we arrive to the invariance of LG under soft gauge transformation

as well8:

LG(χ,B, hv)
soft gauge transformation−−−−−−−−−−−−−−−→ LG(χ,B, hv). (4.29)

5. Reaction operator from effective theory

5.1 Jet broadening

In this subsection we derive the first order in opacity interaction of the quark and gluon jet with the

medium. The effective theory SCETG Feynman rules for three different sources have been derived in the

Section 4. We consider the static source and three gauge choices: covariant, A+ = 0 and A− = 0 light-cone

gauges correspondingly. We calculate the diagrams in Figure 2 in each of the gauges and as a result the

gauge invariance of our results we discuss explicitly.

q p
×

x0

x, 0, b

p− q q p
×

x0

x, 0, b

p− q
M (g)

1 =M (q)
1 =

Figure 2: Single Glauber gluon exchange diagram of a quark jet (left) and of a gluon jet (right).

5.1.1 Quark jet (all gauges)

Using the Feynman rules derived in Section 4 we get in the Rξ gauge:

(
M (q)

1

)

(Rξ)
= eipx0 T a

r T
a
r′

∫
d4q

(2π)4
iv(q⊥) (n

µ ·vµ)
i

p− − q− − (p⊥−q⊥)2

p+

iJ(p− q) ≡

−eipx0 T a
r T

a
r′ J(p)

∫
d2q⊥
(2π)2

ṽ(q⊥) e
−iq⊥(x−x0)⊥

[
eiω(z−z0)

]
, (5.1)

8Indeed the only property of Y , that was used in previous section, was unitarity: Y Y † = 1, which is also true for Vs.
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The light-cone prescription dependence suggest 
that a new Wilson line be introduced

Idilbi, Scimemi, 10

Prescription 1
[k+] ∆A+ ∆A−

+i0 1
k++i0 1 0

-i0 1
k+−i0 0 −1

PV 1
2

(
1

k++i0 + 1
k+−i0

)
1
2 −1

2

ML 1
k++i0sign(k−)

1
2 −1

2

Table 2: Summary of the calculation of M (q)
1 in light-cone gauges A+ = 0, A− = 0 for four different prescriptions.

where ω = p− − (p⊥ − q⊥)2/p+. Using the Feynman rules in the remaining two gauges under the consid-

eration we get identical expression with the only substitution:

A+ = 0 gauge: (nµ ·vµ) →
(
nµ +

γµ⊥(p/⊥ − q/⊥) + p/⊥γ
µ
⊥

p+

)
·
(
vµ − qµ

[q+]

)
≡ 1 +

p− − q− − (p⊥−q⊥)2

p+

[q+]
,

A− = 0 gauge: (nµ ·vµ) →
(
γµ⊥(p/⊥ − q/⊥) + p/⊥γ

µ
⊥

p+

)
·
(
vµ − qµ

[q−]

)
≡ 1 +

p− − q− − (p⊥−q⊥)2

p+

[q−]
. (5.2)

Working out the longitudinal integral we get in these two gauges:

(
M (q)

1

)

(A+,A−)
= −eipx0 T a

r T
a
r′ J(p)

∫
d2q⊥
(2π)2

ṽ(q⊥) e
−iq⊥(x−x0)⊥

[
eiω(z−z0) +∆(A+,A−)

]
, (5.3)

where the gauge invariance violating term ∆ is given in the Table 5.1.1 for four different light-cone pre-

scriptions. Clearly something has to cancel this spurious pole. The T−Wilson line [45] could be a suitable

solution. One needs to check.

5.1.2 Gluon jet (all gauges)

Analogously to the previous subsection we proceed with the gluon jet diagram in three gauges9:

(
M (g)

1

)

(Rξ)
= eipx0 fabc T b

r′

∫
d4q

(2π)4
ελ(q2) v(q⊥)

(
(Σ1)µνλ ·v

µ
)
(−i)∆(q1)
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(Rξ)

iJν1(q1),

(
M (g)

1

)

(A+)
= eipx0 fabc T b

r′

∫
d4q

(2π)4
ελ(q2) v(q⊥)

(
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(
vµ − qµ

[q+]

))
(−i)∆(q1)

νν1
(A+) iJν1(q1),

(
M (g)

1

)
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r′

∫
d4q

(2π)4
ε̃λ(q2) v(q⊥)

(
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(
vµ − qµ
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))
(−i)∆(q1)

νν1
(A−) iJ̃ν1(q1),

(5.4)

where we defined q1 ≡ p − q, q2 ≡ p. To work out the contraction of vertexes the following identities are

useful:

9Note that in the Rξ and A+ gauges we choose identical polarization vectors for the external (physical) gluons:

ε
(
0, 2ε⊥p⊥

p+
, ε⊥

)
, while for the A− gauge we choose ε̃

(
2ε⊥p⊥

p− , 0, ε⊥

)
. Similarly the Jν1 and J̃ν1 are different for the two

cases.
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of Table 4.1, where we have defined Γ1...Γ4,Σ1...Σ3 as follows:

Γµ
1 = igT a nµ n̄/

2
, (4.6)

Γµ
2 = igT a γ

µ
⊥p/⊥ + p/′⊥γ

µ
⊥

n̄·p
n̄/

2
, (4.7)

Γµ
3 = igT a vµ, (4.8)

Γµ
4 = igT a γµ, (4.9)

Σµ,ν,λ
1 = gfabc nµ

[
gνλ n̄·q1 + n̄ν

(
qλ2⊥ − qλ1⊥

)
− n̄λ (qν2⊥ − qν1⊥)−

1− 1
ξ

2

(
n̄λqν1 + n̄νqλ2

)]
, (4.10)

Σµ,ν,λ
2 = gfabc

[
gµλ⊥ (qν1⊥ − 2qν2⊥) + gµν⊥ (qλ2⊥ − 2qλ1⊥) + gνλ⊥

(
nµ n̄·q1 + qµ1⊥ + qµ2⊥

)]
, (4.11)

Σµ,ν,λ
3 = gfabc

[
gµλ⊥ (qν1⊥ − 2qν2⊥) + gµν⊥ (qλ2⊥ − 2qλ1⊥) + gνλ⊥

(
qµ1⊥ + qµ2⊥

)]
. (4.12)

The derived rules allow us to write down the effective Lagrangian of SCETG . As a result, we obtain

the following interaction term between SCET collinear fields and the vector potential Aµ
G(x) of the Glauber

gluons:

LSCETG (ξn, An, AG) = LSCET(ξn, An) + LG (ξn, An, AG) , (4.13)

LG (ξn, An, AG) =
∑

p,p′

e−i(p−p′)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
AGµ,a(x) , . (4.14)

Depending on the gauge and the source, the vertexes and the vector potential are different and are provided

in the table above. The Lagrangian of this form for the collinear source in Rξ and A− = 07 gauges was

derived in [32] and agrees with our expressions for corresponding two entries for ΓqqAG in Table 4.1. We

slso note that for the covariant gauge and ξ = 1 our Feynman rule for ΓggAG(Rξ) = Σµνλ
1 disagrees with

that of [33].

Finally, in order to have a manifestly gauge invariant Lagrangian, we can rewrite Eq. (4.14) including

the source fields (see Eq. (4.1)):

LG (ξn, An, η) =
∑

p,p′,q

e−i(p−p′+q)x

(
ξ̄n,p′Γ

µ,a
qqAG

n̄/

2
ξn,p − iΓµνλ,abc

ggAG

(
Ab

n,p′

)

ν

(
Ac

n,p

)
λ

)
η̄ Γν,a

s η∆µν(q),

(4.15)

where all the vertexes for the target and the source are provided conveniently in Table 4.1. In order to

make this Lagrangian collinear gauge invariant one needs to dress the quarks and gluons with collinear

Wilson lines Wn(x). As a result the Lagrangian that includes the Wilson lines can be obtained as follows:

LG (ξn, An, η) → LG

(
W †

nξn,Bn(An), η
)
≡ LG (χn,Bn, η) , (4.16)

where W †
nξn(≡ χn), Bn(An) are the dressed collinear gauge invariant quark and gluon fields correspond-

ingly. In the next two subsections we will show that Lagrangian in Eq. (4.16) is invariant under the BPS

transformation [11] and the soft and collinear gauge transformations.

7In order to avoid confusion we note that in [32] the source was in the n direction while the target jet in the n̄ direction,

thus our formulas agree with that reference if n ↔ n̄ as expected. For example in [32] the light-cone gauge A+ = 0 was

considered, while it is analogous to our A− = 0 gauge.
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∆µν(q) =
(−dµν)

q2 − µ2

dΦi ≡
d2qi⊥
(2π)2

e−iqi∆x⊥ v(qi⊥). (6.2)

The calculation leads the following correction term to gauge invariance:

∆M1 +∆M2 +∆M3 =
(
T a
r T

b
r

)
T b
r′

(
−ε/⊥q/⊥∆I +

p+ + k+

(p+ k)2
∆A+

)
+

(
T b
rT

a
r

)
T b
r′

(
−q/⊥ε/⊥

p+ + k+

p+
∆I

)
,

(6.3)

where ∆A+ is the same for different prescriptions as displayed in Table 5.1.1 and the ∆I is defined as:

∆I =

∫
dq−

2π
eiq

−∆z 1

(p+ k − q)2
1

[q+]
, (6.4)

which is troublesome since it doesn’t vanish in any prescription. This is the correction I am having trouble

understanding. It is beyond the soft gluon approximation though.

6.2 Light-cone gauge A−
c,g = 0

This calculation has not been done yet.

6.3 Hybrid gauge A+
c = 0, Rξ(Ag)

6.3.1 Single Born amplitudes in SCETG ,

In this subsection we calculate the diagrams in Figure 5 using SCETG Feynman rules from Appendix ??.

Directly from these Feynman rules we get:
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Figure 5: Three diagrams contributing to first order in opacity single Born interactions.

M1 =

∫
d4q

(2π)4
i v(q⊥)e

iqxT b
rT

b
r′

ip+

(p− q)2 + iε
igT a

r

(
nµ +

(p/⊥ − q/⊥)γ
µ
⊥

p+

)
i(p+ k)+

(p+ k − q)2
iJ(p+ k − q)ei(p+k−q)x0εµ(k),
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∫
d4q

(2π)4
igT a

r

(
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γµ⊥(p/⊥ − k/⊥)

p+ − k+
+

p/⊥γ
µ
⊥

p+

)
i(p+ + k+)

(p+ k)2 + iε
i v(q⊥)e

iqx T b
rT

b
r′

i(p+ k)+

(p+ k − q)2

× iJ(p+ k − q)ei(p+k−q)x0εµ(k),

M3 =

∫
d4q

(2π)4
igT c1

r

(
nρ1 +

p/⊥γ
ρ1
⊥

p+

)
(−i)

(k − q)2
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gρ1ρ2 −

n̄ρ1(k − q)ρ2 + n̄ρ2(k − q)ρ1
k+

]
i(p+ k)+

(p+ k − q)2
fabc1k+gµρ2

×v(q⊥)e
iqx T b

r′ iJ(p+ k − q)ei(p+k−q)x0εµ(k).

(6.5)
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p/⊥γ
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p+

)
i(p+ + k+)
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i v(q⊥)e

iqx T b
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b
r′

i(p+ k)+

(p+ k − q)2

× iJ(p+ k − q)ei(p+k−q)x0εµ(k),

M3 =

∫
d4q

(2π)4
igT c1

r

(
nρ1 +

p/⊥γ
ρ1
⊥

p+

)
(−i)

(k − q)2

[
gρ1ρ2 −

n̄ρ1(k − q)ρ2 + n̄ρ2(k − q)ρ1
k+
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i(p+ k)+

(p+ k − q)2
fabc1k+gµρ2
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iqx T b
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5.2.2 Obtaining Gunion-Bertsch limit in SCET

To obtain the Gunion-Bertsch limit we need to write down the SCET amplitude and keep the leading term

in the limit z → 0.

Since we work in the physical light-cone gauge, we should use the polarization vectors that satisfy the

Ward identity:

εµkµ =
ε+k− + ε−k+

2
− ε⊥ ·k⊥ =

ε−k+

2
− ε⊥ ·k⊥ ≡ 0. (5.22)

Thus, since in the light-cone gauge ε+ = 0, for two physical polarizations we get:

εµi (k) =

(
0,

2εi⊥ ·k⊥
k+

, εi⊥

)
, i = 1, 2. (5.23)

It is straightforward to check that such polarization vectors satisfy the polarization sum identity in the

Eq. (5.16). By plugging polarization vectors from Eq. (5.23) into the SCET amplitude in Eq. (5.13), we

get:

AΩq→Ωqg = −g χ̄n,pT
a

(
2εi⊥ ·k⊥

z
+

k/⊥ε/i⊥
1− z

)
Ω
z(1− z)

k2
⊥

≈ (5.24)

≈ −g χ̄n,pT
aΩ

(
2εi⊥ ·k⊥

k2
⊥

)
as z → 0, (5.25)

which correctly reproduces the Gunion-Bertsch limit.

5.2.3 Single Born amplitudes in SCETG : Covariant Gauge Rξ(Ag, Ac)

In this subsection we will derive the single born amplitudes in the fully covariant gauge. Thus both Glauber

gluons and the collinear gluons are Rξ gauge fixed. In addition to diagrams M1,2,3 (see Figure 5), in this

gauge two additional diagrams appear when the collinear gluon appears from the Wilson line W † (see

Figure 4). Feynman rule for such collinear gluon vertex is well known: Γα,a
W (k) = gT a

r
n̄α

k++i0 , where k is the

outgoing gluon momentum from the Wilson line.

q

k
p

×

µ, a

x0

x, 0, b

M4 =
p− q

q

k

p

×

µ, a

x0
x, 0, b

ρ1, c1

ρ2, c2

M5 =

k − q

Figure 4: Second order in opacity diagrams.

Even though we use the Rξ gauge in this subsection, the external gluon should carry physical polar-

ization, so we fix the polarization vector by the following conditions:

ε(k)+ = 0, k ·ε(k) = 0, (5.26)
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dΦi ≡
d2qi⊥
(2π)2

e−iqi∆x⊥ v(qi⊥). (6.2)

The calculation leads the following correction term to gauge invariance:
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(6.3)

where ∆A+ is the same for different prescriptions as displayed in Table 5.1.1 and the ∆I is defined as:

∆I =

∫
dq−

2π
eiq

−∆z 1

(p+ k − q)2
1

[q+]
, (6.4)

which is troublesome since it doesn’t vanish in any prescription. This is the correction I am having trouble

understanding. It is beyond the soft gluon approximation though.

6.2 Light-cone gauge A−
c,g = 0

This calculation has not been done yet.

6.3 Hybrid gauge A+
c = 0, Rξ(Ag)

6.3.1 Single Born amplitudes in SCETG ,

In this subsection we calculate the diagrams in Figure 5 using SCETG Feynman rules from Appendix ??.

Directly from these Feynman rules we get:

q
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q
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×
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x, 0, b

q

k

p

×

k + p− q

µ, a

M3 =
x0

x, 0, b
ρ1, c1

ρ2, c2

Figure 5: Three diagrams contributing to first order in opacity single Born interactions.
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q
k

p
×

k + p− q

µ, a
x0

x, 0, b

M4 =

Rξ

A+=0

Hybrid
Rξ(glauber), 
A+(collinear) Again gauge invariance works non-trivially in all 

cases, up to T-Wilson line necessity in A+=0 gauge
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• For Jet broadening and Radiative energy loss 
we have verified that the scattering kernels are 
gauge invariant

• For the Jet broadening our results agree with 
previously derived results in GLV approach

• For the Radiative energy loss our results agree 
with GLV approach in the soft gluon 
approximation

Comparison with previous results
Gyulassy, Levai, Vitev, 00
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Energy loss at finite x, using SCETG
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• Typical treatment of energy loss uses soft gluon approximation x<<1

• Our results show that the finite x effects push towards the smaller 
energy loss

Energy loss at finite x, using SCETG
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First heavy ion data from LHC well explained by GLV 
2002 prediction!

Larger RAA can be 
explained by:

Vitev, Gyulassy  (2002) 

K. Amadot et al, (2011) 

Vitev, (2005) 
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• Smaller coupling to medium at higher 
energies

• Smaller energy loss

First heavy ion data from LHC well explained by GLV 
2002 prediction!
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• Smaller coupling to medium at higher 
energies

• Smaller energy loss

First heavy ion data from LHC well explained by GLV 
2002 prediction!

Larger RAA can be 
explained by:

Vitev, Gyulassy  (2002) 

K. Amadot et al, (2011) 

Vitev, (2005) 

(finite x corrections?)
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Conclusions
• We constructed effective theory for jet propagation in 

medium, including collinear quarks and gluons

• We formulated the effective theory in three different gauges 
and demonstrated the gauge invariance of the scattering 
kernels, derived previously in PQCD in soft gluon 
approximation

• Effective theory Feynman rules allowed us to go beyond the 
soft gluon approximation

• Constructed Lagrangian of SCETG needs to be completed with 
soft gluons

• Such effective theory should be applied to factorization of the 
Drell-Yan process
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