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Outline:

• Introduction to Soft Collinear Effective Theory

• Cross Sections with Jets

•

* scales & fields (organize the physics of jets)
* systematic expansion (estimate theory errors)
* simplify calculations, sum logs (higher precision)
* factorization & universality

Jet Substructure

• e+e− event shapes

pp event shapes
jet algorithms

SCET1 → SCET2

Jet Shapes
Parton Shower

•
•

•
•
•

(collinear jet substructure)

(event shapes in a jet)

70’s → 2011
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Factorization:

Typical Event with Hard Interaction:

“cross section can be computed as product of independent pieces”

Shower MC programs assume factorization:

initial state
parton 
shower

hard scattering
fixed order 

perturbative
computation

⊗ ⊗
final state

parton 
showers

⊗
hadronization

model,
underlying event,

...
(with parton
distributions)

dσ =

f

H

I

I

J

f
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3

s

soft or Glauber

−

+

J

J

3



Events with a Hard Interaction:

time

Search for New 
Heavy Particles 
at short distances

J1

2

3

−

+

J

J

p

p

Introduction More Introduction Fixed Order Resummation Monte Carlo Summary

Particle Physics: Physics at Shortest Distances
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LHC
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Decay Chain of 
SUSY particles
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q̃ Ñ2
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Events with a Hard Interaction:

J1

2

3

−

+

J

J

p

p

. . .

Quarks and Gluons
Form Jets
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J1

2

3

−
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J

J

p

p

Key Simplifying Principle is to Exploit the Hierarchy 
   of Energy Scales 

µS

µJ , µB

µH

µp

E

µp � ΛQCD

µJ � mJ

µB � mJ

µS � Esoft

µH �MSUSY

SCET

QCD

SCET =  Soft-Collinear Effective Theory
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J1

2

3

−

+

J

J

p

p

Key Simplifying Principle is to Exploit the Hierarchy 
   of Energy Scales 

µS

µJ , µB

µH

µp

E

SCET

QCD

µp

µB

µJ

µS

µH
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Key Simplifying Principle is to Exploit the Hierarchy 
   of Energy Scales 

µS

µJ , µB

µH

µp

E

SCET

QCD

µp

µB

µJ

µS

J1

2

3

−

+

J

J

p

p

µH

Wilson coefficients
+ operators at
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µS

µJ , µB

µH

µp

E

SCET

QCD

µp

µB

µJ

µS

µH

Wilson coefficients
+ operators at

J1

2

3

−

+

J

J

p

p

jet functions, beam functions
& eikonal lines for softs

& PDFs

Introduction Exclusive Jet Cross Sections Jet Shapes Summary

Factorized Cross Section in SCET

dσ = fa,b ⊗ Ia,b ⊗ H ⊗
�

i
Ji ⊗ S

ΛQCD µB µH µJ µS

f

H

I

I

J

f

1

2

3

s

−

+

J

J

a

b

a

b

Hard function H(µH): µH ∼ mJJ , p
jet
T

Contains squared matrix-element for underlying hard partonic process

� Determined from corresponding QCD fixed-order calculation

Jet function J(µJ), Beam function B(µB) ≡ I ⊗ f : µB ∼ µJ ∼ mJ

Universal and process independent for given jet definition/observable

� For simple jet observables can be calculated perturbatively

Soft function S(µS): µS ∼ µ
2
J
/µH

Encodes soft effects on a given jet observable

� µS � ΛQCD: can be calculated perturbatively

� µS ∼ ΛQCD: can be modeled and fitted from data

Frank Tackmann (MIT) New Approaches to Jet Physics at Colliders 2010-08-26 5 / 23

Factorization:
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SCET can be used for:

•

•

•

•

•
NLO, NNLO in αs

Analytic calculations of perturbative corrections

• Softer physics (underlying event?)

Factorization 

Nonperturbative corrections 

• Sum Large logs αs ln2 z, α2
s ln4 z, . . . QCD Sudakov’s, EW Sudakov’s

Parton Shower:   ISR, High multiplicity final states

Precision Measurements:

theory error?
what mass is it?

Tevatron

dσhad = f ⊗ f ⊗ dσpart

mt = 173.3± 0.6stat ± 0.9syst GeV

(hadronization → matrix elements)

(in this talk I’ll avoid Glaubers & pT dependent functions)
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!!

usoft particles

n-collinear 
       jet

n-collinear 
       jet

Λ
2
! ∆

2
! Q2

eg. e
+
e
−

→ 2 jets

SCET energetic jets

ξn̄, Aµ
n̄ξn, Aµ

n

λ ∼

∆

Q

δ ∼ λ

is the expansion 
parameter

Jet constituents : pµ
∼

(∆2

Q
, Q,∆

)

∼ Q(λ2, 1, λ)

8

pµ
π = (2.310 GeV, 0, 0,−2.306 GeV) = Qnµ Q " ΛQCD nµ = (1, 0, 0,−1) n2 = 0

Basis vectors nµ, n̄µ with n2 = 0, n̄2 = 0, n·n̄ = 2

pµ =
nµ

2
n̄ · p +

n̄µ

2
n · p + pµ

⊥

gµν =
nµn̄ν

2
+

n̄µnν

2
+ gµν

⊥ (69)

p+ ≡ n · p, p− ≡ n̄ · p

eg. n̄µ = (1, 0, 0, 1)

(p+, p−, p⊥) ∼ (Λ, Λ, Λ)

m2
X ∼ m2

B OPE in 1/mb (not SCET)

m2
X ∼ Λ2 not inclusive

m2
X ∼ ΛQ

Jet constituents: pµ ∼ (Λ, Q,
√

QΛ) ∼ Q(λ2, 1, λ)

λ ∼
√

Λ/Q

Usually m1 " m2 and
∑n

i=1 Ci(µ, m1) Oi(µ, m2)

In SCET constituent p− ∼ mb ∼ Eπ p2 = p+p− + p2
⊥ p2 ∼ ∆2,

+ − ⊥

M2
1 M2

2

M2
i ∼ ∆2

qs, A
µ
s

Soft particles:

pµ ∼
�∆2

Q
,
∆2

Q
,
∆2

Q

�
∼ Q(λ2,λ2,λ2)
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Λ
2
! ∆

2
! Q2

eg. e
+
e
−

→ 2 jets

SCET energetic jets

!!

usoft particles

n-collinear 
       jet

n-collinear 
       jet

ξn̄, Aµ
n̄ξn, Aµ

n

p+

cn

0
0

u

hard

!2

2

p-

Q

!Q 0

cn

!Q !Q 0

SCETI

M2
1 M2

2

M2
i ∼ ∆2

qs, A
µ
s

s

Defining concepts:
• hard scale Q

•
•

collinear sectors {[ni]}
power counting parameter λ

FIG. 4: The opening angle of the light grey (blue) cone is ∼ λ2i, and the opening angle of the dark

grey (red) one is ∼ λ2(i+1). The particle with momentum p is collinear to both n and n′ in SCETi,
but only to n′ in SCETi+1. RPIi allows us to move the field label, n, to any location inside the

appropriate cone for SCETi while keeping the theory invariant.

Note that the quark field on the LHS of (38) has a different one from those on the RHS.
This relates to the stricter definition of collinearity in SCETi+1 shown in Fig. 4. In order to
perform the matching, we will make use of the reparametrization invariance (RPI) discussed
in point 3. of Sec. IIC to change fields’ n-labels.

A. Leading Shower Revisited

We first want to reproduce the strongly-ordered contribution to i-gluon radiation from
the quark in an initial γ∗ → qq pair production. Our iterative matching procedure for
multiple EFTs takes a particularly simple form at LO in λ. For our standard example, we
take the process e+e− → jets. Starting in QCD, we couple the quarks to another sector
via the operator, Jµ

QCD = q̄ Γµq. This allows us to avoid complications that come from the
initial state such as backward evolution. In SCET1 (which is equivalent to the usual SCET),
matching to QCD at tree-level converts the quark coupling to the following operator at LO:
χ̄n0Γ

µχn̄, which produces q and q̄ in different collinear directions. Details on the matching
of QCD to SCET1 are given in App. C. Using the notation in Eq. (14), we write the SCET1

operator in the following way:

χ̄n0Γ
µχn̄ =

(

C(2,0,0)
1,LO

)

ij

(

O(2,0,0)
1 (n0, n̄)

)

ij
, (39)

where
(

O(2,0,0)
1 (n0, n̄)

)

ij
= (χ̄n0)i(χn̄)j , (40)

(

C(2,0,0)
1,LO

)

ij
= (Γµ)ij ,

and i and j are spinor indices. The subscripts 1 in Eq. (40) indicate that the fields are
defined in SCET1. Our focus is on gluon emissions from the quark, and we always take the
antiquark in the same direction, n̄, therefore we drop it from the list of n-labels. Also, we
will use the following shorthand notation for the most common operator,

O(2,k,0)
i (n1, n

′
1, . . . , n

′
k, n̄) ≡ O(k)

i (n1, n
′
1, . . . , n

′
k) , (41)

20
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Λ
2
! ∆

2
! Q2

eg. e
+
e
−

→ 2 jets

SCET energetic jets

!!

usoft particles

n-collinear 
       jet

n-collinear 
       jet

ξn̄, Aµ
n̄ξn, Aµ

n

Production Current:

n

n

QCD SCET QCD SCET

n n

ψ̄ Γµψ → (ξ̄nWn)ω Γµ(W †
n̄ξn̄)ω̄

M2
1 M2

2

M2
i ∼ ∆2

qs, A
µ
s

Q� ∆

. . .

. . .
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Λ
2
! ∆

2
! Q2

eg. e
+
e
−

→ 2 jets

SCET energetic jets

!!

usoft particles

n-collinear 
       jet

n-collinear 
       jet

ξn̄, Aµ
n̄ξn, Aµ

n

SCET Lagrangian:

QCD SCET

n

M2
1 M2

2

M2
i ∼ ∆2

qs, A
µ
s

L(0)
n = ξ̄n

�
n · iDus + gn · An + i /Dn

⊥
1

in̄ · Dn
i /Dn
⊥

� /̄n

2
ξn

propagator: i /n

2
n̄ · p

p2 + i�
=

i /n

2
1

n·p− �p 2
⊥

n̄·p + i� sign(n̄·p)

eikonal softs:

k

i
n·k+iε k

i
−n·k+iε k

i
−n·k−iε k

i
n·k−iε

(Y+ ξ+
n ) (ξ̄+

n Y
†
+) (ξ̄−n Y

†
−) (Y− ξ−n )

FIG. 1: Eikonal iε prescriptions for incoming/outgoing quarks and antiquarks and the result that
reproduces this with an ultrasoft Wilson line and sterile quark field.

Since the dependence on s0 sometimes causes confusion, we explore some of the subtleties
in this section, in particular, why it is important to remember that factors of Y , Y † can
also be induced in the interpolating fields for incoming and outgoing collinear states, and
why a common choice for s0 = s †

0 is sufficient to properly reproduce the iε prescription in
perturbative computations. In many processes (examples being color allowed B → Dπ and
B → Xsγ) the s0 dependence of the Wilson lines cancels and the following considerations
are not crucial. In other processes, however, the path for the Wilson line is important for the
final result, particularly when these Wilson lines do not entirely cancel. An example of this
is jet event shapes as discussed in Refs. [28–30]. See also the discussion of path dependence
in eikonal lines in Refs. [31–37].

First consider the perturbative computation of attachments of usoft gluons to incoming
and outgoing quark and antiquark lines. The results for the eikonal factors for one gluon
are summarized in Fig. 1, and can be computed directly with the SCET collinear quark
Lagrangian (or from an appropriate limit of the QCD propagator). These attachments seem
to force one to make a particular choice for s0 and s0, see for example the recent detailed
study in Ref. [30]. In our notation it is straightforward to show that this choice corresponds
to

s0 = −∞ sign(P̄) , s0 = +∞ sign(P̄†) ,

{

P̃=P̃
′
=P , for P̄ , P̄† > 0

P̃=P̃
′
=P , for P̄ , P̄† < 0

. (21)

To see this take a quark with label n̄·p > 0 and an antiquark with label n̄·p′ < 0, and note
that

Y ξn,p = P̃ exp
(

ig

∫ 0

−∞

ds n·Aus(x
µ
s )

)

ξ+
n,p = P exp

(

ig

∫ 0

−∞

ds n·Aus(x
µ
s )

)

ξ+
n,p ≡ Y+ξ+

n,p , (22)

ξ̄n,pY
†= ξ̄+

n,pP̃
′
exp

(

−ig

∫ 0

∞

ds n·Aus(x
µ
s )

)

= ξ̄+
n,pP exp

(

ig

∫ ∞

0

ds n·Aus(x
µ
s )

)

≡ ξ̄+
n,pY

†
+ ,

Y ξn,p′ = P̃ exp
(

ig

∫ 0

∞

ds n·Aus(x
µ
s )

)

ξ−n,p′ = P exp
(

−ig

∫ ∞

0

ds n·Aus(x
µ
s )

)

ξ−n,p′ ≡ Y−ξ−n,p′ ,

ξ̄n,p′Y
†= ξ̄−n,p′P̃

′
exp

(

−ig

∫ 0

−∞

ds n·Aus(x
µ
s )

)

= ξ̄−n,p′P exp
(

−ig

∫ 0

−∞

ds n·Aus(x
µ
s )

)

≡ ξ̄−n,p′Y
†
− .

This is in agreement with the Ỹ = Y−, Y † = Y †
−, Y = Y+, Ỹ † = Y †

+ used in [30] for the
production and annihilation of antiparticles and the annihilation and production of parti-
cles respectively. The results in Eq. (22) reproduce the natural choice of having incoming
quarks/antiquarks enter from −∞, while outgoing quarks/antiquarks extend out to +∞.

7

ξn → Y ξn

An → Y AnY †

Y (x) = P exp
�
ig

� 0

−∞
ds n·Aus(x+ns)

�
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Λ
2
! ∆

2
! Q2

eg. e
+
e
−

→ 2 jets

SCET energetic jets

!!

usoft particles

n-collinear 
       jet

n-collinear 
       jet

ξn̄, Aµ
n̄ξn, Aµ

n

Production Current:

n

n ψ̄ Γµψ → (ξ̄nWn)ω Γµ(W †
n̄ξn̄)ω̄ = (ξ̄nWn)ω Y †

n ΓµYn̄(W †
n̄ξn̄)ω̄

SCET

n

� �

χn̄,ω̄

Q� ∆

c. gauge invariant 
“parton” field

M2
1 M2

2

M2
i ∼ ∆2

qs, A
µ
s
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Production Current:

n

n ψ̄ Γµψ → (ξ̄nWn)ω Γµ(W †
n̄ξn̄)ω̄ = (ξ̄nWn)ω Y †

n ΓµYn̄(W †
n̄ξn̄)ω̄

SCET

n

� �

χn̄,ω̄

Q� ∆

c. gauge invariant 
“parton” field

M2
1 M2

2

M2
i ∼ ∆2

qs, A
µ
s

L(0)
n L(0)

n̄
L(0)

s
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Λ
2
! ∆

2
! Q2

eg. e
+
e
−

→ 2 jets

SCET energetic jets

!!

usoft particles

n-collinear 
       jet

n-collinear 
       jet

ξn̄, Aµ
n̄ξn, Aµ

n

the n and n̄ directions (see Sec. IIA). However, only |C(Q, µ)|2 will appear in the final

factorization theorem.

Using Eqs. (17) and (18) in Eq.(40), the cross-section in SCET takes the form

σ =

�

�n

res.�

XnXn̄Xs

(2π)
4 δ4

(q−PXn−PXn̄−PXs)

�

i

L(i)
µν

�
dω dω̄ dω� dω̄�

×C(ω, ω̄)C∗
(ω�, ω̄�

)�0|χ̄n̄,ω̄�Γ̄ν
j χn,ω� |XnXn̄Xs��XnXn̄Xs|χn,ωΓµ

i χn̄,ω̄|0� . (44)

Here we have pulled out an explicit sum over the top jet label directions �n and keep only

two collinear sectors L(0)
n and L(0)

n̄ for the SCET description of top and antitop jets. This

allows us to explicitly carry out the integral over the top jet directions �n in Sec. IIID in

parallel to implementing factorization.

In Eq. (44) we have decomposed the final states |X� into a soft sector |Xs� and collinear

sectors |Xn�, |Xn̄� in the �n and �̄n directions respectively

|X� = |XnXn̄Xs� . (45)

Since the hard production scale is integrated out by the matching procedure, these states

now form a complete set of final states that can be produced by the SCET currents J µ
i .

This already implements part of the restrictions, “res”, in the sum over states in Eq. (44).

The momentum PX of the final state |X� is also decomposed into the momentum of the

collinear and soft sectors:

PX = PXn + PXn̄ + PXs. (46)

Because the set of hadrons observed in the detector has a well defined set of momenta, it is

possible to impose criteria on the hadrons in the final state to associate them with one of

Xn, Xn̄, or Xs. Thus, the hadronic two-jet state factorizes as a direct product

|X� = |Xn�|Xn̄�|Xs� . (47)

This factorization is also a manifest property of the hadronic states in SCET.

For quark and gluon states in SCET the difference from the purely hadronic case is that

the analog states in Eq. (47) can carry global color quantum numbers. After having made

the soft-collinear decoupling field redefinition, the individual Lagrangians for these sectors

are decoupled, and they only organize themselves into color singlets in the matrix elements

which appear in the observable cross-section. We can take this as a manifestation of quark-

hadron duality. Using the soft-collinear decoupling property from section IIA we can write

the matrix elements in Eq. (44) as

�
0
��χa

n̄,ω̄�(Y n̄)
ba

(ΓYnχn,ω�)
b
��XnXn̄Xs

��
XnXn̄Xs

��(χn,ωY †
n Γ)

c
(Y

†
n̄)

dcχd
n̄,ω̄

��0
�

(48)

=
�
0
��χa

n̄,ω̄�

��Xn̄

��
Xn̄

��χa�

n̄,ω̄

��0
��

0
��χb

n,ω�

��Xn

��
Xn

��χb�

n,ω

��0
�

×
�
0
��(Y n̄)

ca
(ΓYn)

cb
��Xs

��
Xs

��(Y †
nΓ)

b�c�
(Y

†
n̄)

a�c���0
�
,

22

where here roman indices are for color and spin and |Xn� and |Xn̄� are color triplets. Next

we rearrange the color and spinor indices so that they are fully contracted within each of the

n-collinear, n̄-collinear, and soft product of matrix elements. This makes explicit the fact

that in SCET each of these contributions to the cross-section must separately be a spin and

color singlet. Although it is not absolutely necessary to make this arrangement of indices

manifest at this point, it does allow us to avoid carrying around unnecessary indices (a similar

manipulation was used for B → Xsγ in Ref. [60]). For color, our |Xn̄��Xn̄| forces the indices

on χa
n̄ and χa�

n̄ to be the same, so
�
0
��χa

n̄

��Xn̄

��
Xn̄

��χa�
n̄

��0
�

= (δaa�
/Nc)

�
0
��χb

n̄

��Xn̄

��
Xn̄

��χb
n̄

��0
�
. A

similar result holds for the n-collinear matrix elements. For spin we can use the SCET Fierz

formula

1⊗ 1 =
1

2

�� n̄/

2

�
⊗

�n/

2

�
+

�−n̄/γ5

2

�
⊗

�n/γ5

2

�
+

�−n̄/γα
⊥

2

�
⊗

�n/γ⊥
α

2

��
, (49)

which is valid when the identity matrices are inserted so that the n/ terms on the RHS

appear between χn̄ · · · χn̄ without additional n̄/ factors next to these fields (or the analogous

statement with n ↔ n̄). Combining the color and spin index rearrangement, the matrix

element in Eq. (48) becomes

tr

�n/

2
Γµ

i

n̄/

2
Γ̄ν

j

���
0
��χa

n̄,ω̄�

��Xn̄

��
Xn̄

��
� n/

4Nc
χn̄,ω̄

�a��0
�� ��

0
��
� n̄/

4Nc
χn,ω�

�b��Xn

��
Xn

��χb
n,ω

��0
��

×
��

0
��(Y n̄)

ca�
(Yn)

cb���Xs

��
Xs

��(Y †
n )

b�c�
(Y

†
n̄)

a�c���0
��

≡ tr

�n/

2
Γµ

i

n̄/

2
Γ̄ν

j

�
tr

��
0
��χn̄,ω̄�

��Xn̄

��
Xn̄

��/̂nχn̄,ω̄

��0
��

tr

��
0
��/̂̄nχn,ω�

��Xn

��
Xn

��χn,ω

��0
��

× tr

��
0
��Y n̄Yn

��Xs

��
Xs

��Y †
n Y

†
n̄

��0
��

, (50)

where for convenience we defined

/̂n ≡ n//(4Nc) , /̂̄n ≡ n̄//(4Nc) . (51)

Note that only the first term on the RHS of Eq. (49) contributes because the collinear states

give at least one matrix element which is zero when we have a γ5 or γα
⊥. This factorizes the

SCET cross-section into a product of three singlets under spin and color. For convenience

we will in the following suppress writing these explicit traces on the matrix elements.

Using Eq. (50) in Eq. (44), the factorized SCET cross section takes the form

σ = K0

�

�n

res.�

XnXn̄Xs

(2π)
4 δ4

(q−PXn−PXn̄−PXs)�0|Y n̄ Yn|Xs��Xs|Y †
n Y

†
n̄|0� (52)

×
�

dω dω̄ dω� dω̄� C(ω, ω̄)C†
(ω�, ω̄�

)�0|/̂̄nχn,ω�|Xn��Xn|χn,ω|0��0|χn̄,ω̄�|Xn̄��Xn̄|/̂nχn̄,ω̄|0� ,

where we defined the normalization factor

K0 =

�

i=v,a

L(i)
µνTr

�n/

2
Γµ

i

n̄/

2
Γ

ν
j

�
= −2gµν

⊥

�

i=v,a

L(i)
µν

=
32π2α2

3Q4

�
e2

t −
2Q2 vevtet

Q2 −m2
Z

+
Q4

(v2
e + a2

e)(v
2
t + a2

t )

(Q2 −m2
Z)2

�
. (53)
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where here roman indices are for color and spin and |Xn� and |Xn̄� are color triplets. Next

we rearrange the color and spinor indices so that they are fully contracted within each of the

n-collinear, n̄-collinear, and soft product of matrix elements. This makes explicit the fact

that in SCET each of these contributions to the cross-section must separately be a spin and

color singlet. Although it is not absolutely necessary to make this arrangement of indices

manifest at this point, it does allow us to avoid carrying around unnecessary indices (a similar

manipulation was used for B → Xsγ in Ref. [60]). For color, our |Xn̄��Xn̄| forces the indices

on χa
n̄ and χa�

n̄ to be the same, so
�
0
��χa

n̄

��Xn̄

��
Xn̄

��χa�
n̄

��0
�

= (δaa�
/Nc)

�
0
��χb

n̄

��Xn̄

��
Xn̄

��χb
n̄

��0
�
. A

similar result holds for the n-collinear matrix elements. For spin we can use the SCET Fierz

formula

1⊗ 1 =
1

2

�� n̄/

2

�
⊗

�n/

2

�
+

�−n̄/γ5

2

�
⊗

�n/γ5

2

�
+

�−n̄/γα
⊥

2

�
⊗

�n/γ⊥
α

2

��
, (49)

which is valid when the identity matrices are inserted so that the n/ terms on the RHS

appear between χn̄ · · · χn̄ without additional n̄/ factors next to these fields (or the analogous

statement with n ↔ n̄). Combining the color and spin index rearrangement, the matrix

element in Eq. (48) becomes

tr

�n/

2
Γµ

i

n̄/

2
Γ̄ν

j

���
0
��χa

n̄,ω̄�

��Xn̄

��
Xn̄

��
� n/

4Nc
χn̄,ω̄

�a��0
�� ��

0
��
� n̄/

4Nc
χn,ω�

�b��Xn

��
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��χb
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��0
��

×
��

0
��(Y n̄)
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cb���Xs

��
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��(Y †
n )

b�c�
(Y

†
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a�c���0
��

≡ tr

�n/

2
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n̄/

2
Γ̄ν

j

�
tr

��
0
��χn̄,ω̄�

��Xn̄

��
Xn̄

��/̂nχn̄,ω̄

��0
��

tr

��
0
��/̂̄nχn,ω�
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��
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��0
��
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��
0
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��Xs

��
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��Y †
n Y

†
n̄

��0
��

, (50)

where for convenience we defined

/̂n ≡ n//(4Nc) , /̂̄n ≡ n̄//(4Nc) . (51)

Note that only the first term on the RHS of Eq. (49) contributes because the collinear states

give at least one matrix element which is zero when we have a γ5 or γα
⊥. This factorizes the

SCET cross-section into a product of three singlets under spin and color. For convenience

we will in the following suppress writing these explicit traces on the matrix elements.

Using Eq. (50) in Eq. (44), the factorized SCET cross section takes the form

σ = K0

�

�n

res.�

XnXn̄Xs

(2π)
4 δ4

(q−PXn−PXn̄−PXs)�0|Y n̄ Yn|Xs��Xs|Y †
n Y

†
n̄|0� (52)

×
�

dω dω̄ dω� dω̄� C(ω, ω̄)C†
(ω�, ω̄�

)�0|/̂̄nχn,ω�|Xn��Xn|χn,ω|0��0|χn̄,ω̄�|Xn̄��Xn̄|/̂nχn̄,ω̄|0� ,

where we defined the normalization factor

K0 =

�

i=v,a

L(i)
µνTr

�n/

2
Γµ

i

n̄/

2
Γ

ν
j

�
= −2gµν

⊥

�

i=v,a

L(i)
µν

=
32π2α2

3Q4

�
e2

t −
2Q2 vevtet

Q2 −m2
Z

+
Q4

(v2
e + a2

e)(v
2
t + a2
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(Q2 −m2
Z)2

�
. (53)
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|C(Q,µ)|2×

all-orders in αs

Factorization:

M2
1 M2

2

M2
i ∼ ∆2

qs, A
µ
s

18



Λ
2
! ∆

2
! Q2

eg. e
+
e
−

→ 2 jets

SCET energetic jets

!!

usoft particles

n-collinear 
       jet

n-collinear 
       jet

ξn̄, Aµ
n̄ξn, Aµ

n

Factorization:

Jet Functions Soft FunctionHard Function

µS ∼ �±µJ ∼MiµH ∼ Q

M2
1 M2

2

M2
i ∼ ∆2

qs, A
µ
s

d
2
σ

dM
2
1 dM

2
2

= σ0H(Q,µ)
�

d�
+

d�
−

Jn

�
M

2
1 −Q�

+
, µ

�
Jn̄

�
M

2
2 −Q�

−
, µ

�
S(�+, �

−
, µ)
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Λ
2
! ∆

2
! Q2

eg. e
+
e
−

→ 2 jets

SCET energetic jets

!!

usoft particles

n-collinear 
       jet

n-collinear 
       jet

ξn̄, Aµ
n̄ξn, Aµ

n

Sum Large Logs

µJ

µS

ΛQCD

match to get H

calculate J

soft function S

run H

run J

µH

M2
1 M2

2

M2
i ∼ ∆2

run between scales & 
not below           ΛQCD

qs, A
µ
s
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Large Logs

σ(∆) = 1 + αsL
2 + α2

sL
4 + α3

sL
6 + . . .

+ αsL + α2
sL

3 + α3
sL

5 + . . .

+ αs + α2
sL

2 + α3
sL

4 + . . .

+ α2
sL + α3

sL
3 + . . .

+ α2
s + α3

sL
2 + . . .

+ α3
sL + . . .

+ α3
s + . . .

. . .

LO NLO NNLO N3LO

N3LL

NNLL

NLL
LL

log 
summation

αsL ∼ 1
αs � 1

;    sum’s are actually in exponenthere σ(∆) =
� ∆

0
dτ

dσ

dτ

small print: 

L = ln(µH/µJ) = ln(µJ/µS) = ln(1/τ)

˜

˜ ˜

L = ln(µH/µJ) = ln(µJ/µS) = ln(Q2/∆2)
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Large Logs

σ(∆) = 1 + αsL
2 + α2

sL
4 + α3

sL
6 + . . .

+ αsL + α2
sL

3 + α3
sL

5 + . . .

+ αs + α2
sL

2 + α3
sL

4 + . . .

+ α2
sL + α3

sL
3 + . . .

+ α2
s + α3

sL
2 + . . .

+ α3
sL + . . .

+ α3
s + . . .

. . .

LO

NLO

NNLO

N3LO

N3LL

NNLL

NLL
LL

�

�

�

NLL� −→ NNLL −→ NNLL� −→ N3LL −→ N3LL�

sum
logs

add sum
logsO(α2

s)
add
O(α3

s)

NLO NNLO N3LO
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Operators

O3 = χ̄n1ΓB
µ
n3⊥χn2

O2 = χ̄n1Γχn2

O4 = χ̄n1ΓB
µ
n3⊥B

ν
n4⊥χn2

ON

• built from { χn, Bµ
n⊥, i∂µ

n⊥}, + usoft terms
O(λ) O(λ) O(λ)

O
�
2 = χ̄n1ΓB

µ
n2⊥χn2

O
�
3 = χ̄n1ΓB

µ
n3⊥B

ν
n3⊥χn2

Opdf = χ̄n1Γχn1,ω

O
��
2 = χ̄n1ΓB

µ
n2⊥i∂

ν
n2⊥χn2

N -jet amplitude

Ojet fn. = χ̄n1(x
−)Γχn1,ω(0)

For more introduction see the lecture notes:
http://www2.lns.mit.edu/~iains/talks/SCET_Lectures-Stewart-2009.pdf
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e+e− → jets

Event shapes
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αs(mZ) from Thrust Abbate, Fickinger,
Hoang, Mateu, I.S.

Becher, Schwartz;

(using work by 
Gehrmann et al. 

& Weinzierl)

• O(α3
s) + + power 

correction +

full treatment of 
{peak, tail, multijet}+

renormalon 
subtractions, 

R-RGE

+ QED
effects + b-mass

effects + global fit, 
various Q’s 

Ω1

Qτ

τ
0.240.16 0.20 0.300.280.260.220.18

0.0

1.0

1.4

0.4

0.2

0.6

0.8

1.2 N LL3 ’
N LL3

NNLL
NNLL
NLL

’

’

σ
dσ
dτ

Sum Logs, no S
mod

1
factorize pert. & nonperturbative soft effects: S = Spert ⊗ Smod

N3LL

Aim at 1%
precisione+e− → jets
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αs(mZ) from Thrust

(using work by 
Gehrmann et al. 

& Weinzierl)

• O(α3
s) + + power 

correction +

full treatment of 
{peak, tail, multijet}+

renormalon 
subtractions, 

R-RGE

+ QED
effects + b-mass

effects + global fit, 
various Q’s 

Ω1

Qτ

τ
0.240.16 0.20 0.300.280.260.220.18

0.0

1.0

1.4

0.4

0.2

0.6

0.8

1.2

σ
dσ
dτ

N LL3 ’
N LL3

NNLL
NNLL
NLL

’

’

Sum Logs, with S
mod

1
factorize pert. & nonperturbative soft effects: S = Spert ⊗ Smod

N3LL

Abbate, Fickinger,
Hoang, Mateu, I.S.

Becher, Schwartz;Aim at 1%
precisione+e− → jets
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αs(mZ) from Thrust

(using work by 
Gehrmann et al. 

& Weinzierl)

• O(α3
s) + + power 

correction +

full treatment of 
{peak, tail, multijet}+

renormalon 
subtractions, 

R-RGE

+ QED
effects + b-mass

effects + global fit, 
various Q’s 

Ω1

Qτ

τ
0.240.16 0.20 0.300.280.260.220.18

0.0

1.0

1.4

0.4

0.2

0.6

0.8

1.2

σ
dσ
dτ

N LL3 ’
N LL3

NNLL
NNLL
NLL

’

’

Sum Logs, with S    + gap
mod

1
factorize pert. & nonperturbative soft effects: S = Spert ⊗ Smod

N3LL

Abbate, Fickinger,
Hoang, Mateu, I.S.

Becher, Schwartz;Aim at 1%
precisione+e− → jets
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αs(mZ) from Thrust

(using work by 
Gehrmann et al. 

& Weinzierl)

• O(α3
s) + + power 

correction +

full treatment of 
{peak, tail, multijet}+

renormalon 
subtractions, 

R-RGE

+ QED
effects + b-mass

effects + global fit, 
various Q’s 

Ω1

QτN3LL

26

order Ω̄1 (MS) Ω1 (R-gap)

NLL′ 0.264 ± 0.213 0.293 ± 0.203

NNLL 0.256 ± 0.197 0.276 ± 0.155

NNLL′ 0.283 ± 0.097 0.316 ± 0.072

N3LL 0.274 ± 0.098 0.313 ± 0.071

N3LL′ (full) 0.252 ± 0.069 0.323± 0.045

N3LL′
(QCD+mb) 0.238 ± 0.070 0.310 ± 0.049

N3LL′
(pure QCD) 0.254 ± 0.070 0.332 ± 0.045

TABLE V: Theory errors from the parameter scan and cen-
tral values for Ω1 defined at the reference scales R∆ = µ∆ =
2 GeV in units of GeV at various orders. The N3LL′ value
above the horizontal line is our final scan result, while the
N3LL′ values below the horizontal line show the effect of leav-
ing out the QED corrections, and leaving out both the b-mass
and QED respectively. The central values are the average of
the maximal and minimal values reached from the scan.

τ

σ

dσ

dτ

τ

0.300.10 0.15 0.20 0.25
0.0

0.4

0.3

0.2

0.1

Fit at N LL3 ’

theory scan error

DELPHI

ALEPH

OPAL

L3

SLD

for &

FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (66). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which
puts equal weight to all Q and thrust values. This sec-
ond band method is more conservative, and for the N3LL′

analyses in the R-gap and the MS schemes the resulting
errors are only 10% smaller than in the scan method that
we have adopted. The advantage of the scan method we
use is that the fit takes into account theory uncertainties
including correlations.

Effects of QED and the bottom mass

Given the high-precision we can achieve at N3LL′ or-
der in the R-gap scheme for Ω1, it is a useful exercise
to examine also the numerical impact of the corrections
arising from the nonzero bottom quark mass and the
QED corrections. In Fig. 14 the distributions of the best
fit points in the αs-2Ω1 plane at N3LL′ in the R-gap
scheme is displayed for pure massless QCD (light green

!"##! !"##$ !"#%! !"#%$ !"#&!
!"!

!"%

!"'

!"(

!")

#"!

#"%
!"

*+,-. /011
2,30143

Abbate, Fickinger,
Hoang, Mateu, I.S.

Becher, Schwartz;Aim at 1%
precisione+e− → jets
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αs(mZ) from Thrust

(using work by 
Gehrmann et al. 

& Weinzierl)

• O(α3
s) + + power 

correction +

full treatment of 
{peak, tail, multijet}+

renormalon 
subtractions, 

R-RGE

+ QED
effects + b-mass

effects + global fit, 
various Q’s 

Ω1

QτN3LL

26

order Ω̄1 (MS) Ω1 (R-gap)

NLL′ 0.264 ± 0.213 0.293 ± 0.203

NNLL 0.256 ± 0.197 0.276 ± 0.155

NNLL′ 0.283 ± 0.097 0.316 ± 0.072

N3LL 0.274 ± 0.098 0.313 ± 0.071

N3LL′ (full) 0.252 ± 0.069 0.323± 0.045

N3LL′
(QCD+mb) 0.238 ± 0.070 0.310 ± 0.049

N3LL′
(pure QCD) 0.254 ± 0.070 0.332 ± 0.045

TABLE V: Theory errors from the parameter scan and cen-
tral values for Ω1 defined at the reference scales R∆ = µ∆ =
2 GeV in units of GeV at various orders. The N3LL′ value
above the horizontal line is our final scan result, while the
N3LL′ values below the horizontal line show the effect of leav-
ing out the QED corrections, and leaving out both the b-mass
and QED respectively. The central values are the average of
the maximal and minimal values reached from the scan.

τ

σ

dσ

dτ

τ

0.300.10 0.15 0.20 0.25
0.0

0.4

0.3

0.2

0.1

Fit at N LL3 ’

theory scan error

DELPHI

ALEPH

OPAL

L3

SLD

for &

FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (66). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which
puts equal weight to all Q and thrust values. This sec-
ond band method is more conservative, and for the N3LL′

analyses in the R-gap and the MS schemes the resulting
errors are only 10% smaller than in the scan method that
we have adopted. The advantage of the scan method we
use is that the fit takes into account theory uncertainties
including correlations.

Effects of QED and the bottom mass

Given the high-precision we can achieve at N3LL′ or-
der in the R-gap scheme for Ω1, it is a useful exercise
to examine also the numerical impact of the corrections
arising from the nonzero bottom quark mass and the
QED corrections. In Fig. 14 the distributions of the best
fit points in the αs-2Ω1 plane at N3LL′ in the R-gap
scheme is displayed for pure massless QCD (light green
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Abbate, Fickinger,
Hoang, Mateu, I.S.

Becher, Schwartz;Aim at 1%
precisione+e− → jets
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αs(mZ) from Thrust Abbate, Fickinger,
Hoang, Mateu, I.S.

Becher, Schwartz;

(using work by 
Gehrmann et al. 

& Weinzierl)

• O(α3
s) + + power 

correction +

full treatment of 
{peak, tail, multijet}+

renormalon 
subtractions, 

R-RGE

+ QED
effects + b-mass

effects + global fit, 
various Q’s 

Ω1

Qτ

αs(mZ) = 0.1135± (0.0002)expt ± (0.0005)hadr ± (0.0009)pert

Ω1 = 0.324± (0.009)expt ± (0.013)Ω2 ± (0.030)αs(mZ) ± (0.045)pert GeV

} }
χ2 fit

}

Parameter Scan} }} }

N3LL

Aim at 1%
precision
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αs(mZ) from Thrust Abbate, Fickinger,
Hoang, Mateu, I.S.

Becher, Schwartz;

(using work by 
Gehrmann et al. 

& Weinzierl)

• O(α3
s) + + power 

correction +

full treatment of 
{peak, tail, multijet}+

renormalon 
subtractions, 

R-RGE

+ QED
effects + b-mass

effects + global fit, 
various Q’s 

Ω1

Qτ

αs(mZ) = 0.1135± (0.0002)expt ± (0.0005)hadr ± (0.0009)pert

Ω1 = 0.324± (0.009)expt ± (0.013)Ω2 ± (0.030)αs(mZ) ± (0.045)pert GeV

N3LL

Aim at 1%
precision

• power correction shifts result for αs(mZ) by −9% (in tuned MC effect 
is small at          ,
similar at other scales)

mZ
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αs(mZ) from Thrust Abbate, Fickinger,
Hoang, Mateu, I.S.

Becher, Schwartz;

(using work by 
Gehrmann et al. 

& Weinzierl)
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correction +
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Event shapes

pp→ jets + leptons
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Isolated Drell-Yan
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FIG. 2: Different final-state configurations for pp collisions. The top row corresponds to Drell-Yan factorization theorems for
the (a) inclusive, (b) threshold, and (c) isolated cases. The bottom row shows the corresponding pictures with the lepton pair
replaced by dijets.

A. Drell-Yan Factorization Theorems

To describe the Drell-Yan process pp → X!+!− or
pp̄ → X!+!−, we take

Pµ
a + Pµ

b = pµ
X + qµ , (4)

where Pµ
a,b are the incoming (anti)proton momenta,

Ecm =
√

(Pa + Pb)2 is the total center-of-mass energy,
and qµ is the total momentum of the !+!− pair. We also
define

τ =
q2

E2
cm

, Y =
1
2

ln
Pb · q
Pa · q ,

xa =
√

τeY , xb =
√

τe−Y , (5)

where Y is the total rapidity of the leptons with respect
to the beam axis, and xa and xb are in one-to-one corre-
spondence with τ and Y . Their kinematic limits are

0 ≤ τ ≤ 1 , 2|Y | ≤ − ln τ ,

τ ≤ xa ≤ 1 , τ ≤ xb ≤ 1 . (6)

The invariant mass of the hadronic final state is bounded
by

m2
X = p2

X ≤ E2
cm(1 −

√
τ )2 . (7)

In Drell-Yan

Q =
√

q2 % ΛQCD (8)

plays the role of the hard interaction scale. In general,
for factorization to be valid at some leading level of ap-
proximation with a perturbative computation of the hard
scattering, the measured observable must be infrared safe
and insensitive to the details of the hadronic final state.

For inclusive Drell-Yan, illustrated in Fig. 2(a), one
sums over all hadronic final states X allowed by Eq. (7)
without imposing any cuts. Hence, the measurement is
insensitive to any details of X because one sums over all
possibilities. In this situation there is a rigorous deriva-
tion of the classic factorization theorem [28, 51, 52]

1
σ0

dσ

dq2dY
=

∑

i,j

∫
dξa

ξa

dξb

ξb
H incl

ij

(xa

ξa
,
xb

ξb
, q2, µ

)

× fi(ξa, µ) fj(ξb, µ)
[
1 + O

(ΛQCD

Q

)]
, (9)

where σ0 = 4πα2
em/(3NcE2

cmq2), and the integration lim-
its are xa ≤ ξa ≤ 1 and xb ≤ ξb ≤ 1. The sum is
over partons i, j = {g, u, ū, d, . . .}, and fi(ξa) is the par-
ton distribution function for finding parton i inside the
proton with light-cone momentum fraction ξa along the
proton direction. Note that ξa,b are partonic variables,
whereas xa,b are leptonic, and the two are only equal at
tree level. The inclusive hard function H incl

ij can be com-
puted in fixed-order perturbative QCD as the partonic
cross section to scatter partons i and j [corresponding to
dσpart

ij in Eq. (1)] and is known to two loops [53–57].
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FIG. 3: Cross section differential in τB at Q = mZ for the
LHC with Ecm = 7TeV. Shown are the LL, NLL, and NNLL
results, where the bands indicate the perturbative uncertain-
ties as explained in the text. For comparison, the dotted line
shows the singular NLO result with no resummation.

by small τB. To see the effect of the higher-order re-
summation we plot the LL, NLL, and NNLL results.
The importance of resummation is illustrated by com-
paring them to the singular part of the fixed NLO result
(dashed line), which is obtained from our NNLL result
by setting µH = µB = µS = Q. (The full NLO result
contains additional nonsingular terms that are not nu-
merically relevant at small τB.) Results are not plotted
below QτB = µS ≤ 1GeV, where the soft function be-
comes nonperturbative and we expect large corrections
to our purely perturbative results. Correspondingly, the
perturbative uncertainties get large. In Fig. 4 we show
the cross section integrated up to τB ≤ τcutB as a function
of QτcutB for Q = mZ and Q = 300GeV. We see again
that the logarithms are important at small τcutB and need

to be resummed.
In Figs. 3 and 4 the perturbative scale uncertainties

are given by bands from varying µH , µB , and µS . The
independent variation of these three scales would overes-
timate the uncertainty since it does not take into account
the parametric relation µ2

B " µSµH and the hierarchy
µS # µB # µH . On the other hand, their simultane-
ous variation [case a) in Eq. (7)] can produce unnaturally
small scale uncertainties. Hence, the perturbative uncer-
tainties in all figures are the envelope of the following
three separate scale variations

a) µH = −riQ , µB = r
√
τBQ , µS = rτBQ , (7)

b) µH = −iQ , µB = r−(ln τB)/4√τBQ , µS = τBQ ,

c) µH = −iQ , µB =
√
τBQ , µS = r−(ln τB)/4τBQ ,

with r = {1/2, 2}, and r = 1 corresponding to the
central-value curves. The exponent of r for cases b) and
c) is chosen such that for τB = e−4 the scales µB or µS

vary by factors of two, with smaller variations for increas-
ing τB and no variation for τB → 1. In this limit, there
should only be a single scale µH = µB = µS , and thus
the only scale variation should be case a). For the inte-
grated cross section the scales are chosen by replacing τB
in Eq. (7) with τcutB . In both Figs. 3 and 4 we see good
convergence of the perturbative series and a substantial
reduction in the perturbative uncertainties at NNLL. The
convergence is improved appreciably by the summation
of the π2 terms.
In Fig. 5 we plot percent differences for several cross

sections relative to the NNLL result. All results are
integrated up to τcutB = 0.1 and are plotted versus
Q. The dark orange bands show the NNLL perturba-
tive uncertainties and the light yellow bands the 90%
CL PDF+αs uncertainties, using the procedure from
Ref. [10]. The dashed line shows the NNLL result without
the gluon contribution to the quark beam function, Iqg
in Eq. (5). In the dotted line we further neglect all terms
in the quark contribution, Iqq , that are subleading in the
threshold limit x → 1. Except for the Tevatron at large
Q the threshold result is a poor approximation to the
full result, being well outside the perturbative uncertain-
ties. The gluon contribution is significant at the LHC and
less prominent at the Tevatron, because the gluon PDF
is more important for pp than pp̄ collisions. The dark
band and solid line shows the NLO result with the per-
turbative uncertainties from varying the common scale
between Q/2 and 2Q. Its difference from the resummed
NNLL result is generically large and not captured by the
fixed-order perturbative uncertainties, showing that the
resummation is important not only to get an improved
central value but also to obtain reliable perturbative un-
certainties.
Beam thrust in Drell-Yan provides an experimentally

and theoretically clean measure of ISR in qq̄ → $+$−,
similar to how thrust measures final-state radiation in
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LHC with Ecm = 7TeV. Shown are the LL, NLL, and NNLL
results, where the bands indicate the perturbative uncertain-
ties as explained in the text. For comparison, the dotted line
shows the singular NLO result with no resummation.

by small τB. To see the effect of the higher-order re-
summation we plot the LL, NLL, and NNLL results.
The importance of resummation is illustrated by com-
paring them to the singular part of the fixed NLO result
(dashed line), which is obtained from our NNLL result
by setting µH = µB = µS = Q. (The full NLO result
contains additional nonsingular terms that are not nu-
merically relevant at small τB.) Results are not plotted
below QτB = µS ≤ 1GeV, where the soft function be-
comes nonperturbative and we expect large corrections
to our purely perturbative results. Correspondingly, the
perturbative uncertainties get large. In Fig. 4 we show
the cross section integrated up to τB ≤ τcutB as a function
of QτcutB for Q = mZ and Q = 300GeV. We see again
that the logarithms are important at small τcutB and need

to be resummed.
In Figs. 3 and 4 the perturbative scale uncertainties

are given by bands from varying µH , µB , and µS . The
independent variation of these three scales would overes-
timate the uncertainty since it does not take into account
the parametric relation µ2

B " µSµH and the hierarchy
µS # µB # µH . On the other hand, their simultane-
ous variation [case a) in Eq. (7)] can produce unnaturally
small scale uncertainties. Hence, the perturbative uncer-
tainties in all figures are the envelope of the following
three separate scale variations

a) µH = −riQ , µB = r
√
τBQ , µS = rτBQ , (7)

b) µH = −iQ , µB = r−(ln τB)/4√τBQ , µS = τBQ ,

c) µH = −iQ , µB =
√
τBQ , µS = r−(ln τB)/4τBQ ,

with r = {1/2, 2}, and r = 1 corresponding to the
central-value curves. The exponent of r for cases b) and
c) is chosen such that for τB = e−4 the scales µB or µS

vary by factors of two, with smaller variations for increas-
ing τB and no variation for τB → 1. In this limit, there
should only be a single scale µH = µB = µS , and thus
the only scale variation should be case a). For the inte-
grated cross section the scales are chosen by replacing τB
in Eq. (7) with τcutB . In both Figs. 3 and 4 we see good
convergence of the perturbative series and a substantial
reduction in the perturbative uncertainties at NNLL. The
convergence is improved appreciably by the summation
of the π2 terms.
In Fig. 5 we plot percent differences for several cross

sections relative to the NNLL result. All results are
integrated up to τcutB = 0.1 and are plotted versus
Q. The dark orange bands show the NNLL perturba-
tive uncertainties and the light yellow bands the 90%
CL PDF+αs uncertainties, using the procedure from
Ref. [10]. The dashed line shows the NNLL result without
the gluon contribution to the quark beam function, Iqg
in Eq. (5). In the dotted line we further neglect all terms
in the quark contribution, Iqq , that are subleading in the
threshold limit x → 1. Except for the Tevatron at large
Q the threshold result is a poor approximation to the
full result, being well outside the perturbative uncertain-
ties. The gluon contribution is significant at the LHC and
less prominent at the Tevatron, because the gluon PDF
is more important for pp than pp̄ collisions. The dark
band and solid line shows the NLO result with the per-
turbative uncertainties from varying the common scale
between Q/2 and 2Q. Its difference from the resummed
NNLL result is generically large and not captured by the
fixed-order perturbative uncertainties, showing that the
resummation is important not only to get an improved
central value but also to obtain reliable perturbative un-
certainties.
Beam thrust in Drell-Yan provides an experimentally

and theoretically clean measure of ISR in qq̄ → $+$−,
similar to how thrust measures final-state radiation in
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FIG. 2: Different final-state configurations for pp collisions. The top row corresponds to Drell-Yan factorization theorems for
the (a) inclusive, (b) threshold, and (c) isolated cases. The bottom row shows the corresponding pictures with the lepton pair
replaced by dijets.

A. Drell-Yan Factorization Theorems

To describe the Drell-Yan process pp → X!+!− or
pp̄ → X!+!−, we take

Pµ
a + Pµ

b = pµ
X + qµ , (4)

where Pµ
a,b are the incoming (anti)proton momenta,

Ecm =
√

(Pa + Pb)2 is the total center-of-mass energy,
and qµ is the total momentum of the !+!− pair. We also
define

τ =
q2

E2
cm

, Y =
1
2

ln
Pb · q
Pa · q ,

xa =
√

τeY , xb =
√

τe−Y , (5)

where Y is the total rapidity of the leptons with respect
to the beam axis, and xa and xb are in one-to-one corre-
spondence with τ and Y . Their kinematic limits are

0 ≤ τ ≤ 1 , 2|Y | ≤ − ln τ ,

τ ≤ xa ≤ 1 , τ ≤ xb ≤ 1 . (6)

The invariant mass of the hadronic final state is bounded
by

m2
X = p2

X ≤ E2
cm(1 −

√
τ )2 . (7)

In Drell-Yan

Q =
√

q2 % ΛQCD (8)

plays the role of the hard interaction scale. In general,
for factorization to be valid at some leading level of ap-
proximation with a perturbative computation of the hard
scattering, the measured observable must be infrared safe
and insensitive to the details of the hadronic final state.

For inclusive Drell-Yan, illustrated in Fig. 2(a), one
sums over all hadronic final states X allowed by Eq. (7)
without imposing any cuts. Hence, the measurement is
insensitive to any details of X because one sums over all
possibilities. In this situation there is a rigorous deriva-
tion of the classic factorization theorem [28, 51, 52]

1
σ0

dσ

dq2dY
=

∑

i,j

∫
dξa

ξa

dξb

ξb
H incl

ij

(xa

ξa
,
xb

ξb
, q2, µ

)

× fi(ξa, µ) fj(ξb, µ)
[
1 + O

(ΛQCD

Q

)]
, (9)

where σ0 = 4πα2
em/(3NcE2

cmq2), and the integration lim-
its are xa ≤ ξa ≤ 1 and xb ≤ ξb ≤ 1. The sum is
over partons i, j = {g, u, ū, d, . . .}, and fi(ξa) is the par-
ton distribution function for finding parton i inside the
proton with light-cone momentum fraction ξa along the
proton direction. Note that ξa,b are partonic variables,
whereas xa,b are leptonic, and the two are only equal at
tree level. The inclusive hard function H incl

ij can be com-
puted in fixed-order perturbative QCD as the partonic
cross section to scatter partons i and j [corresponding to
dσpart

ij in Eq. (1)] and is known to two loops [53–57].
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FIG. 4: Integrated cross section with a cut τB ≤ τ cut
B as function of τ cut

B at Q = mZ (left panel) and Q = 300GeV (right
panel) for the LHC. The curves have the same meaning as in Fig. 3.
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e+e− → qq̄. The experimental measurement of beam
thrust will contribute very valuable information to our
understanding of ISR at hadron colliders and could be
used to test and tune the initial-state parton shower and
underlying event models in Monte Carlo programs. Re-
stricting beam thrust τB " 1 implements a theoretically
well-controlled jet veto, which has important applications
in other processes, for example Higgs production [11].
The measurement of beam thrust in Drell-Yan provides a
clean environment to test the application of beam thrust
as a central jet veto.
This work was supported by the Office of Nuclear

Physics of the U.S. Department of Energy, under the
grant DE-FG02-94ER40818.

[1] S. Bethke, Prog. Part. Nucl. Phys. 58, 351 (2007);
S. Kluth, Rept. Prog. Phys. 69, 1771 (2006).

[2] DELPHI Collaboration, P. Abreu et al., Z. Phys. C 73,
11 (1996); A. Buckley et al., Eur. Phys. J. C 65, 331
(2010).

[3] Z. Nagy, Phys. Rev. D 68, 094002 (2003).
[4] A. Banfi, G. P. Salam, and G. Zanderighi, JHEP 08, 062

(2004); arXiv:1001.4082.
[5] G. Dissertori, F. Moortgat, and M. A. Weber,

arXiv:0810.3208.
[6] I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn,

arXiv:0910.0467; arXiv:1004.2489.
[7] S. Fleming, A. K. Leibovich, and T. Mehen, Phys. Rev.

D 74, 114004 (2006).
[8] I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn,

arXiv:1002.2213.
[9] L. Magnea and G. Sterman, Phys. Rev. D 42, 4222

(1990); T. O. Eynck, E. Laenen, and L. Magnea, JHEP
06, 057 (2003); V. Ahrens et al., Eur. Phys. J. C 62, 333
(2009).

[10] A. D. Martin et al. Eur. Phys. J. C 63, 189 (2009); Eur.
Phys. J. C 64, 653 (2009).

[11] C. F. Berger et al., in preparation.

nice convergence

4

0
0 5 10 15 20

40

80

120

160

200

240

280

Ecm=7 TeV

Qτ cut
B [GeV]

d
σ

/
d
Q

(τ
c
u
t

B
)

[p
b
/
G

e
V

]

Q=mZ

NNLL

NLL

LL

sing. NLO

0
0

1

2

3

5 10 15 20

0.5

1.5

2.5

3.5

Ecm=7 TeV

Qτ cut
B [GeV]

d
σ

/
d
Q

(τ
c
u
t

B
)

[f
b
/
G

e
V

]

Q=300 GeV

NNLL

NLL

LL

sing. NLO

FIG. 4: Integrated cross section with a cut τB ≤ τ cut
B as function of τ cut

B at Q = mZ (left panel) and Q = 300GeV (right
panel) for the LHC. The curves have the same meaning as in Fig. 3.

0

10

20

50 100 200 300 500

−10

−20
1000

Q [GeV]

δ
(d

σ
/
d
Q

)
[%

]

Ecm=1.96 TeV

τ cut
B =0.1

sing. NLO

scale unc.

PDF+αs

no g

x→1

0

10

20

50 100 200 300 500

−10

−20
1000

Ecm=7 TeV

Q [GeV]

δ
(d

σ
/
d
Q

)
[%

]

τ cut
B =0.1 sing. NLO

scale unc.

PDF+αs

no g

x→1

FIG. 5: Percent difference relative to the central NNLL result, δ(dσ/dQ) = (dσ/dQ)/(dσNNLL/dQ)− 1 at the Tevatron (left
panel) and the LHC (right panel). Here we always take τ cut

B = 0.1 in both numerator and denominator.

e+e− → qq̄. The experimental measurement of beam
thrust will contribute very valuable information to our
understanding of ISR at hadron colliders and could be
used to test and tune the initial-state parton shower and
underlying event models in Monte Carlo programs. Re-
stricting beam thrust τB " 1 implements a theoretically
well-controlled jet veto, which has important applications
in other processes, for example Higgs production [11].
The measurement of beam thrust in Drell-Yan provides a
clean environment to test the application of beam thrust
as a central jet veto.
This work was supported by the Office of Nuclear

Physics of the U.S. Department of Energy, under the
grant DE-FG02-94ER40818.
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Calculation here involves:

• ISR from proton

• summing large logs from 
t - channel singularities

Factorization involves Beam Functions•

dσ =
�

ij

Hij

�
Bi(ta, xa)Bj(tb, xb)⊗ SB

12

=
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qq̄ B(0)
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FIG. 6: Factorization for isolated Drell-Yan in pictures. The left-hand side of each equality are graphs in QCD, while the
right-hand side shows the sum of the corresponding SCET diagrams. Dashed lines are collinear quarks, and springs with a line
through them are collinear gluons. The double lines denote soft Wilson lines, and the gluons attached to them are soft.

rection to the quark beam function, B(1)
q . In the second

case, the intermediate quark is far off shell and can be
integrated out, and the gluon collinear to the antiquark
arises from a collinear Wilson line contribution in B(1)

q̄ .
The third case gives a real-emission correction to the soft
function, S(1)

qq̄ . The full-theory graph in Fig. 6(d) has a
t-channel singularity. An important fact about the iso-
lated Drell-Yan factorization theorem is that it fully cap-
tures the dominant parts of this singularity, and allows a
simple framework for a resummation of higher order αs

corrections enhanced by large double logarithms due to

this singularity. For threshold Drell-Yan, the kinematic
restrictions are stronger and only allow the third graph
with soft initial-state radiation. In inclusive Drell-Yan,
the gluon is treated as hard, and the graph in Fig. 6(d)
only corrects H incl

qq̄ , without providing a framework for
summing the large double logarithms that appear when
we make a global measurement of the radiation in each
hemisphere defined by the beams.

The situation is a bit simpler for Figs. 6(e) and 6(f).
In Fig. 6(e), the incoming collinear gluon from the PDF
pair-produces a quark and antiquark both collinear to

αn
s lnm(t/Q2)

t

4

X

!+
X

!−

Pa Pb

(a) Inclusive Drell-Yan production.

Soft

Soft

!−

!+

Pa Pb

(b) Drell-Yan near threshold.

!−

Soft

Soft

!+

Pa Pb

Jet b Jet a

(c) Isolated Drell-Yan.

Jet 2 Soft

Soft Jet 1

Pa Pb

(d) Dijet production near threshold.

Jet 2

Soft

Soft

Jet 1

Pa Pb

Jet b Jet a

(e) Isolated dijet production.

FIG. 2: Different final-state configurations for pp collisions. The top row corresponds to Drell-Yan factorization theorems for
the (a) inclusive, (b) threshold, and (c) isolated cases. The bottom row shows the corresponding pictures with the lepton pair
replaced by dijets.

A. Drell-Yan Factorization Theorems

To describe the Drell-Yan process pp → X!+!− or
pp̄ → X!+!−, we take

Pµ
a + Pµ

b = pµ
X + qµ , (4)

where Pµ
a,b are the incoming (anti)proton momenta,

Ecm =
√

(Pa + Pb)2 is the total center-of-mass energy,
and qµ is the total momentum of the !+!− pair. We also
define

τ =
q2

E2
cm

, Y =
1
2

ln
Pb · q
Pa · q ,

xa =
√

τeY , xb =
√

τe−Y , (5)

where Y is the total rapidity of the leptons with respect
to the beam axis, and xa and xb are in one-to-one corre-
spondence with τ and Y . Their kinematic limits are

0 ≤ τ ≤ 1 , 2|Y | ≤ − ln τ ,

τ ≤ xa ≤ 1 , τ ≤ xb ≤ 1 . (6)

The invariant mass of the hadronic final state is bounded
by

m2
X = p2

X ≤ E2
cm(1 −

√
τ )2 . (7)

In Drell-Yan

Q =
√

q2 % ΛQCD (8)

plays the role of the hard interaction scale. In general,
for factorization to be valid at some leading level of ap-
proximation with a perturbative computation of the hard
scattering, the measured observable must be infrared safe
and insensitive to the details of the hadronic final state.

For inclusive Drell-Yan, illustrated in Fig. 2(a), one
sums over all hadronic final states X allowed by Eq. (7)
without imposing any cuts. Hence, the measurement is
insensitive to any details of X because one sums over all
possibilities. In this situation there is a rigorous deriva-
tion of the classic factorization theorem [28, 51, 52]

1
σ0

dσ

dq2dY
=

∑

i,j

∫
dξa

ξa

dξb

ξb
H incl

ij

(xa

ξa
,
xb

ξb
, q2, µ

)

× fi(ξa, µ) fj(ξb, µ)
[
1 + O

(ΛQCD

Q

)]
, (9)

where σ0 = 4πα2
em/(3NcE2

cmq2), and the integration lim-
its are xa ≤ ξa ≤ 1 and xb ≤ ξb ≤ 1. The sum is
over partons i, j = {g, u, ū, d, . . .}, and fi(ξa) is the par-
ton distribution function for finding parton i inside the
proton with light-cone momentum fraction ξa along the
proton direction. Note that ξa,b are partonic variables,
whereas xa,b are leptonic, and the two are only equal at
tree level. The inclusive hard function H incl

ij can be com-
puted in fixed-order perturbative QCD as the partonic
cross section to scatter partons i and j [corresponding to
dσpart

ij in Eq. (1)] and is known to two loops [53–57].
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Figure 5. Comparison of the singular, nonsingular, and full cross sections at NNLO for µ = mH .
The left panel shows the magnitude of the differential cross sections on a logarithmic scale. The right
panel shows the corresponding cumulant cross sections.

numerically, which corresponds to the sum of the unknown µ-independent NNLO matching

corrections to the hard, beam, and soft functions. It is given by the difference

cδ(µ) = σs,NNLO − σs,NNLL
∣∣
NNLO

= cπ(µ) + cµ(µ) + cres(µ)− σs,NNLL
∣∣
NNLO,k=−1

. (2.45)

Since we include the µ-dependent NNLO matching corrections in σs,NNLL, its NNLO expan-

sion is obtained by setting µS = µB = µH = µ. Thus, we can easily evaluate eq. (2.45)

numerically. For mH = 165GeV, we find for the LHC at 7TeV,

cδ(mH/2) = 0.002 , cδ(mH) = −0.035 , cδ(2mH) = −0.028 , (2.46)

and for the Tevatron,

cδ(mH/2) = −0.0043 , cδ(mH) = −0.0026 , cδ(2mH) = −0.0027 . (2.47)

Comparing this to cres(mH) = 0.86 (LHC) and cres(mH) = 0.028 (Tevatron), we see that these

coefficients are almost fully accounted for by cross terms between the NLO hard, beam, and

soft functions. The remaining NNLO terms in cδ are in fact very small, and our NNLL+NNLO

results are therefore numerically very close to the complete NNLL′+NNLO result.

2.5 Cross Section at NNLL+NNLO

Using the results of sections 2.1 to 2.4 our final result at NNLL+NNLO for the distribution

and cumulant is obtained as

dσNNLL+NNLO

dTcm
=

dσs,NNLL

dTcm
+

dσδ

dTcm
+

dσns,NNLO+π2

dTcm
,

σNNLL+NNLO(T cut
cm ) = σs,NNLL(T cut

cm ) + σδ(T cut
cm ) + σns,NNLO+π2

(T cut
cm ) . (2.48)

– 22 –

Singular terms dominate numerically•
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FIG. 13: Definition of the different collinear momenta related to the incoming beams. The soft radiation is not shown.

In particular, the remnant momenta rµ
a,b do not con-

tribute to B+
a,b. A physical argument for this was dis-

cussed in Sec. II A.
Next, we decompose the total leptonic momentum as

qµ = q−
nµ

a

2
+ q+ nµ

b

2
+ qµ

⊥ , (90)

where qµ
⊥ contains the two components of qµ transverse

to the beam direction. Taking the z-axis along the !na

beam direction, we have

q± = q0 ∓ qz , qµ
⊥ = (0, !qT , 0) , (91)

where !qT = (qx, qy) is a two-vector in the transverse x-
y-plane. The total leptonic invariant mass and rapidity
are

q2 = q+q− + q2
⊥ = q+q− − !q2

T , Y =
1
2

ln
q−

q+
, (92)

with

q∓ = e±Y
√

q2 + !q2
T ,

d4q =
1
2

dq+dq− d2!qT =
1
2

dq2 dY d2!qT . (93)

As we will see in the next subsection, the derivation
of the factorization theorem requires us to be insensitive
to the transverse components !qT such that we can freely
integrate over them. Therefore, we have to expand the
kinematics in the limit !qT = 0. This expansion is justified
because from Eq. (87) we have

qµ
⊥ = −pµ

X⊥ = −bµ
a⊥ − bµ

a⊥ − kµ
s⊥ ∼ λQ . (94)

A parametrically large qµ
⊥ ∼ Q would require a separate

jet at large pT ∼ Q to balance the transverse momentum,
which is not allowed in our setup. The kinematics of
the hard matrix element in the factorization theorem is
then given by the tree-level partonic kinematics, with the
partonic momentum conservation

xaEcm
nµ

a

2
+ xbEcm

nµ
b

2
= q = q−

nµ
a

2
+ q+ nµ

b

2
, (95)

which implies

xaEcm = q− =
√

q2 eY ,

xbEcm = q+ =
√

q2 e−Y ,

q2 = q+q− = xaxbE
2
cm ,

Y =
1
2

ln
q−

q+
=

1
2

ln
xa

xb
. (96)

Equations (94) and (95) imply that parametrically the
leptons are back to back in the transverse plane. Since
q+ and q− can differ substantially, the leptons do not
need to be back to back in three dimensions.

C. Derivation of Isolated Factorization Theorem

We now proceed to derive the isolated factorization
theorem for generic processes pp → XL, where the
hadronic final state X has a restriction on the hemi-
sphere momenta B+

a,b. The derivation is carried out using
SCET without Glauber degrees of freedom. The proof
that Glauber effects are not required is given at the end
of this subsection.

1. Cross Section in QCD

We will generically refer to properties of L as “lep-
tonic”, even though L can contain any non-strongly in-
teracting particles. We only consider processes where
the hard interaction couples the strong and electroweak
sectors through one two-particle QCD current. (This
includes for example Drell-Yan or Higgs production
through gluon fusion with the Higgs decaying non-
hadronically, but does not include electroweak Higgs pro-
duction via vector-boson fusion.) Then, at leading or-
der in the electroweak interactions, we can factorize the
full-theory matrix element into its leptonic and hadronic

Measurement probes proton PRIOR to hard collision•

perturbative & calculable

Beam function
factorization:

Bi(t, x, µ) =
�

j

� 1

x

dξ

ξ
Iij

�
t,

x

ξ
, µ

�
fj(ξ, µ)

t = xECMb+

t� Λ2
QCD

17

where we again suppressed flavor labels and µ depen-
dence. The hard function HIL(MJJ , yi) is precisely the
threshold hard function, and we sum over the same color
basis {IL}. The subscript ! on the soft and jet functions
denotes the fact that their plus momenta depend on the
regions Ri, which in turn depend on yi.

The consistency of the RGE for the isolated dijet fac-
torization theorem, shown in Fig. 8(b), again provides
important constraints on its structure. Each of the func-
tions J!, B, and SLI

2jhemi includes a series of double log-
arithms, and when these functions are convoluted over
the k+

i variables at a common scale µ, these different se-
ries have to collapse to precisely the double-logarithmic
series of the hard function HIL. The RGE for the hard
function HIL is a matrix equation in color space, but has
no convolutions of kinematic variables. We expect that
this equivalence will occur in the same manner as it does
for the isolated Drell-Yan case.

Key missing ingredients in providing a rigorous deriva-
tion of Eq. (49) include i) providing a mathematically
rigorous treatment of the separation of jets and beams in

the factorization, and ii) determining the role of Glauber
degrees of freedom, that in principle may couple the final-
state jets and spoil factorization. It should be evident
that if such a proof becomes available, it will be straight-
forward to generalize the above discussion to the case
where we produce N isolated jets rather than just two.

III. THE BEAM FUNCTION

In this section, we discuss the properties of the beam
function in more detail. We present its definition and
relation to the standard PDF, as well as its renormal-
ization group evolution. We will display explicit results
for the quark beam function at one loop (leaving a de-
tailed derivation to a dedicated publication [50]). The
comparison of effects in the beam functions and PDFs
are illustrated with plots.

The quark, antiquark, and gluon beam functions are
defined in SCET as

Bq(ωb+, ω/P−, µ) =
θ(ω)
ω

∫
dy−

4π
eib+y−/2

〈
pn(P−)

∣∣∣χ̄n

(
y−n

2

)
δ(ω − Pn)

n̄/

2
χn(0)

∣∣∣pn(P−)
〉

,

Bq̄(ωb+, ω/P−, µ) =
θ(ω)
ω

∫
dy−

4π
eib+y−/2

〈
pn(P−)

∣∣∣trspin

[ n̄/

2
χn

(
y−n

2

)
δ(−ω − Pn) χ̄n(0)

]∣∣∣pn(P−)
〉

,

Bg(ωb+, ω/P−, µ) = −θ(ω)
∫

dy−

4π
eib+y−/2

〈
pn(P−)

∣∣∣Bc
n⊥µ

(
y−n

2

)
δ(ω − Pn)Bµc

n⊥(0)
∣∣∣pn(P−)

〉
. (50)

We will briefly explain the relevant notation. (A more detailed overview of SCET and the definitions of the objects in
Eq. (50) are given in Sec. IV A.) As before, nµ = (1,&n) and n̄µ = (1,−&n) are lightlike vectors, n2 = n̄2 = 0, n·n̄ = 2,
where &n is a unit three-vector in the direction of the proton. The proton states |pn(P−)〉 have lightlike momentum
Pµ = P−nµ/2, and the matrix elements are always implicitly averaged over the proton spin. The SCET fields for
collinear quarks and gluons, χn(y) and Bµ

n⊥(y), are composite fields containing Wilson lines of collinear gluons [see
Eq. (70)]. Matrix elements with these fields include so-called zero-bin subtractions [70], which effectively divide by a
matrix element of Wilson lines [71]. At lowest order in the strong coupling, the fields describe an energetic quark or
gluon moving in the n direction with momentum p−nµ/2 + kµ with k # p−. The momentum operator Pn picks out
the large light-cone component p− of all particles annihilated by χn or Bµ

n⊥. Thus, when these fields annihilate the
incoming colliding parton, the δ function in Eq. (50) sets ω equal to the p− of that parton. Therefore, x = ω/P− is
the fraction of the proton’s light-cone momentum that is carried by the parton into the hard collision. At the time
of the collision, this parton is propagating in an initial-state jet rather than the proton, which is encoded by the
dependence of the beam functions on the variable b+ = −k+. Here, k+ = n·k is the small component of the incoming
collinear parton’s momentum. The variable t = ωb+ ∼ −p2 measures the parton’s virtuality, where t > 0, because the
parton is spacelike. As we already saw in Eq. (19), the beam functions are convoluted with the soft function through
b+.

The beam function definitions in Eq. (50) can be compared with those of the standard quark, antiquark, and gluon
PDFs in SCET [72],

fq(ω′/P−, µ) = θ(ω′)
〈
pn(P−)

∣∣∣χ̄n(0) δ(ω′ − Pn)
n̄/

2
χn(0)

∣∣∣pn(P−)
〉

,

fq̄(ω′/P−, µ) = θ(ω′)
〈
pn(P−)

∣∣∣trspin

[ n̄/

2
χn(0) δ(−ω′ − Pn) χ̄n(0)

]∣∣∣pn(P−)
〉

,

fg(ω′/P−, µ) = −θ(ω′)ω′
〈
pn(P−)

∣∣∣Bc
n⊥µ(0) δ(ω′ − Pn)Bµc

n⊥(0)
∣∣∣pn(P−)

〉
. (51)

As proton matrix element:

Fleming, Leibovich, Mehen
IS, Tackmann, Waalewijn
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Figure 2: Difference between regions of soft radiation included in the SCET factorization theorem

and the actual (A) kT and (B) anti-kT algorithms. We illustrate how the regions of soft radiation

included by the algorithms change when a single, energetic parent particle splits into two collinear

daughters. Both the algorithm and the soft function merge soft particles contained in the large

white circle. The algorithm also merges the hatched area and hence contains a region of phase

space which is different than that included in the SCET soft function (since, as explained in the

text, the shape and size of the region used in SCET cannot depend on the details of collinear

splittings).

so as to cause a leading-order power correction to the measured jet angularities. For R

larger than these bounds, the corrections are negligible. This miscounting arises due to the

fact that factorization requires that collinear particles be combined first, and that the soft

function only knows about the parent collinear direction. When algorithms do not obey

this ordering, factorization may be violated.

To determine the size of the soft particle phase space region for each jet algorithm that

is not included by the factorization theorem, we consider the situation depicted in Fig. 2.

A parent collinear particle splits into two daughter collinear particles. In the factorization

theorem, since collinear particles are combined first, the region of phase space where soft

particles are combined into the jet is a circle of radius R about the parent particle direction.

However, in a jet algorithm, soft particles in an additional region outside of this may also

be combined into the jet (the hatched regions in Fig. 2). If the area of this region is of the

same order as the area included by the factorization theorem, then the power corrections

to jet angularities induced by the jet algorithm will be leading-order.

Because soft particles have momenta that are parametrically smaller than collinear

particle momenta, we determine the omitted region of soft particle phase space by con-

sidering the dominant action of the jet algorithm. The kT algorithm serves as a useful

example. The kT metric between a pair of soft particles is O(λ2
)θss, the metric between a

soft particle and collinear particle is O(λ2
)θcs, and the metric between a pair of collinear

particles is O(λ0
)θcc. Therefore, collinear-collinear recombinations only occur if the angle

θcc between the collinear particles is smaller than the separation between any soft parti-

cle and its nearest neighbor by a factor of O(λ2
). Given that the typical angle between

collinear particles is O(λ), the dominant action of the jet algorithm is to first merge all

soft particles with their nearest neighbors, while collinear-collinear recombinations occur

late in the operation of the algorithm. This description will suffice to accurately determine

the area of the omitted soft phase space for the kT algorithm. Since collinear particles

are combined last, on average soft particles within circles of radius R about the collinear

– 28 –

R� θij ∼ λ

anti-kT, cone: R � λ

Grouping of
Soft Radiation

non global logs: α2
s ln2 + . . .
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1 Find leptonic signal with momentum q

2 Use (exclusive) jet algorithm to find

N signal jets with energy EJ , direction n̂J

3 Define (massless) reference momenta

for each jet and beam

qµ
J = EJ(1, n̂J) qµ

a,b = Ea,b(1, ±ẑ)

Ea,b given by “partonic” mom. conservation

qµ
a + qµ

b = qµ
1 + · · · + qµ

N + qµ
with Q2 = (qa + qb)2

4 Sum over all particles k (except leptonic signal)

τN =
2

Q2

�

k

min
�

qa ·pk, qb ·pk, q1 ·pk, . . . , qN ·pk

�

Only energetic particles in between signal jets or beams can give τN ∼ 1
⇒ τN � 1 enforces exactly N jets, defines exclusive N-jet cross section
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can pick another distance measure if desired

TN � Q2 ensures there are N jets
“exclusive N-jet cross section”

Practical:  use jet algorithm to determine 
{EJ , n̂J} and hence qi

4

particles are closest to qJ , so for the J-collinear sector
∑

k∈collJ

min
m

{
2qm · pk

}
=

∑

k∈collJ

2qJ · pk = sJ , (12)

where (up to power corrections) sJ is the total invariant
mass in the J-collinear sector. Similarly, the sum over
the beam collinear sectors yields the total (transverse)
virtuality of the colliding partons, ta and tb. Therefore,

τNQ2 = ta + tb +
∑

J

sJ +
∑

k∈soft

min
m

{
2qm · pk

}
. (13)

The sum in the last term is now restricted to the soft
sector. Combining Eq. (13) with the analyses in Refs. [5,
7] yields the factorization formula for N -jettiness [12]

dσ

dτN
=

∫
dxadxb

∫
d4q dΦL(q)

∫
dΦN ({qJ})

× FN ({qm}, L) (2π)4δ4
(
qa + qb −

∑

J

qJ − q
)

×
∑

ij,κ

tr Ĥij→κ({qm}, L, µ)
∏

J

∫
dsJ JκJ

(sJ , µ)

×
∫
dta Bi(ta, xa, µ)

∫
dtb Bj(tb, xb, µ)

× Ŝij→κ
N

(
τN −

ta + tb +
∑

J sJ
Q2

, {qm}, µ
)
. (14)

Here, Ĥij→κ({qm}, L) contains the underlying hard in-
teraction i(qa)j(qb) → L(q)κ1(q1) · · ·κN (qN ), where i, j,
and κJ denote parton types, and the sum over ij,κ is
over all relevant partonic channels. It is a matrix in color
space given by the IR-finite parts (in pure dim. reg.) of
the squared partonic matrix elements in each channel.
The N -body phase space for the massless momenta qJ is
denoted dΦn({qJ}), and that for L by dΦL(q).
The inclusive jet and beam functions, JκJ

(sJ ) and
Bi,j(ta,b, xa,b), describe the final and initial state radia-
tion emitted by the outgoing and incoming partons from
the hard interaction. The latter also determine the mo-
mentum fractions xa,b of the colliding partons and are
given by parton distribution functions fi′(ξ, µ) as [5, 8]

Bi(t, x, µ) =
∑

i′

∫ 1

x

dξ

ξ
Iii′

(
t,
x

ξ
, µ

)
fi′(ξ, µ) . (15)

The Iii′ are perturbative coefficients describing collinear
ISR, and at tree level Bi(t, x, µ) = δ(t)fi(x, µ). The last
term in Eq. (13) is the contribution to τN from soft par-
ticles in the underlying event. It is described by the soft
function Ŝij→κ

N (τ softN , {qm}), which depends on the jet’s

angles n̂l · n̂m and energy fractions El/Em. Like Ĥ , it is
a color matrix, and the trace in Eq. (14) is over tr(ĤŜ).
In Eq. (14), all functions are evaluated at the same

renormalization scale µ. Large logarithms of τN in
dσ/dτN are summed by first computing Ĥ(µH), J(µJ ),

B(µB), Ŝ(µS) at the scales µH $ Q, µJ $ µB $ √
τNQ,

µS $ τNQ, where the functions contain no large loga-
rithms, and then evolving them to the scale µ. This evo-
lution is known analytically [9] and the required anoma-
lous dimensions are already known to NNLL [5, 10], be-
cause we have inclusive jet and beam functions. NNLL
also requires the O(αs) corrections for each function,
which are known for J and B. The O(αs) hard function
is determined by the one-loop QCD matrix elements. For
τN & ΛQCD/Q, Ŝ(µS) can be computed perturbatively
and will be given in a future publication.
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µH = Q µ2
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dσ

dτNd(qm)
= H Bi ⊗Bj ⊗
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Jk ⊗ S

(qm)
τN
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λSCET1

SCET2 λ� � λ

SCET1 SCET2

• Beam functions are an example

J1 = C ⊗ J2

Study fragmentation in a jet of measured invariant mass•

 π

J(s)→ 1
16π3

Gπ(s, z)dz

fragmenting jet function

IS, Procura 

Gπ
i (s, z) =

�

j

�
dx

x
Jij

�
s,

z

x

�
Dπ

j (x)

cute:
�

j

�
dz z Jij(s, z) = J inclusive

i (s)  Jain, Procura, Waalewijn

• B → π�ν̄

Bi =
�

j

Iij ⊗ fj

match
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• Jet Shapes with Jet Algorithm

Angularities:
e−|η|(1−a)

τa(jet) =
1

2Ejet

�

i∈jet

|pT
i |e−|ηi|(1−a)

probe jet 
shape

H

S

J

J

e

e J

R

(event shapes in jets)

more scales:

Berger, Kucs, Sterman;
Almeida, Lee, Perez, Sterman, Sung, 
Virzi;  Jouttenus; Cheung et al

Ellis, Hornig, Lee, Vermilion, Walsh

hard scale

“unmeasured”
jet scale

soft scales

µ
µH = ω

µmeas
J = ωτ

1
2−a
a

µunmeas
J = ω tan

R

2

“measured”
jet scale

µS

γmeas
J

γunmeas
J

γS

EFT
counting

matching/
matrix element

LL tree 1-loop tree 1-loop

NLL tree 2-loop 1-loop 2-loop

NNLL 1-loop 3-loop 2-loop 3-loop

Γcusp γH,J,S β[αs]

µmeas
S = ωτa/ tan

1−a(R/2)

µΛR = 2Λ tan(R/2)

µΛ = 2Λ

Figure 1: An illustration of generic scales along with a table of log-accuracy versus perturbative
order. A cross section with jets of energy ∼ ω, radius R, and energy Λ outside the jets, with
some jets’ shapes τa being measured and others’ shapes left unmeasured, induces measured and
unmeasured jet scales at µmeas

J
and µunmeas

J
. Dynamics at these scales are described by separate

collinear modes in SCET. Soft dynamics occur at several soft scales, µΛ and µΛR induced by the
soft out-of-jet energy cut Λ and jet radius R, and µmeas

S
induced by the measured jet shape τa. RG

evolution in SCET resums logs of ratios of jet scales to the hard scale µH individually, and logs
of the ratio of a “common” soft scale µS to the hard scale. Remaining logs of ratios of soft scales
to one another are not resummed in current formulations of SCET. The accuracy of logarithmic
resummation of these ratios of scales is determined by the order to which anomalous dimensions and
matching coefficients or matrix elements (i.e. hard/jet/soft functions) are calculated in perturbation
theory. In this paper we perform the RG evolution indicated by the arrows to NLL accuracy.

soft radiation from such configurations that escapes the jets can lead to logs of Λ/ω that

are not captured in our treatment. These are not issues we solve in this paper, in which

we focus on resumming logs of jet shapes τa. (Some exploration of phase space logarithms

in SCET was carried out in [31, 32].)

A way to understand how we sum logs and which ones we capture is presented in Fig. 1.

The factorization theorem Eq. (1.2) organizes logs in the multijet cross section into those

in the hard function, those in measured jet functions, those in unmeasured jet functions,

and those in the soft function, much like for the simple thrust distribution. The difference

is the presence now of multiple jet and soft scales. Logarithms in jet functions can still be

minimized by choices of individual jet scales, µmeas
J ∼ ωτ1/(2−a)

a for a jet whose shape τa
is measured, and µunmeas

J ∼ ω tan(R/2) for a jet whose shape is not measured but has a

radius R. Thus logs arising from ratios of these scales to the hard scale can be summed
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collinear modes in SCET. Soft dynamics occur at several soft scales, µΛ and µΛR induced by the
soft out-of-jet energy cut Λ and jet radius R, and µmeas

S
induced by the measured jet shape τa. RG

evolution in SCET resums logs of ratios of jet scales to the hard scale µH individually, and logs
of the ratio of a “common” soft scale µS to the hard scale. Remaining logs of ratios of soft scales
to one another are not resummed in current formulations of SCET. The accuracy of logarithmic
resummation of these ratios of scales is determined by the order to which anomalous dimensions and
matching coefficients or matrix elements (i.e. hard/jet/soft functions) are calculated in perturbation
theory. In this paper we perform the RG evolution indicated by the arrows to NLL accuracy.

soft radiation from such configurations that escapes the jets can lead to logs of Λ/ω that

are not captured in our treatment. These are not issues we solve in this paper, in which

we focus on resumming logs of jet shapes τa. (Some exploration of phase space logarithms

in SCET was carried out in [31, 32].)

A way to understand how we sum logs and which ones we capture is presented in Fig. 1.

The factorization theorem Eq. (1.2) organizes logs in the multijet cross section into those

in the hard function, those in measured jet functions, those in unmeasured jet functions,

and those in the soft function, much like for the simple thrust distribution. The difference

is the presence now of multiple jet and soft scales. Logarithms in jet functions can still be

minimized by choices of individual jet scales, µmeas
J ∼ ωτ1/(2−a)

a for a jet whose shape τa
is measured, and µunmeas

J ∼ ω tan(R/2) for a jet whose shape is not measured but has a

radius R. Thus logs arising from ratios of these scales to the hard scale can be summed
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Introduction Exclusive Jet Cross Sections Jet Shapes Summary

Factorization for Jet Shapes

Factorization for jets with jet algorithms
Must be able to “factorize jet algorithm”
Still some subtleties to be resolved

[Trott]
[Bauer, Hornig, FT]

[Almeida, Lee, Perez, Sung, Virzi]
[Cheung, Luke, Zuberi]

[S. Ellis, Hornig, Lee, Vermilion, Walsh]

Jet angularities for e
+

e
− → N jets [S. Ellis, Lee, Hornig, Vermilion, Walsh]

Jet angularity: τa =
1

2EJ

�

k∈jet

|�pkT |e−|ηk|(1−a)

pT k and ηk measured with respect to jet direction

dσ

dτa1 · · · dτaN

∼
�

dΦ(qJ)FN(qJ) tr �Hκ(µ)
��

J

JaJ (µ)
�

⊗ �Sa1···aN (µ)

Angularity jet function and soft function known to NLL+NLO
Can be extended to pp by including appropriate beam functions
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Parton Shower in SCET

FIG. 2: The same three-parton process as seen in two different SCETs, SCETi and SCETi+1.
Above: Kinematic configuration of the quarks and gluon. The solid cones represent the regions

considered collinear to the vectors drawn. Below: Feynman diagrams for the corresponding ampli-
tude. Note that in SCETi+1 we have removed a degree of freedom that propagates in SCETi. The

amplitude thus comes from a higher dimension operator O(1)
i+1, rather than from a time-ordered

product of LSCETi with O(0)
i , as it did in SCETi.

.

stricter definition of collinearity. This resolves issue 2, avoiding the double-counting of
similar configurations, from Sec. II B. This SCET property also illuminates simplified
structures in the power corrections, such as the form of the amplitude interference
(cf. section IVD).

2. Soft modes communicate between collinear sectors and threaten the factorization of
different jets. Fortunately, SCET constrains the interactions they have with collinear
fields. In fact, one can decouple them using soft Wilson lines in the LO SCET La-
grangian. At LO, using the SCETi soft Wilson lines, we maintain factorization, obtain
angular ordering, and rederive the coherent branching of soft emissions (cf. section
IIIB). Soft interactions which are power suppressed can also be systematically stud-
ied in SCET with Lagrangians available in the literature [64–66], which we give in
Eq. (106).

3. In SCETi, we have a symmetry group RPIi which corresponds to coordinate choices.
In SCETi+1, only a subset of this, RPIi+1 ⊂ RPIi, remains a symmetry of the new
theory. The kinematics in the coset portion RPIi/RPIi+1 within SCETi give a set of
higher-dimension operators in SCETi+1, and describe configurations which would not
otherwise be contained in the SCETi+1 Lagrangian (cf. section III and Appendix B).
This resolves issue 1. from Sec. II B making the difference clear between approximations
and conventions chosen for simplicity.
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Bauer & Schwartz; Baumgart et.al.

QCD

SCET1

SCET2

SCET3

SCETi

p2

p2

p2

p2

p2

Q2

Q2 2

Q2 4

Q2 6

Q2 2i

λ

λ

λ

λ

FIG. 3: Operators that reproduce strongly-ordered gluons are constructed through a series of
matching computations with emissions in different SCETj. The horizontal dashed arrows refer to

the radiation of a gluon from a time-ordered product of the SCETj Lagrangian with the operator
creating fields at the point marked by ⊗. The diagonal solid arrows denote the matching onto a

higher multiplicity operator in SCETj+1.

shower. Our ultimate goal is to incorporate corrections, but as a starting point we want to
easily reproduce the strongly-ordered configuration of Eq. (1). We can do this if we declare
that in a shower, the ith particle decomposes as:

(n · qi, q̄i, qi⊥) ∼ (λ2i, 1, λi)Q, (37)

and therefore has virtuality q2i ∼ Q2λ2i (cf. Fig. 8). This is exactly the same condition as
Eq. (34), which we used to define the EFT, SCETi.

To calculate the operators that describe i emissions in the strongly-ordered limit, we will
perform a series of matchings SCETi → SCETi+1. We will find that the most efficient way
to describe the process at LO in λ is to be in SCETi+1 for i-parton radiation. Thus, we
emit and match i-times in series, as shown by Fig. 3. At LO, we will show that one can
implement this using an operator replacement rule. In the case of q → qg emission, it takes
the form:

χn1 → c gBα
n3⊥ χn2 , (38)

where χn and Bα
n⊥ are the SCET fields associated with collinear quarks and gluons, respec-

tively, and c is the Wilson coefficient whose spin and color indices are suppressed. Though
we do not compute them, there are similar Bα

n1⊥ → c′ χ̄n2χn3 + c′′ Bβ
n2⊥B

γ
n3⊥ rules as well.

In SCET, each collinear field carries the label n, which gives its direction of collinearity.

19

FIG. 12: Matching QCD to SCET1 to SCET2 to SCET3 for two gluons emitted collinear to the
quark direction (SCET graphs for other gluon kinematic configurations not shown). Once again,

we depict the operator structures that lead to this process in each of the theories. Gluons drawn
away from the central vertex are emitted by the leading order Lagrangian in that theory, while
those coming from the vertex are due to higher dimension operators.

of the following operators:

O(1)
2 (n1, n

′
1) = χ̄n1gBα

n′
1⊥
χn̄ (79)

O(2)
2 (n2, n2, n

′
1) = χ̄n2gBα

n2⊥ gBβ
n′
1⊥
χn̄ ,

O(2)
2 (n2, n

′
1, n

′
1) = χ̄n2gBα

n′
1⊥

gBβ
n′
1⊥
χn̄ ,

O(2)
2 (n2, n

′
1, n

′
2) = χ̄n2gBα

n′
1⊥

gBβ
n′
2⊥
χn̄ .

Thus in SCET2, we are interested in two-gluon operators where two fields can have the same
label. When we pass to SCET3, we can restrict our interest to only O(2)

3 (n2, n′
1, n

′
2).

We already gave the coefficients of O(1)
2 (n1, n′

1) needed to compute the leading power
corrections in Eqs. (78) and (D17)-(D19). We get an NLO(λ) contribution to the two

gluon amplitude by computing the matrix element, C(1)
2NLO〈0|T {LSCET2O

(1)
2 }|qq̄gg〉 (first

SCET2 column in Fig. 12). The contribution receives no further suppression as the
gluon from LSCET2 gives a tree-level vertex×propagator factor of λ−2, just as with LO.
There are also coefficients we need from two-gluon matching calculations for the oper-
ator O(2)

2 (second SCET2 column in Fig. 12). Putting in the index structures, these

include C(2)J
2,NLO(n2, n′

1, n
′
2) for O(2)

2 (n2, n′
1, n

′
2), C(2)J

2,NLO(n2, n′
1, n

′
1) for O(2)

2 (n2, n′
1, n

′
1) and

C(2)J
2,NLO(n2, n2, n′

2) + C(2)H
2,NNLO(n2, n2, n′

2) for O
(2)
2 (n2, n2, n′

2). We include NNLO(λ) for the
last one as only it interferes with LO(λ). In the next subsection, we give the jet-structure
corrections. All hard-scattering contributions to these structures just listed are beyond the
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FIG. 2: The same three-parton process as seen in two different SCETs, SCETi and SCETi+1.
Above: Kinematic configuration of the quarks and gluon. The solid cones represent the regions

considered collinear to the vectors drawn. Below: Feynman diagrams for the corresponding ampli-
tude. Note that in SCETi+1 we have removed a degree of freedom that propagates in SCETi. The

amplitude thus comes from a higher dimension operator O(1)
i+1, rather than from a time-ordered

product of LSCETi with O(0)
i , as it did in SCETi.

.

stricter definition of collinearity. This resolves issue 2, avoiding the double-counting of
similar configurations, from Sec. II B. This SCET property also illuminates simplified
structures in the power corrections, such as the form of the amplitude interference
(cf. section IVD).

2. Soft modes communicate between collinear sectors and threaten the factorization of
different jets. Fortunately, SCET constrains the interactions they have with collinear
fields. In fact, one can decouple them using soft Wilson lines in the LO SCET La-
grangian. At LO, using the SCETi soft Wilson lines, we maintain factorization, obtain
angular ordering, and rederive the coherent branching of soft emissions (cf. section
IIIB). Soft interactions which are power suppressed can also be systematically stud-
ied in SCET with Lagrangians available in the literature [64–66], which we give in
Eq. (106).

3. In SCETi, we have a symmetry group RPIi which corresponds to coordinate choices.
In SCETi+1, only a subset of this, RPIi+1 ⊂ RPIi, remains a symmetry of the new
theory. The kinematics in the coset portion RPIi/RPIi+1 within SCETi give a set of
higher-dimension operators in SCETi+1, and describe configurations which would not
otherwise be contained in the SCETi+1 Lagrangian (cf. section III and Appendix B).
This resolves issue 1. from Sec. II B making the difference clear between approximations
and conventions chosen for simplicity.
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Can also use these techniques to derive 
factorization theorems for identified subjets:
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Summary

αs(mZ)

• SCET analysis provides high precision. 
Log summation and nonperturbative effects are important.  

threshold factorization
• simple method to get an (often important) subset of higher order terms

hadron-hadron event shapes

•
jet substructure & jet algorithms

Sensitive probe of events.  Calculations tractable with SCET

• new methods to test MC,  new methods to veto jets

e+e- event shapes &

Beam Functions

• universal function that describes ISR for broad class of processes 
(Exclusive Jet Production)
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