Soft Collinear Effective Theory \& Jets

Iain Stewart MIT \& Harvard

Boston Jet Physics workshop, Harvard January 20II

Outline:

- Introduction to Soft Collinear Effective Theory
* scales \& fields (organize the physics of jets)
* systematic expansion (estimate theory errors)
* simplify calculations, sum logs (higher precision)
* factorization \& universality
- Cross Sections with Jets
- $e^{+} e^{-}$event shapes
- jet algorithms
- $p p$ event shapes
- Jet Substructure

- $\mathrm{SCET}_{1} \rightarrow \mathrm{SCET}_{2} \quad$ (collinear jet substructure)
- Jet Shapes (event shapes in a jet)
- Parton Shower

Typical Event with Hard Interaction:

Factorization:

"cross section can be computed as product of independent pieces"

Shower MC programs assume factorization:

$d \sigma=$	initial state parton shower	\otimes	hard scattering fixed order perturbative	\otimes	final state parton showers	\otimes	hadronization model, underlying event,
	(with parton distributions)		computation				

Events with a Hard Interaction:

Search for New Heavy Particles at short distances

Events with a Hard Interaction:

Quarks and Gluons Form Jets

Key Simplifying Principle is to Exploit the Hierarchy of Energy Scales

QCD
E

SCET = Soft-Collinear Effective Theory

Key Simplifying Principle is to Exploit the Hierarchy of Energy Scales

QCD
E

Key Simplifying Principle is to Exploit the Hierarchy of Energy Scales

QCD
E

Key Simplifying Principle is to Exploit the Hierarchy of Energy Scales

QCD

QCD

Factorization: $\quad \mathrm{d} \sigma=f_{a, b} \otimes \mathcal{I}_{a, b} \otimes \boldsymbol{H} \otimes \prod_{i} J_{i} \otimes S$

$$
\begin{array}{lllll}
\Lambda_{\mathrm{QCD}} & \mu_{B} & \mu_{H} & \mu_{J} & \mu_{S}
\end{array}
$$

SCET can be used for:

- Factorization $d \sigma^{\text {had }}=f \otimes f \otimes d \sigma^{\text {part }}$
- Sum Large logs $\alpha_{s} \ln ^{2} z, \alpha_{s}^{2} \ln ^{4} z, \ldots$ QCD Sudakov's, EW Sudakov's
- Analytic calculations of perturbative corrections NLO, NNLO in α_{s}
- Nonperturbative corrections (hadronization \rightarrow matrix elements)
- Parton Shower: ISR, High multiplicity final states
- Softer physics (underlying event?)
- Precision Measurements:

$$
\text { Tevatron } \quad m_{t}=173.3 \pm 0.6_{\text {stat }} \pm 0.9_{\text {syst }} \mathrm{GeV}
$$

SCET
 energetic jets

$$
\text { eg. } \quad e^{+} e^{-} \rightarrow 2 \text { jets }
$$

$$
\begin{gathered}
M_{i}^{2} \sim \Delta^{2} \\
\Lambda^{2} \ll \Delta^{2} \ll Q^{2}
\end{gathered}
$$

$\lambda \sim \frac{\Delta}{Q}$ is the expansion

Jet constituents : $p^{\mu} \sim\left(\frac{\Delta^{2}}{Q}, Q, \Delta\right) \sim Q\left(\lambda^{2}, 1, \lambda\right)$

$$
p^{2}=p^{+} p^{-}+p_{\perp}^{2} \quad, \quad p^{2} \sim \Delta^{2}
$$

Soft particles:

$$
p^{\mu} \sim\left(\frac{\Delta^{2}}{Q}, \frac{\Delta^{2}}{Q}, \frac{\Delta^{2}}{Q}\right) \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)
$$

SCET
 energetic jets

$$
\begin{gathered}
\text { eg. } \quad e^{+} e^{-} \rightarrow 2 \text { jets } \\
M_{i}^{2} \sim \Delta^{2} \\
\Lambda^{2} \ll \Delta^{2} \ll Q^{2}
\end{gathered}
$$

Defining concepts:

- hard scale Q
- collinear sectors $\left\{\left[n_{i}\right]\right\}$
- power counting parameter λ

SCET energetic jets

$$
\text { eg. } e^{+} e^{-} \rightarrow 2 \text { jets }
$$

Production Current: $\quad Q \gg \Delta$

SCET
 energetic jets

$$
\text { eg. } e^{+} e^{-} \rightarrow 2 \text { jets }
$$

SCET Lagrangian:

$$
\mathcal{L}_{n}^{(0)}=\bar{\xi}_{n}\left\{n \cdot i D_{u s}+g n \cdot A_{n}+i D_{\perp}^{n} \frac{1}{i \bar{n} \cdot D_{n}} i D_{\perp}^{n}\right\} \frac{\hbar}{2} \xi_{n}
$$

propagator: $\frac{i \not h}{2} \frac{\bar{n} \cdot p}{p^{2}+i \epsilon}=\frac{i \not h}{2} \frac{1}{n \cdot p-\frac{\vec{p}_{1}^{2}}{\bar{n} \cdot p}+i \epsilon \operatorname{sign}(\bar{n} \cdot p)}$
eikonal softs:

$$
\begin{aligned}
& \xi_{n} \rightarrow Y \xi_{n} \\
& A_{n} \rightarrow Y A_{n} Y^{\dagger} \\
& Y(x)=P \exp \left(i g \int_{-\infty}^{0} d s n \cdot A_{u s}(x+n s)\right)
\end{aligned}
$$

SCET energetic jets

$$
\text { eg. } e^{+} e^{-} \rightarrow 2 \text { jets }
$$

Production Current: $\quad Q \gg \Delta$

$$
\bar{\psi} \Gamma^{\mu} \psi \rightarrow\left(\bar{\xi}_{n} W_{n}\right)_{\omega} \Gamma^{\mu}\left(W_{\bar{n}}^{\dagger} \xi_{\bar{n}}\right)_{\bar{\omega}}>\left(\bar{\xi}_{n} W_{n}\right)_{\omega} \underbrace{\substack{\left.\chi_{\bar{n}} \\ W_{\bar{n}}^{\dagger} \xi_{\bar{n}}\right)_{\bar{\omega}}}}_{\substack{Y_{n}^{\dagger} \Gamma^{\mu} Y_{\bar{n}}}} \underbrace{\text { c. gaton" field }}_{\text {"parge invariant }}
$$

SCET energetic jets

Production Current: $\quad Q \gg \Delta$

$$
\bar{\psi} \Gamma^{\mu} \psi \rightarrow\left(\bar{\xi}_{n} W_{n}\right)_{\omega} \Gamma^{\mu}\left(W_{\bar{n}}^{\dagger} \xi_{\bar{n}}\right)_{\bar{\omega}} \Rightarrow\left(\bar{\xi}_{n} W_{n}\right)_{\omega} \underbrace{\substack{\text { c. gauge invariant } \\ \left.\chi_{\bar{n}, \bar{\omega}}^{\dagger} \xi_{\bar{n}}\right)_{\bar{\omega}}}}_{\substack{Y_{n}^{\dagger} \Gamma^{\mu} Y_{\bar{n}}}} \underbrace{\underbrace{\prime}}_{\text {"parton" field }}
$$

SCET
 energetic jets

eg. $e^{+} e^{-} \rightarrow 2$ jets

$$
\begin{gathered}
M_{i}^{2} \sim \Delta^{2} \\
\Lambda^{2} \ll \Delta^{2} \ll Q^{2}
\end{gathered}
$$

Factorization:

$$
\begin{gathered}
|X\rangle=\left|X_{n} X_{\bar{n}} X_{s}\right\rangle \\
\sigma=K_{0} \sum_{\bar{n}} \sum_{X_{n} X_{\bar{n}} X_{s}}^{r e s .}(2 \pi)^{4} \delta^{4}\left(q-P_{X_{n}}-P_{X_{\bar{n}}}-P_{X_{s}}\right\rangle\langle 0| \bar{Y}_{\bar{n}} Y_{n}\left|X_{s}\right\rangle\left\langle X_{s}\right| Y_{n}^{\dagger} \bar{Y}_{\bar{n}}^{\dagger}|0\rangle \\
\times|C(Q, \mu)|^{2}\langle 0| \hbar \chi_{n, \omega^{\prime}}\left|X_{n}\right\rangle\left\langle X_{n}\right| \bar{\chi}_{n, \omega}|0\rangle\langle 0| \bar{\chi}_{\bar{n}, \bar{\omega}^{\prime}}\left|X_{\bar{n}}\right\rangle\left\langle X_{\bar{n}}\right| \nmid \boldsymbol{\eta} \chi_{\bar{n}, \bar{\omega}}|0\rangle \\
\text { all-orders in } \alpha_{s}
\end{gathered}
$$

SCET energetic jets

$$
\text { eg. } \quad e^{+} e^{-} \rightarrow 2 \text { jets }
$$

$$
\begin{gathered}
M_{i}^{2} \sim \Delta^{2} \\
\Lambda^{2} \ll \Delta^{2} \ll Q^{2}
\end{gathered}
$$

Factorization:

$$
\begin{array}{ccc}
\mu_{H} \sim Q & \mu_{J} \sim M_{i} \\
\frac{d^{2} \sigma}{d M_{1}^{2} d M_{2}^{2}}=\sigma_{0} H(Q, \mu) \int d \ell^{+} d \ell^{-} J_{n}\left(M_{1}^{2}-Q \ell^{+}, \mu\right) J_{\bar{n}}\left(M_{2}^{2}-Q \ell^{-}, \mu\right) S\left(\ell^{+}, \ell^{-}, \mu\right) \\
\text { Hard Function } & \text { Jet Functions }
\end{array}
$$

SCET
 energetic jets

$$
\begin{gathered}
\text { eg. } \quad e^{+} e^{-} \rightarrow \\
M_{i}^{2} \sim \Delta^{2} \\
\Lambda^{2} \ll \Delta^{2} \ll Q^{2}
\end{gathered}
$$

Sum Large Logs
run between scales \& not below Λ_{QCD}

Large Logs

$$
L=\ln \left(\mu_{H} / \mu_{J}\right)=\ln \left(\mu_{J} / \mu_{S}\right)=\ln \left(Q^{2} / \Delta^{2}\right)
$$

$$
\alpha_{s} L \sim 1
$$

$$
\alpha_{s} \ll 1
$$

$$
\begin{array}{rllll}
\sigma(\tilde{\Delta})=1 & +\alpha_{s} L^{2} & +\alpha_{s}^{2} L^{4} & +\alpha_{s}^{3} L^{6} & +\ldots
\end{array} \mathrm{LL}
$$

$$
+\alpha_{s}^{2} L \quad+\alpha_{s}^{3} L^{3} \quad+\ldots
$$

NNLL

$$
+\alpha_{s}^{2} \quad+\alpha_{s}^{3} L^{2} \quad+\ldots
$$

$$
+\alpha_{s}^{3} L \quad+\ldots
$$

$$
\mathrm{N}^{3} \mathrm{LL}
$$

small print:

$$
+\alpha_{s}^{3} \quad+\ldots
$$

here $\sigma(\tilde{\Delta})=\int_{0}^{\tilde{\Delta}} d \tau \frac{d \sigma}{d \tau} ; \quad$ sum's are actually in exponent

Large Logs

NLL^{\prime}			
sum	add	NNLL	
logs	$\mathcal{O}\left(\alpha_{s}^{2}\right)$	\log	NNLL $^{\prime}$

$$
\begin{aligned}
& \text { LO NLO NNLO } \quad \mathrm{N}^{3} \mathrm{LO} \\
& \sigma(\Delta)=1+\alpha_{s} L^{2}+\alpha_{s}^{2} L^{4}+\alpha_{s}^{3} L^{6} \quad+\ldots \quad \mathrm{LL} \\
& \begin{array}{ll}
+\alpha_{s} L & +\alpha_{s}^{2} L^{3}+\alpha_{s}^{3} L^{5} \\
+\alpha_{s} & +\ldots \\
& +\alpha_{s}^{2} L^{2}+\alpha_{s}^{3} L^{4}
\end{array}+\ldots . \\
& +\alpha_{s}^{2} L \quad+\alpha_{s}^{3} L^{3}+\ldots \quad \mathrm{NNLL}^{\prime} \\
& +\alpha_{s}^{2} \quad+\alpha_{s}^{3} L^{2} \quad+\ldots \\
& +\alpha_{s}^{3} L \quad+\ldots \\
& +\alpha_{s}^{3} \quad+\ldots \\
& \mathrm{N}^{3} \mathrm{LO} \quad \ddots \text {. }
\end{aligned}
$$

Operators • built from $\left\{\chi_{n}, \mathcal{B}_{n \perp}^{\mu}, i \partial_{n \perp}^{\mu}\right\},+$ usoft terms

$$
\mathcal{O}(\lambda) \quad \mathcal{O}(\lambda) \quad \mathcal{O}(\lambda)
$$

N-jet amplitude O_{N}

$$
\begin{aligned}
O_{2} & =\bar{\chi}_{n_{1}} \Gamma \chi_{n_{2}} \\
O_{3} & =\bar{\chi}_{n_{1}} \Gamma \mathcal{B}_{n_{3} \perp}^{\mu} \chi_{n_{2}} \\
O_{4} & =\bar{\chi}_{n_{1}} \Gamma \mathcal{B}_{n_{3} \perp}^{\mu} \mathcal{B}_{n_{4} \perp}^{\nu} \chi_{n_{2}} \\
O_{2}^{\prime} & =\bar{\chi}_{n_{1}} \Gamma \mathcal{B}_{n_{2} \perp}^{\mu} \chi_{n_{2}} \\
O_{2}^{\prime \prime} & =\bar{\chi}_{n_{1}} \Gamma \mathcal{B}_{n_{2} \perp}^{\mu} i \partial_{n_{2} \perp}^{\nu} \chi_{n_{2}} \\
O_{3}^{\prime} & =\bar{\chi}_{n_{1}} \Gamma \mathcal{B}_{n_{3} \perp}^{\mu} \mathcal{B}_{n_{3} \perp}^{\nu} \chi_{n_{2}}
\end{aligned}
$$

For more introduction see the lecture notes: http://www2.Ins.mit.edu/-iains/talks/SCET_Lectures-Stewart-2009.pdf

Event shapes

$$
e^{+} e^{-} \rightarrow \text { jets }
$$

$\alpha_{s}\left(m_{Z}\right)$ from Thrust $e^{+} e^{-} \rightarrow$ jets
Aim at 1\% precision

- $\mathcal{O}\left(\alpha_{s}^{3}\right)+\mathrm{N}^{3} \mathrm{LL}+\frac{\Omega_{1}}{Q \tau} \underset{\text { correction }}{\text { power }} \begin{gathered}\text { renormalon } \\ +\begin{array}{c}\text { subtractions, } \\ \mathrm{R}-\mathrm{RGE}\end{array}\end{gathered}$ $+\underset{\text { \{peak, tail, multijet\} }}{\text { full treatment of }}+\underset{\text { effects }}{\text { QED }}+\underset{\text { effects }}{\text { b-mass }}+\underset{\text { various Q's }}{\text { global fit, }}$
factorize pert. \& nonperturbative soft effects: $\quad S=S^{\text {pert }} \otimes S^{\text {mod }}$

$\alpha_{s}\left(m_{Z}\right)$ from Thrust $e^{+} e^{-} \rightarrow$ jets
Aim at 1\% precision
- $\mathcal{O}\left(\alpha_{s}^{3}\right)+\mathrm{N}^{3} \mathrm{LL}+\frac{\Omega_{1}}{Q \tau} \underset{\text { correction }}{\text { power }} \begin{gathered}\text { renormalon } \\ +\begin{array}{c}\text { subtractions, } \\ \mathrm{R}-\mathrm{RGE}\end{array},\end{gathered}$ $+\underset{\text { \{peak, tail, multijet\} }}{\text { full treatment of }}+\underset{\text { effects }}{\text { QED }}+\underset{\text { effects }}{\text { b-mass }}+\underset{\text { various Q's }}{\text { global fit, }}$

$\alpha_{s}\left(m_{Z}\right)$ from Thrust $e^{+} e^{-} \rightarrow$ jets
Aim at 1\% precision
 $+\underset{\{\text { peak, tail, multijet }\}}{\text { full treatment of }}+\underset{\text { effects }}{\text { QED }}+\underset{\text { effects }}{\mathrm{b} \text {-mass }}+\underset{\text { various Q's }}{\text { global fit, }}$
factorize pert. \& nonperturbative soft effects:
$\frac{1}{\sigma} \frac{d \sigma}{d \tau}$

$\alpha_{s}\left(m_{Z}\right)$ from Thrust

$e^{+} e^{-} \rightarrow$ jets
Aim at 1% precision - $\mathcal{O}\left(\alpha_{s}^{3}\right)+\mathrm{N}^{3} \mathrm{LL}+\frac{\Omega_{1}}{Q \tau} \underset{\text { correction }}{\text { power }} \begin{gathered}\text { renormalon } \\ \text { subtractions } \\ \mathrm{R}-\mathrm{RGE}\end{gathered}$, $+\underset{\{\text { peak, tail, multijet\} }}{\text { full treatment of }}+\underset{\text { effects }}{\text { QED }}+\underset{\text { effects }}{\mathrm{b} \text {-mass }}+\underset{\text { various Q's }}{\text { global fit, }}$

Becher, Schwartz; Abbate, Fickinger, Hoang, Mateu, I.S. (using work by Gehrmann et al. \& Weinzierl)

$\alpha_{s}\left(m_{Z}\right)$ from Thrust

$e^{+} e^{-} \rightarrow$ jets

Aim at 1% precision
 $+\underset{\text { \{peak, tail, multijet\} }}{\text { full treatment of }}+\underset{\text { effects }}{\mathrm{QED}}+\underset{\text { effects }}{\mathrm{b} \text {-mass }}+\underset{\text { various Q's }}{\text { global fit, }}$

$\alpha_{s}\left(m_{Z}\right)$ from Thrust

Aim at 1%
precision

- $\mathcal{O}\left(\alpha_{s}^{3}\right)+\mathrm{N}^{3} \mathrm{LL}+\frac{\Omega_{1}}{Q \tau} \underset{\text { correction }}{\text { power }} \begin{gathered}\text { renormalon } \\ +\begin{array}{c}\text { subtractions, } \\ \mathrm{R}-\mathrm{RGE}\end{array},\end{gathered}$ $+\underset{\{\text { peak, tail, multijet }\}}{\text { full treatment of }}+\underset{\text { effects }}{\text { QED }}+\underset{\text { effects }}{\mathrm{b} \text {-mass }}+\underset{\text { various Q's }}{\text { global fit, }}$

Becher, Schwartz;
Abbate, Fickinger, Hoang, Mateu, I.S.
(using work by Gehrmann et al. \& Weinzierl)

$\alpha_{s}\left(m_{Z}\right)$ from Thrust

Aim at 1\%
precision

- $\mathcal{O}\left(\alpha_{s}^{3}\right)+\mathrm{N}^{3} \mathrm{LL}+\frac{\Omega_{1}}{Q \tau} \underset{\text { correction }}{\text { power }} \begin{gathered}\text { renormalon } \\ +\begin{array}{c}\text { subtractions, } \\ \mathrm{R}-\mathrm{RGE}\end{array},\end{gathered}$ $+\underset{\{\text { peak, tail, multijet }\}}{\text { full treatment of }}+\underset{\text { effects }}{\text { QED }}+\underset{\text { effects }}{\mathrm{b} \text {-mass }}+\underset{\text { various Q's }}{\text { global fit, }}$

Becher, Schwartz;
Abbate, Fickinger, Hoang, Mateu, I.S.
(using work by Gehrmann et al. \& Weinzierl)

- power correction shifts result for $\alpha_{s}\left(m_{Z}\right)$ by -9%
(in tuned MC effect is small at m_{Z}, similar at other scales)

$\alpha_{s}\left(m_{Z}\right)$ from Thrust

Aim at 1%
precision

- $\mathcal{O}\left(\alpha_{s}^{3}\right)+\mathrm{N}^{3} \mathrm{LL}+\frac{\Omega_{1}}{Q \tau} \underset{\text { correction }}{\text { power }} \begin{gathered}\text { renormalon } \\ \text { subtractions, } \\ \mathrm{R}-\mathrm{RGE}\end{gathered}$ $+\underset{\{\text { peak, tail, multijet }\}}{\text { full treatment of }}+\underset{\text { effects }}{\text { QED }}+\underset{\text { effects }}{\mathrm{b} \text {-mass }}+\underset{\text { various Q's }}{\text { global fit, }}$

Becher, Schwartz;
Abbate, Fickinger, Hoang, Mateu, I.S.
(using work by
Gehrmann et al. \& Weinzierl)

$$
\begin{aligned}
\alpha_{s}\left(m_{Z}\right) & =0.1135 \pm(0.0002)_{\mathrm{expt}} \pm(0.0005)_{\mathrm{hadr}} \pm(0.0009)_{\mathrm{pert}} \\
\Omega_{1} & =0.324 \pm(0.009)_{\mathrm{expt}} \pm(0.013)_{\Omega_{2}} \pm(0.030)_{\alpha_{s}\left(m_{Z}\right)} \pm(0.045)_{\mathrm{pert}} \mathrm{GeV}
\end{aligned}
$$

- power correction shifts result for $\alpha_{s}\left(m_{Z}\right)$ by -9%
- profile functions $(+4 \%)$

$\alpha_{s}\left(m_{Z}\right)$ from Thrust

Aim at 1%
precision

- $\mathcal{O}\left(\alpha_{s}^{3}\right)+\mathrm{N}^{3} \mathrm{LL}+\frac{\Omega_{1}}{Q \tau} \underset{\text { correction }}{\text { power }} \begin{gathered}\text { renormalon } \\ \text { subtractions, } \\ \mathrm{R}-\mathrm{RGE}\end{gathered}$ $+\underset{\{\text { peak, tail, multijet }\}}{\text { full treatment of }}+\underset{\text { effects }}{\text { QED }}+\underset{\text { effects }}{\mathrm{b} \text {-mass }}+\underset{\text { various Q's }}{\text { global fit, }}$

Becher, Schwartz;
Abbate, Fickinger, Hoang, Mateu, I.S.
(using work by Gehrmann et al. \& Weinzierl)

$$
\begin{aligned}
\alpha_{s}\left(m_{Z}\right) & =0.1135 \pm(0.0002)_{\mathrm{expt}} \pm(0.0005)_{\mathrm{hadr}} \pm(0.0009)_{\mathrm{pert}} \\
\Omega_{1} & =0.324 \pm(0.009)_{\mathrm{expt}} \pm(0.013)_{\Omega_{2}} \pm(0.030)_{\alpha_{s}\left(m_{Z}\right)} \pm(0.045)_{\mathrm{pert}} \mathrm{GeV}
\end{aligned}
$$

- power correction shifts result for $\alpha_{s}\left(m_{Z}\right)$ by -9%

Event shapes

$$
p p \rightarrow \text { jets }+ \text { leptons }
$$

Isolated Drell-Yan

- measure Beam Thrust

$$
\begin{aligned}
& \mathcal{T}_{B}=\sum_{k}\left|\vec{p}_{k T}\right| e^{-\left|\eta_{k}\right|}=\sum_{k}\left(E_{k}-\left|p_{k}^{z}\right|\right) \\
& \tau_{B}=\mathcal{I}_{B} / Q
\end{aligned}
$$

- $\tau_{B} \ll 1$ is veto for central jets

- sensitive probe of Initial State Parton shower (test \& tune MC)

Captures a large part of cross section even for: $\quad 0 \leq \tau_{B} \leq \tau_{B}^{\text {cut }}=0.1$

- $\tau_{B} \ll 1$ is veto for central jets
- sensitive probe of Initial State Parton shower (test \& tune MC)
$0 \leq \tau_{B} \leq \tau_{B}^{\text {cut }} \quad$ nice convergence

Calculation here involves:

- ISR from proton
- summing large logs from t - channel singularities

- Singular terms dominate numerically
- Factorization involves Beam Functions

$$
d \sigma=\sum_{i j} H_{i j} \int B_{i}\left(t_{a}, x_{a}\right) B_{j}\left(t_{b}, x_{b}\right) \otimes S_{B}
$$

- Measurement probes proton PRIOR to hard collision

$$
t=x E_{\mathrm{CM}} b^{+}
$$

$$
P^{\mu}=E_{\mathrm{cm}} \frac{n^{\mu}}{2} \quad r=(1-\xi) E_{\mathrm{cm}} \frac{n^{\mu}}{2}
$$

$$
\begin{aligned}
& p^{\mu}=x E_{\mathrm{cm}} \frac{n^{\mu}}{2}-b^{+\frac{\bar{n}^{\mu}}{2}-b_{\perp}^{\mu}} 006 \\
& =(1-\xi) E_{\mathrm{cm} \frac{n^{\mu}}{2}}^{E_{\mathrm{cm} \frac{n^{\mu}}{2}}}=(\xi-x) E_{\mathrm{cm}} \frac{n^{\mu}}{2}+b^{+} \frac{\bar{n}^{\mu}}{2}+b_{\perp}^{\mu}
\end{aligned}
$$

Beam function factorization:

$$
\begin{aligned}
& B_{i}(t, x, \mu)=\sum_{j} \int_{x}^{1} \frac{d \xi}{\xi} \mathcal{I}_{i j}\left(t, \frac{x}{\xi}, \mu\right) f_{j}(\xi, \mu) t \gg \Lambda_{\mathrm{QCD}}^{2} \\
& \text { perturbative \& calculable }
\end{aligned}
$$

Fleming, Leibovich, Mehen
IS, Tackmann, Waalewijn
As proton matrix element:

$$
B_{q}\left(\omega b^{+}, \omega / P^{-}, \mu\right)=\frac{\theta(\omega)}{\omega} \int \frac{\mathrm{d} y^{-}}{4 \pi} e^{\mathrm{i} b^{+} y^{-} / 2}\left\langle p_{n}\left(P^{-}\right)\right| \bar{\chi}_{n}\left(y^{-} \frac{n}{2}\right) \delta\left(\omega-\overline{\mathcal{P}}_{n}\right) \frac{\vec{n}}{2} \chi_{n}(0)\left|p_{n}\left(P^{-}\right)\right\rangle
$$

Factorization with Jet Algorithms
Jet \& Soft functions depend on the algorithm

$$
\begin{aligned}
\mu_{H} & =Q \\
\mu_{J} & =Q \tan \frac{R}{2} \\
\mu_{S}^{I} & =\Lambda \\
\mu_{S}^{I I} & =2 \Lambda \tan \frac{R}{2}
\end{aligned}
$$

measurements induce more scales

Grouping of Soft Radiation

non global logs: $\quad \alpha_{s}^{2} \ln ^{2}+\ldots$

$$
\begin{aligned}
& \mathrm{kT}: \quad R \gg \theta_{i j} \sim \lambda \\
& \text { anti-kT, cone: } \quad R \gtrsim \lambda
\end{aligned}
$$

N - Jettiness
IS, Tackmann,
Waalewijn

Define (massless) reference momenta for each jet and beam

$$
q_{J}^{\mu}=E_{J}\left(1, \hat{n}_{J}\right) \quad q_{a, b}^{\mu}=E_{a, b}(1, \pm \hat{z}) \quad q_{1}
$$

$E_{a, b}$ given by "partonic" mom. conservation
$\mathcal{T}_{N}=\sum_{k} \min \left\{q_{a} \cdot p_{k}, q_{b} \cdot p_{k}, q_{1} \cdot p_{k}, \ldots, q_{N} \cdot p_{k}\right\}$
normalize it if desired can pick another distance measure if desired

Practical: use jet algorithm to determine

$$
\left\{E_{J}, \hat{n}_{J}\right\} \text { and hence } q_{i}
$$ $\left\{E_{J}, \hat{n}_{J}\right\}$ and hence q_{i}

$\mathcal{T}_{N} \ll Q^{2}$
ensures there are N jets "exclusive N -jet cross section"

q_{b}

-
rattler.

$$
\mu_{H}=Q \quad \mu_{B, J}^{2}=\mathcal{T}_{N}
$$

$$
\mu_{S}=\mathcal{T}_{N} / Q
$$

Inclusive Jet and Beam functions, N-jettiness soft function

$$
\begin{aligned}
& \frac{d \sigma}{d \tau_{N} d\left(q_{m}\right)}=H B_{i} \otimes B_{j} \otimes \prod J_{k} \otimes S_{\tau_{N}}^{\left(q_{m}\right)} \\
& \sum_{k \in \operatorname{coll}_{J}} \min _{m}\left\{2 q_{m} \cdot p_{k}\right\}=\sum_{k \in \operatorname{coll}_{J}} 2 q_{J} \cdot p_{k}=s_{J}
\end{aligned}
$$

Jet Substructure

$\mathrm{SCET}_{1} \longrightarrow \mathrm{SCET}_{2}$

$\mathrm{SCET}_{1} \mapsto \mathrm{SCET}_{2}$

$$
J_{1}=C \otimes J_{2}
$$

- $B \rightarrow \pi \ell \bar{\nu}$

- Beam functions are an example $\quad B_{i}=\sum \mathcal{I}_{i j} \otimes f_{j}$
- Study fragmentation in a jet of measured invariant mass

$$
J(s) \rightarrow \frac{1}{16 \pi^{3}} \mathcal{G}^{\pi}(s, z) d z
$$

fragmenting jet function
$\mathcal{G}_{i}^{\pi}(s, z)=\sum_{j} \int \frac{d x}{x} \mathcal{J}_{i j}\left(s, \frac{z}{x}\right) D_{j}^{\pi}(x)$
cute: $\quad \sum_{j} \int d z z \mathcal{J}_{i j}(s, z)=J_{i}^{\text {inclusive }}(s)$

Berger, Kucs, Sterman;
Almeida, Lee, Perez, Sterman, Sung,
Virzi; Jouttenus; Cheung et al

Bauer \& Schwartz; Baumgart et.al.

$\underline{Q C D}$

s,

$\underline{\text { SCET }_{1}}$

$\underline{\mathrm{SCET}_{2}}$

$\underline{\mathrm{SCET}_{3}}$

$p^{2} \sim Q^{2}$	QCD
$p^{2} \sim Q^{2} \lambda^{2}$	SCET_{1}
$p^{2} \sim Q^{2} \lambda^{4}$	SCET_{2}
$p^{2} \sim Q^{2} \lambda^{6}$	SCET_{3}
\vdots	\vdots
$p^{2} \sim Q^{2} \lambda^{2 \mathrm{i}}$	$\mathrm{SCET}_{\mathrm{i}}$
\vdots	

Can also use these techniques to derive factorization theorems for identified subjets:

Summary

$\mathrm{e}^{+} \mathrm{e}^{-}$event shapes \& $\alpha_{s}\left(m_{Z}\right)$

- SCET analysis provides high precision. Log summation and nonperturbative effects are important.
jet substructure \& jet algorithms
- Sensitive probe of events. Calculations tractable with SCET threshold factorization
- simple method to get an (often important) subset of higher order terms
hadron-hadron event shapes
- new methods to test MC, new methods to veto jets

Beam Functions

- universal function that describes ISR for broad class of processes (Exclusive Jet Production)

