Soft Collinear Effective Theory & Jets

Iain Stewart MIT & Harvard

Boston Jet Physics workshop, Harvard January 2011

Outline:

Introduction to Soft Collinear Effective Theory

- * scales & fields (organize the physics of jets)
- * systematic expansion (estimate theory errors)
- * simplify calculations, sum logs (higher precision)
- * factorization & universality

Cross Sections with Jets

- e^+e^- event shapes
- jet algorithms
- pp event shapes

Jet Substructure

- Jet Shapes
- Parton Shower

Practical

70's $\rightarrow 2011$

Measurable

- $SCET_1 \rightarrow SCET_2$ (collinear jet substructure)
 - (event shapes in a jet)

Typical Event with Hard Interaction:

Factorization:

"cross section can be computed as product of independent pieces"

Shower MC programs assume factorization:

Events with a Hard Interaction:

Events with a Hard Interaction:

SCET = Soft-Collinear Effective Theory

JCD

QCD

QCD

SCET can be used for:

- Factorization $d\sigma^{had} = f \otimes f \otimes d\sigma^{part}$
- Sum Large logs $\alpha_s \ln^2 z$, $\alpha_s^2 \ln^4 z$, ... QCD Sudakov's, EW Sudakov's
- Analytic calculations of perturbative corrections NLO, NNLO in α_s
- Nonperturbative corrections (hadronization \rightarrow matrix elements)
- Parton Shower: ISR, High multiplicity final states
- Softer physics (underlying event?)
- Precision Measurements:

Tevatron $m_t = 173.3 \pm 0.6_{\text{stat}} \pm 0.9_{\text{syst}} \text{ GeV}$

theory error? what mass is it?

(in this talk I'll avoid Glaubers & pT dependent functions)

 $\lambda \sim \frac{\Delta}{Q}$ is the expansion parameter $\delta \sim \lambda$

 $+ - \bot$ Jet constituents : $p^{\mu} \sim \left(\frac{\Delta^2}{Q}, Q, \Delta\right) \sim Q(\lambda^2, 1, \lambda)$

$$p^2 = p^+ p^- + p_\perp^2 \quad , \qquad p^2 \sim \Delta^2$$

Soft particles:

$$p^{\mu} \sim \left(\frac{\Delta^2}{Q}, \frac{\Delta^2}{Q}, \frac{\Delta^2}{Q}\right) \sim Q(\lambda^2, \lambda^2, \lambda^2)$$

Defining concepts:

- hard scale Q
- collinear sectors $\{[n_i]\}$
- power counting parameter λ

Production Current: $Q \gg \Delta$

SCET Lagrangian:

$$\mathcal{L}_{n}^{(0)} = \bar{\xi}_{n} \left\{ n \cdot iD_{us} + gn \cdot A_{n} + i\mathcal{P}_{\perp}^{n} \frac{1}{i\bar{n} \cdot D_{n}} i\mathcal{P}_{\perp}^{n} \right\} \frac{\hbar}{2} \xi_{n}$$

propagator: $\frac{i \not h}{2} \frac{\bar{n} \cdot p}{p^{2} + i\epsilon} = \frac{i \not h}{2} \frac{1}{n \cdot p - \frac{\vec{p}_{\perp}^{2}}{\bar{n} \cdot p} + i\epsilon \operatorname{sign}(\bar{n} \cdot p)}$
eikonal softs:

$$\xi_{n} \to Y \xi_{n}$$

$$A_{n} \to Y A_{n} Y^{\dagger}$$

$$Y(x) = P \exp\left(ig \int_{-\infty}^{0} ds \, n \cdot A_{us}(x + ns)\right)$$

Production Current: $Q \gg \Delta$

linear et ξ_n, A_n^{μ} soft particles $\xi_{\bar{n}}, A_{\bar{n}}^{\mu}$ q_s, A_s^{μ}

all-orders in α_s

Factorization:

 $|X\rangle = |X_n X_{\bar{n}} X_s\rangle$

$$\sigma = K_0 \sum_{\vec{n}} \sum_{X_n X_{\bar{n}} X_s}^{res.} (2\pi)^4 \,\delta^4 (q - P_{X_n} - P_{X_{\bar{n}}} - P_{X_s}) \langle 0 | \overline{Y}_{\bar{n}} Y_n | X_s \rangle \langle X_s | Y_n^{\dagger} \overline{Y}_{\bar{n}}^{\dagger} | 0 \rangle$$

$$\times |C(Q, \mu)|^2 \,\langle 0 | \hat{\pi} \chi_{n,\omega'} | X_n \rangle \langle X_n | \overline{\chi}_{n,\omega} | 0 \rangle \langle 0 | \overline{\chi}_{\bar{n},\bar{\omega}'} | X_{\bar{n}} \rangle \langle X_{\bar{n}} | \hat{n} \chi_{\bar{n},\bar{\omega}} | 0 \rangle$$

Factorization:

Large Logs

LO

log summation $L = \ln(\mu_H/\mu_J) = \ln(\mu_J/\mu_S) = \ln(Q^2/\Delta^2)$ $\alpha_s L \sim 1$ $\alpha_s \ll 1$ NLO NNLO $N^{3}LO$ $\sigma(\Delta) = 1 + \alpha_s L^2 + \alpha_s^2 L^4 + \alpha_s^3 L^6 + \dots$ LL $+ \alpha_s L + \alpha_s^2 L^3 + \alpha_s^3 L^5 + \dots$ NLL. $+ \alpha_s^2 L^2 + \alpha_s^3 L^4 + \dots$ $+ \alpha_s$ $+ \alpha_s^2 L + \alpha_s^3 L^3 + \dots$ $+ \alpha_s^2 + \alpha_s^3 L^2 + \dots$ N³LL $+ \alpha_s^3 L + \dots$ $+ \alpha_s^3 + \dots$

•••

small print:

here
$$\sigma(\widetilde{\Delta}) = \int_0^{\Delta} d\tau \frac{d\sigma}{d\tau}$$
; sum's are actually in exponent

Operators • built from $\{ \chi_n, \mathcal{B}^{\mu}_{n\perp}, i\partial^{\mu}_{n\perp} \}, + \text{ usoft terms}$ $\mathcal{O}(\lambda) \quad \mathcal{O}(\lambda) \quad \mathcal{O}(\lambda)$

N-jet amplitude O_N

$$O_{2} = \bar{\chi}_{n_{1}} \Gamma \chi_{n_{2}}$$

$$O_{3} = \bar{\chi}_{n_{1}} \Gamma \mathcal{B}^{\mu}_{n_{3} \perp} \chi_{n_{2}}$$

$$O_{4} = \bar{\chi}_{n_{1}} \Gamma \mathcal{B}^{\mu}_{n_{3} \perp} \mathcal{B}^{\nu}_{n_{4} \perp} \chi_{n_{2}}$$

 $O_{\text{pdf}} = \bar{\chi}_{n_1} \Gamma \chi_{n_1,\omega}$ $O_{\text{jet fn.}} = \bar{\chi}_{n_1} (x^-) \Gamma \chi_{n_1,\omega} (0)$

$$O_{2}' = \bar{\chi}_{n_{1}} \Gamma \mathcal{B}_{n_{2} \perp}^{\mu} \chi_{n_{2}}$$
$$O_{2}'' = \bar{\chi}_{n_{1}} \Gamma \mathcal{B}_{n_{2} \perp}^{\mu} i \partial_{n_{2} \perp}^{\nu} \chi_{n_{2}}$$
$$O_{3}' = \bar{\chi}_{n_{1}} \Gamma \mathcal{B}_{n_{3} \perp}^{\mu} \mathcal{B}_{n_{3} \perp}^{\nu} \chi_{n_{2}}$$

For more introduction see the lecture notes: <u>http://www2.lns.mit.edu/-iains/talks/SCET_Lectures-Stewart-2009.pdf</u>

Event shapes

$$e^+e^- \rightarrow \text{jets}$$

• power correction shifts result for $\alpha_s(m_Z)$ by -9%

(in tuned MC effect is small at m_Z , similar at other scales)

power correction shifts result for $\alpha_s(m_{Z_i})$ by -9%

profile functions (+4%)

10

nonsingular

- power correction shifts result for $\alpha_s(m_Z)$ by -9%
- profile functions (+4%)

Event shapes

 $pp \rightarrow jets + leptons$

Isolated Drell-Yan

IS, Tackmann, Waalewijn

• measure Beam Thrust

$$\mathcal{T}_B = \sum_k |\vec{p}_{kT}| e^{-|\eta_k|} = \sum_k (E_k - |p_k^z|)$$
$$\tau_B = \mathcal{T}_B/Q$$

• $\tau_B \ll 1$ is veto for central jets

- jn Soft l^+ Jet a P_b
- sensitive probe of Initial State Parton shower (test & tune MC)

Captures a large part of cross section even for: $0 \le \tau_B \le \tau_B^{\text{cut}} = 0.1$

• sensitive probe of Initial State Parton shower (test & tune MC)

 $0 \le \tau_B \le \tau_B^{\text{cut}}$ nice convergence

Calculation here involves:

- ISR from proton
- summing large logs from t - channel singularities

$$\frac{\alpha_s^n \ln^m (t/Q^2)}{t}$$

• Singular terms dominate numerically

• Factorization involves Beam Functions

$$d\sigma = \sum_{ij} H_{ij} \int B_i(t_a, x_a) B_j(t_b, x_b) \otimes S_B$$

• Measurement probes proton **PRIOR** to hard collision

$$p^{\mu} = x E_{\rm cm} \frac{n^{\mu}}{2} - b^{+} \frac{\bar{n}^{\mu}}{2} - b^{\mu}_{\perp}$$

$$\xi E_{\rm cm} \frac{n^{\mu}}{2}$$

$$\xi E_{\rm cm} \frac{n^{\mu}}{2}$$

$$p^{\mu} = E_{\rm cm} \frac{n^{\mu}}{2}$$

$$r = (1 - \xi) E_{\rm cm} \frac{n^{\mu}}{2}$$

$$b^{\mu} = (\xi - x) E_{\rm cm} \frac{n^{\mu}}{2} + b^{+} \frac{\bar{n}^{\mu}}{2} + b^{\mu}_{\perp}$$

$$t = x E_{\rm CM} b^+$$

 $t \gg \Lambda_{\rm QCD}^2$

Beam function factorization:

$$B_i(t, x, \mu) = \sum_j \int_x^1 \frac{d\xi}{\xi} \mathcal{I}_{ij}\left(t, \frac{x}{\xi}, \mu\right) f_j(\xi, \mu)$$

> perturbative & calculable

Fleming, Leibovich, Mehen IS, Tackmann, Waalewijn

As proton matrix element:

$$B_q(\omega b^+, \omega/P^-, \mu) = \frac{\theta(\omega)}{\omega} \int \frac{\mathrm{d}y^-}{4\pi} e^{\mathrm{i}b^+ y^-/2} \left\langle p_n(P^-) \left| \bar{\chi}_n \left(y^- \frac{n}{2} \right) \delta(\omega - \overline{\mathcal{P}}_n) \frac{\vec{\eta}}{2} \chi_n(0) \right| p_n(P^-) \right\rangle$$

Factorization with Jet Algorithms

Jet & Soft functions depend on the algorithm

Berger, Kucs, Sterman; Almeida, Lee, Perez, Sterman, Sung, Virzi; Jouttenus; Cheung et al

Ellis, Hornig, Lee, Vermilion, Walsh

$$\mu_{H} = Q$$

$$\mu_{J} = Q \tan \frac{R}{2}$$

$$\mu_{S}^{I} = \Lambda$$
soft
$$\mu_{S}^{II} = 2\Lambda \tan \frac{R}{2}$$

(B)

measurements induce more scales

Grouping of Soft Radiation

 $ightarrow heta_{ij} \sim \lambda_{
m Algorithm \ and \ SC}^{
m Soft \ Region \ Comr}$ cone: $R \gtrsim^{\text{Additional Soft Re}}$ \times Parent Location (**C** Daughter Location

IS, Tackmann, Waalewijn Define (massless) reference momenta for each jet and beam

$$q_J^{\mu} = E_J(1, \hat{n}_J)$$
 $q_{a,b}^{\mu} = E_{a,b}(1, \pm \hat{z})$ q_1

Soft

2

Jet 1

 $\operatorname{Jet} a$

a

 q_a

1

Jet 3

 q_3

3

b

Jet b

let 2

$$\mathcal{T}_N = \sum_k \min\left\{q_a \cdot p_k, q_b \cdot p_k, \mathbf{q_1} \cdot p_k, \dots, \mathbf{q_N} \cdot p_k\right\}$$

normalize it if desired can pick another distance measure if desired

Practical: use jet algorithm to determine $\{E_J, \hat{n}_J\}$ and hence q_i

 $\mathcal{T}_N \ll Q^2$ ensures there are N jets "exclusive N-jet cross section"

nice scales: $\mu_H = Q$ $\mu_{B,J}^2 = \mathcal{T}_N$ $\mu_S = \mathcal{T}_N/Q$

Inclusive Jet and Beam functions, N-jettiness soft function

$$\frac{d\sigma}{d\tau_N d(q_m)} = H \ B_i \otimes B_j \otimes \prod J_k \otimes S^{(q_m)}_{\tau_N}$$
$$\sum_{k \in \text{coll}_J} \min_m \{2q_m \cdot p_k\} = \sum_{k \in \text{coll}_J} 2q_J \cdot p_k = s_J$$

 q_b

 q_2

Jet Substructure

- $B \to \pi \ell \bar{\nu}$
- Beam functions are an example $B_i = \sum \mathcal{I}_{ij} \otimes f_j$
- Study fragmentation in a jet of measured invariant mass $J(s) \rightarrow \frac{1}{16\pi^3} \mathcal{G}^{\pi}(s,z) dz$

fragmenting jet function

$$\mathcal{G}_i^{\pi}(s,z) = \sum_j \int \frac{dx}{x} \mathcal{J}_{ij}\left(s,\frac{z}{x}\right) D_j^{\pi}(x)$$

cute:

$$\sum_{j} \int dz \ z \ \mathcal{J}_{ij}(s, z) = J_i^{\text{inclusive}}(s)$$

Jain, Procura, Waalewijn

Berger, Kucs, Sterman;

Bauer & Schwartz; Baumgart et.al.

 $p^2 \sim Q^2$ QCD $SCET_{i+1}$ $SCET_i$ \otimes \vec{k}_1 \vec{k}_1 n'_1 $p^2 \sim Q^2 \lambda^2$ SCET_1) $\rightarrow \vec{p}_{\bar{q}}$ $\vec{p}_{\bar{q}}$ $\vec{q_1}$ $\vec{q_1}$ \bar{n} \bar{n} n_0 n_1 $p^2 \sim Q^2 \lambda^4$ SCET_2 $p^2 \sim Q^2 \lambda^6$ $SCET_3$: : $p^2 \sim Q^2 \lambda^{2\mathrm{i}}$ SCET_i \hat{n} n'_1 n_1 \bar{n} n_0 $\underline{\text{QCD}}$ $SCET_1$ $SCET_2$ $SCET_3$ (BOBOSS $n_2 n_1' n_2'$ n_0 n_0 n_0 $\overline{n_0}$ n'_1 n_2 n'_1 $n_2 n_1' n_2'$ n_2 900 n_0 A B n_0 n'_1 Т n_2

Parton Shower in SCET

Can also use these techniques to derive factorization theorems for identified subjets:

Summary

e⁺e⁻ event shapes & $\alpha_s(m_Z)$

SCET analysis provides high precision.
 Log summation and nonperturbative effects are important.

jet substructure & jet algorithms

Sensitive probe of events. Calculations tractable with SCET

threshold factorization

simple method to get an (often important) subset of higher order terms

hadron-hadron event shapes

new methods to test MC, new methods to veto jets

Beam Functions

• universal function that describes ISR for broad class of processes (Exclusive Jet Production)