Boosted Massive Jets @ CDF \& Implications

Gilad Perez

Weizmann Institute

R, Alon, E. Duchovni, GP \& P. Sinervo, for the CDF collaboration; blessed preliminary data (phase II);
R, Alon, E. Duchovni, GP, S. Pronko \& P. Sinervo, arXiv:1101.xxxx;
G. Gur-Ari, M. Papucci \& GP, arXiv:1101.xxxx;

More to come ...

Boston Jet Physics Workshop

Outline

\downarrow jet substructure, inner-jet energy flow:
(i) jet mass => perturbative @ high mass =>
(ii) angularity <-> 2-body (iii) planar flow <-> 3 body.

First measurements: CDF preliminary (phase II).

Data-driven method for pile up subtraction.
Generic classification of jet shapes.

Some implications of CDF's data.

Jet Mass-Overview

\checkmark Jet mass-sum of "massless" momenta in h-cal inside the cone: $m_{J}^{2}=\left(\sum_{i \in R} P_{i}\right)^{2},{ }_{P i^{2}}=0$
\checkmark Jet mass is non-trivial both for S \& B for concreteness mostly focus on top-jets.

Non trivial top-jet mass distribution

Naively the signal is $J \propto \delta\left(m_{J}-m_{t}\right)$
In practice $m_{J}^{t} \sim m_{t}+\delta m_{Q C D}+\delta m_{E W}$

Non trivial top-jet mass distribution

Naively the signal is $J \propto \delta\left(m_{J}-m_{t}\right)$
In practice $m_{J}^{t} \sim m_{t}+\delta m_{Q C D}+\delta m_{E W}$

+ detector smearing.

Almeida, Lee, Perez, Sung,\& Virzi (08), see also Fleming, Hoang, Mantry, Stewart (07,08).
sherpa $=>$ Transfer functions,
(CKKW)

Boosted QCD Jet via factorization:

 $d \sigma^{i}$$\frac{d \sigma^{\prime}}{d m_{J}}=J^{i}\left(m_{J}, p_{T}^{m i n}, R^{2}\right) \sigma^{i}\left(p_{T}^{m i n}\right)$

$$
\int d m_{J} J^{i}=1
$$

$$
i=Q, G
$$

- can interpret the jet function as a probability density functions for a jet with a given pT to acquire a mass between mJ and $\mathrm{mJ}+5 \mathrm{~mJ}$

Full expression:

$$
\begin{aligned}
\frac{d \sigma_{H_{A} H_{B \rightarrow} \rightarrow J_{1} J_{2}}}{d m_{J_{1}}^{2} d m_{J_{2}}^{2} d \eta}= & \sum_{a b c d} \int d x_{a} d x_{b} \phi_{a}\left(x_{a}, p_{T}\right) \phi_{b}\left(x_{b}, p_{T}\right) \frac{d \hat{\sigma}_{a b \rightarrow c d}}{d p_{T} d \eta}\left(x_{a}, x_{b}, \eta, p_{T}\right) \\
& S\left(m_{J_{1}}^{2}, m_{J_{2}}^{2}, \eta, p_{T}, R^{2}\right) J_{1}^{(c)}\left(m_{J_{1}}^{2}, \eta, p_{T}, R^{2}\right) J_{2}^{(d)}\left(m_{J_{2}}^{2}, \eta, p_{T}, R^{2}\right)
\end{aligned}
$$

QCD jet mass distribution

Boosted QCD Jet via factorization:

$d \sigma^{i}$
$d m_{J}$

$$
=J_{\substack{i \\ J^{\prime} \\\left(m_{J}, p_{T}^{m i n} \\ \\ R^{2}\right) \sigma^{i}\left(p_{T}^{m i n}\right.}}^{=Q, G}
$$

For large jet mass \& small R, en pt to

- can interpret the jet fun acquire a mass between

no big corrections =>

 leading log can be captured via perturbative QCD.Full expression:

$$
\begin{aligned}
& \frac{d \sigma_{H_{A} H_{B \rightarrow J_{1} J_{2}}}^{d m_{J_{1}}^{2} d m_{J_{2}}^{2} d \eta}=}{} \sum_{a b c d} \int d x_{a} d x_{b} \phi_{a}\left(x_{a}, p_{T}\right) \phi_{b}\left(x_{b}, p_{T}\right) \frac{u \sigma_{a b \rightarrow c d}}{d p_{T} d \eta}\left(x_{a}, x_{b}, \eta, p_{T}\right) \\
& S\left(m_{J_{1}}^{2}, m_{J_{2}}^{2}, \eta, p_{T}, R^{2}\right) J_{1}^{(c)}\left(m_{J_{1}}^{2}, \eta, p_{T}, R^{2}\right) J_{2}^{(d)}\left(m_{J_{2}}^{2}, \eta, p_{T}, R^{2}\right)
\end{aligned}
$$

QCD jet mass distribution, Q+G

Main idea: calculating mass due to two-body QCD bremsstrahlung:

QCD jet mass distribution, Q+G

Main idea: calculating mass due to two-body QCD bremsstrahlung:

$$
J^{(e i k), c}\left(m_{J}, p_{T}, R\right) \simeq \alpha_{\mathrm{S}}\left(p_{T}\right) \frac{4 C_{c}}{\pi m_{J}} \log \left(\frac{R p_{T}}{m_{J}}\right)
$$

$C_{F}=4 / 3$ for quarks, $C_{A}=3$ for gluons.

QCD jet mass distribution, Q+G

$$
\begin{aligned}
& J^{(e i k), c}\left(m_{J}, p_{T}, R\right) \simeq \alpha_{\mathrm{S}}\left(p_{T}\right) \frac{4 C_{c}}{\pi m_{J}} \log \left(\frac{R p_{T}}{m_{J}}\right) \\
& C_{F}=4 / 3 \text { for quarks, } C_{A}=3 \text { for gluons. }
\end{aligned}
$$

Data is admixture of the two, should be bounded by them:

$$
\begin{aligned}
& {\frac{d \sigma_{\text {pred }}(R)}{d p_{T} d m_{J}}}_{\text {upper bound }}=J^{g}\left(m_{J}, p_{T}, R\right) \sum_{c}\left(\frac{d \sigma^{c}(R)}{d p_{T}}\right), \\
& \frac{d \sigma_{\text {pred }}(R)}{d p_{T} d m_{J}}{ }_{\text {lower bound }}
\end{aligned}=J^{q}\left(m_{J}, p_{T}, R\right) \sum_{c}\left(\frac{d \sigma^{c}(R)}{d p_{T}}\right),
$$

Jet mass distribution theory vs. MC

Sherpa, jet function convolved above $p_{T}^{\min }$

Jet mass distribution theory vs. MC

Jet mass distribution theory vs. MC

Jet sub-structure

Jet sub-structure

Fixing mass => more control (looking @ set of moments):
(i) Angularity.
(ii) Planar flow.

(no manipulation of jet energy deposition)

IR-safe jet-shapes which distinguish between massive \& QCD jets?

IR-safe jet-shapes which distinguish between massive \& QCD jets?

Once jet mass fixed @ high scale

\Rightarrow Large class of jet-shapes become perturbatively calculable

IR-safe jet-shapes which distinguish between massive \& QCD jets?

\uparrow Once jet mass fixed @ high scale

= Large class of jet-shapes become perturbatively calculable

Angularity (2-body final state): Berge, Kiss nod Seeman (3)
$\tau_{a}\left(R, p_{T}\right)=\frac{1}{m_{J}} \sum_{i \in j e t} \omega_{i} \sin ^{a} \theta_{i}\left[1-\cos \theta_{i}\right]^{1-a} \sim \frac{2^{a-1}}{m_{J}} \sum_{i \in j e t} \omega_{i} \theta_{i}^{2-a} \alpha_{\mathrm{a}--2} \sum_{i} \omega_{i} \theta_{i}^{4}$ emphasize cone-edge radiation

Higher moments, angularity (2 body)

- Given jet mass \& momenta, only one additional independent, variable to describe energy flow:

$$
\tau_{-2} \sim \frac{1}{m} \sum_{i \in J} E_{i} \theta_{i}^{4}
$$

- If mass is due to 2-body => sharp prediction (kinematics):

$$
\begin{aligned}
& \theta_{\min } \sim \frac{m_{J}}{p_{J}} \Rightarrow \tau_{-2}^{\min } \approx\left(\frac{m_{J}}{p_{J}}\right)^{3} \\
& \theta_{\max } \sim R \Rightarrow \tau_{-2}^{\max } \approx R^{2} \frac{m_{J}}{p_{J}}
\end{aligned}
$$

2-body jet’s kinematics, Z/W/h

Angularities "distinguish" between Higgs \& QCD jets (2-body only one variable<=>asymmetry):

$$
\frac{d J^{h}}{d \tau_{a}} \propto \frac{1}{|a|\left(\tau_{a}\right)^{1-\frac{2}{a}}} \quad \text { vs. } \quad \frac{d J^{\mathrm{QCD}}}{d \tau_{a}} \propto \frac{1}{|a| \tilde{\tau}_{a}}
$$

2-body jet’s kinematics, Z/W/h

Angularities "distinguish" between Higgs \& QCD jets (2-body only one variable<=>asymmetry):

$$
\begin{array}{ll}
\frac{d J^{h}}{d \tau_{a}} \propto \frac{1}{|a|\left(\tau_{a}\right)^{1-\frac{2}{a}}} \quad \text { vs. } \quad \frac{d J^{\mathrm{QCD}}}{d \tau_{a}} \propto \frac{1}{|a| \tau_{a}} \\
\tau_{-2} \propto \frac{1}{z} & z=\min \left(p_{T^{1}}, p_{T^{2}}\right) / p_{T} \\
\frac{d J^{h}}{d z} \propto z^{4} & \text { vs. } \quad \frac{d J^{\mathrm{QCD}}}{d z} \propto z^{3}
\end{array}
$$

2-body jet’s kinematics, Z/W/h

Angularities "distinguish" between Higgs \& QCD jets (2-body only one variable<=>asymmetry):

2-body jet’s kinematics, Z/W/h
$P^{x}\left(\theta_{s}\right)=\left(d J^{x} / d \theta_{s}\right) / J^{x}=>P^{x}\left(\tilde{\tau}_{a}\right) ; \quad R\left(\tilde{\tau}_{a}\right)=\frac{P^{\mathrm{sig}}\left(\tilde{\tau}_{a}\right)}{P^{\mathrm{QCD}}\left(\tilde{\tau}_{a}\right)}$

2-body jet’s kinematics, Z/W/h

FIG. 3 (color online). The ratio between the signal and background probabilities to have jet angularity $\tilde{\tau}_{-2}, R^{\tilde{\tau}_{-2}}$.

$$
\left(z=m_{J} / p_{T}\right)
$$

FIG. 4 (color online). The angularity distribution for QCD (red-dashed curve) and longitudinal Z (black-solid curve) jets obtained from MADGRAPH. Both distributions are normalized to the same area.

2-body jet’s kinematics, Z/W/h

Planar flow

- Top-jet is 3 body vs. massive QCD jet <=> 2-body (previous result)

Planar flow

- Top-jet is 3 body vs. massive QCD jet <=> 2-body (previous result)

Thaler \& Wang, JHEP (08);
Almeida, Lee, GP, Stermam, Sung \& Virzi, PRD (09).

Planar flow

- Top-jet is 3 body vs. massive QCD jet <=> 2-body (previous result)

Almeida, Lee, GP, Stermam, Sung \& Virzi, PRD (09).

Planar flow

- Top-jet is 3 body vs. massive QCD jet <=> 2-body

```
Thaler & Wang, JHEP (08);
Almeida, Lee, GP, Stermam, Sung & Virzi, PRD (09).
```

- Planar flow, Pf, measures the energy ratio between two primary axes of cone surface:
(i) "moment of inertia ": $\quad I_{E}^{k l}=\frac{1}{m_{J}} \sum_{i \in R} E_{i} \frac{p_{i, k}}{E_{i}} \frac{p_{i, l}}{E_{i}}$,
(ii) Planar flow:

$$
P f=4 \frac{\operatorname{det}\left(\mathrm{I}_{\mathrm{E}}\right)}{\operatorname{tr}\left(\mathrm{I}_{\mathrm{E}}\right)^{2}}=\frac{4 \lambda_{1} \lambda_{2}}{\left(\lambda_{1}+\lambda_{2}\right)^{2}}
$$

leading order QCD, $P f=0$

top jet, $P f=1$

Planar flow, QCD vs top jets

Planar flow, QCD vs top jets

Planar flow, QCD vs top jets

Planar flo ${ }_{\text {Guess eci }}$ D vs top jets
 Planar flow shows

 a "typical" QCD

Planar flow, QCD vs top jets

Planar flow, QCD vs top jets

Boosted massive jets

@ CDF (phase II)

R, Alon, E. Duchovni, GP \& P. Sinervo, for the CDF; blessed preliminary data;

The preliminary data to be looked at

Cut Flow		
	$\mathrm{R}=0.4$	$\mathrm{R}=0.7$
All Data, $5.95 \mathrm{fb}^{-1}$	75,764,270 events	
At least one jet with $p_{T}>400 \mathrm{GeV} / \mathrm{c}, 0.1<\|\eta\|<0.7$, and event quality cuts	2,153	2,700
$\begin{aligned} & \mathrm{m}^{\mathrm{jet} 2}<100 \mathrm{GeV} / \mathrm{c}^{2} \text { and } S_{\text {MET }}<4 \\ & \text { (with pT } \mathrm{T}^{\mathrm{jet} 2}>100 \mathrm{GeV} / \mathrm{c} \text { and } \mathrm{MI} \text { corrections) } \end{aligned}$	1,837	2,108

Jet mass distribution

Distribution of jet mass after MI correction for jets with $400<p_{T}<500 \mathrm{GeV} / \mathrm{c}$, cone $\mathrm{R}=\mathbf{0 . 7}$, data and QCD MC

Jet mass distribution, high mass region

Jet mass distribution, high mass region

preliminary

preliminary

preliminary
CDF Run II, $\mathrm{L}_{\mathrm{int}}=6 \mathrm{fb}^{-1}$

MidPoint searchcone $\mathrm{IR}_{2+1}=>$ harder jets.

2 perturbative massless jets

massive jet

IR-collinear sensitivity \& jet mass

MidPoint searchcone $\mathrm{IR}_{2+1}=>$ harder jets.

2 perturbative massless jets

MidPoint $\mathrm{IR}_{3+1}=>$ problem postponed to NLO.

Angularity $\left(x_{m=a} \sum_{i} w, f_{t}^{t}\right)$

CDF Run II Preliminary

Angularity $\left(x_{n=s} \sum_{i} \omega, f_{i}^{t}\right)$

CDF Run II Preliminary

$\tau_{a}^{\min }(z) \sim\left(\frac{z}{2}\right)^{1-a}, \quad \tau_{a}^{\max }\left(R, p_{T}\right) \sim 2^{a-1} R^{-a} z$

Angularity $\left(x_{0=s} \sum_{i} \omega, f_{i}^{t}\right)$

CDF 0 ... Wkeliminary

$\tau_{a}^{\min }(z) \sim\left(\frac{z}{2}\right)^{1-a}, \quad \tau_{a}^{\max }\left(R, p_{T}\right) \sim 2^{a-1} R^{-a} z$

Angularity $\left(x_{n=s} \sum_{i} \omega, f_{i}^{t}\right)$

$\tau_{a}^{\min }(z) \sim\left(\frac{z}{2}\right)^{1-a}, \quad \tau_{a}^{\max }\left(R, p_{T}\right) \sim 2^{a-1} R^{-a} z$

Angularity $\left(x_{n=-\infty} \sum_{i} w, f_{t}^{\prime}\right)$

$\tau_{a}^{\min }(z) \sim\left(\frac{z}{2}\right)^{1-a}, \quad \tau_{a}^{\max }\left(R, p_{T}\right) \sim 2^{a-1} R^{-a} z$

Planar flow

Planar flow

Planar flow

CDF Run II, $L_{\text {int }}=6 \mathrm{fb}^{-1}$

Planar flow

CDF Run II, $L_{\text {int }}=6 \mathrm{fb}^{-1}$

Planar flow, no mass cut

Planar flow, no mass cut

Excess in di-massive jets

Let us look at the "SL" \& 'hadronic" data samples separately (including 30% sys' uncertainties from JES \& mass measurements):

Excess in di-massive jets

Let us look at the "SL" \& 'hadronic" data samples separately (including 30% sys' uncertainties from JES \& mass measurements):

I massive jets+MET: QCD $_{\text {datadriven }}$: 31 ± 8.1 (stat.) ± 9.3 (syst.), $\left[130<m_{j}<210(\mathrm{GeV}), 4<\right.$ SMET $\left.<10\right] \quad t \bar{t}: \quad 1.9 \pm 0.5$.

Excess in di-massive jets

Let us look at the "SL" \& 'hadronic" data samples separately (including 30% sys' uncertainties from JES \& mass measurements):

I massive jets+MET: QCD $_{\text {data driven }}$: 31 ± 8.1 (stat.) ± 9.3 (syst.), $\left[130<m_{j}<210(\mathrm{GeV}), 4<s_{\text {NET }}<10\right] \quad t \bar{t}: \quad 1.9 \pm 0.5$.

26 observed events $=>\sim-0.6$ standard deviations

Excess in di-massive jets

Let us look at the "SL" \& 'hadronic" data samples separately (including 30% sys' uncertainties from JES \& mass measurements):

I massive jets+MET: QCD $_{\text {data driven }}$: 31 ± 8.1 (stat.) ± 9.3 (syst.), $\left[130<m_{j}<210(\mathrm{GeV}), 4<\right.$ SMET $\left.<10\right] \quad t \bar{t}: \quad 1.9 \pm 0.5$.

26 observed events $=>\sim-0.6$ standard deviations

2 massive jets:
$\left[130<m_{j}<210(\mathrm{GeV})\right]$

QCD $_{\text {data driven }}: ~ 13 \pm 2.4$ (stat.) ± 3.9 (syst.), $t \bar{t}: \quad 3.0 \pm 0.8$.

Excess in di-massive jets

Let us look at the "SL" \& 'hadronic" data samples separately (including 30% sys' uncertainties from JES \& mass measurements):

I massive jets+MET: QCD $_{\text {data driven }}$: 31 ± 8.1 (stat.) ± 9.3 (syst.), $\left[130<m_{j}<210(\mathrm{GeV}), 4<\right.$ SMET $\left.<10\right] \quad t \bar{t}: \quad 1.9 \pm 0.5$.

26 observed events $=>\sim-0.6$ standard deviations

2 massive jets:
$\left[130<m_{j}<210(\mathrm{GeV})\right]$
$\mathrm{QCD}_{\text {data driven }}: \quad 13 \pm 2.4$ (stat.) ± 3.9 (syst.),
$t \bar{t}: \quad 3.0 \pm 0.8$.

32 observed events => ~ 3.4 standard deviations

Back to Theory

(i) Meothod for pile up subtraction for massive jets.

R, Alon, E. Duchovni, GP, S. Pronko \& P. Sinervo, arXiv:1101.xxxx.
(ii) Characterization of massive jets.
G. Gur-Ari, M. Papucci \& GP, arXiv:1101.xxxx;
(iii) Some trivial implications of the recent data.

Data-driven method of pile-up correction for substructure of massive jets (brief)

- Soft semi-coherent contributions smear E-flow distributions.

Dokshitzer, Lucenti, Marchesini and Salam, JHEP (98); Webber, PLB (94).

- Global corrections elegantly dealt with the concept of jet area.

Cacciari and Salam, PLB (08); Cacciari, Salam and Soyez, JHEP (08).

- What about jet shape specific correction (differential correction)?
- Can be addressed by generalization of the jet area concept.

Cacciari and Salam, PLB (08); Cacciari, Salam and Soyez, JHEP (08); Sapeta and Q. C. Zhang, 1009.1143.
$\begin{array}{ll}A_{-} X=\left[X\left(\left\{p_{-} i, g_{-} i\right\}\right)-X\left(\left\{p_{-} i\right\}\right)\right] /\left(n u _g<g_{-} t>\right) & \\ & \begin{array}{l}\text { (where } X\left(\left\{p_{-} i, g_{-} i\right\}\right) \text { is the value of } X \text { in the presence of ghosts } \\ \text { and genuine jet particles } p _i \text { and } X\left(\left\{p_{-} i\right\}\right) \text { is its value given }\end{array} \\ X _\{\text {pileup subtracted }\}=X-A_{-} X * \text { rho } & \begin{array}{l}\text { just the particles } p _i, \text { nu_g is the ghost density and }<g _t>\text { average } \\ \text { ghost momentum. })\end{array}\end{array}$

Data-driven method of pile-up correction for massive jets

- An analytical close form can be obtained for narrow massive jets, mass, angularity \& Pf (qualitatively verified by recent data).

R, Alon, E. Duchovni, GP, S. Pronko \& P. Sinervo, arXiv:1101.xxxx.

$$
\begin{aligned}
& \left.\Delta X\right|_{p_{J}, m_{J}}=\left.\frac{\partial X}{\partial m_{J}}\right|_{p_{J}, m_{J}} \delta m_{J}+\left.\sum_{i \in R^{90^{\circ}}} \frac{\partial X}{\partial E_{i}}\right|_{p_{J}, m_{J}} \delta E_{i} \\
& \Delta X\left(p_{J}, m_{J}\right)=f\left(X, p_{J}, m_{J}\right) \delta m_{J}^{2} \oplus g\left(X, p_{J}, m_{J}\right) \delta E
\end{aligned}
$$

$$
\Delta m_{J}^{2}=2 m_{J} \delta m_{J} \quad \Longrightarrow \quad \delta m_{J} \sim \sum_{i \in R^{90 \circ}} \frac{\delta m_{i}^{2}}{2 m_{J}} .
$$

Data-driven method of pile-up correction for massive jets

Preliminary CDF Run II, $\mathrm{L}_{\text {int }}=6 \mathrm{fb}^{-1}$
01

be obtained for narrow massive ralitatively verified by recent data).

R, Alon, E. Duchovni, GP, S. Pronko \& P. Sinervo, arXiv:1101.xxxx.

$$
\delta m_{J}+\left.\sum_{i \in R^{90^{\circ}}} \frac{\partial X}{\partial E_{i}}\right|_{p_{J}, m_{J}} \delta E_{i}
$$

$$
\left.m_{J}\right) \delta m_{J}^{2} \oplus g\left(X, p_{J}, m_{J}\right) \delta E
$$

CDF Run II

- 1

$=\left.\sum_{i \in R^{90^{\circ}}} \frac{\partial m}{\partial E_{i}}\right|_{p_{T}, m_{J}} \delta E_{i} . \quad \Delta m_{J}^{2} \sim p_{J} \sum_{i \in R^{90^{\circ}}} \delta E_{i} \theta_{i}^{2} \equiv \sum_{i \in R^{90^{\circ}}} \delta m_{i}^{2}$.

$$
\delta m_{J} \sim \sum_{i \in R^{90^{\circ}}} \frac{\delta m_{i}^{2}}{2 m_{J}}
$$

Data-driven method of pile-up correction for angularity

Data-driven method of pile-up correction for angularity

- Angularity:

Data-driven method of pile-up correction for planar flow

- PF: $P f=4 \frac{\operatorname{det}\left(\mathrm{I}_{\mathrm{E}}\right)}{\operatorname{tr}\left(\mathrm{I}_{\mathrm{E}}\right)^{2}}=\frac{4 \lambda_{1} \lambda_{2}}{\left(\lambda_{1}+\lambda_{2}\right)^{2}}, \quad I_{E}=p_{0} \sigma_{0}+p_{x} \sigma_{x}+p_{z} \sigma_{z}, \quad p_{0} \simeq \frac{m_{J}}{\sqrt{2} P_{J}}$

$$
\Delta P f=\frac{\sqrt{2} P_{J}}{m_{J}}\left[(1-P f) \delta p_{0} \oplus \sqrt{1-P f} \delta p_{i}\right] .
$$

Data-driven method of pile-up correction for planar flow

PF: $P f=4 \frac{\operatorname{det}}{\operatorname{tr}(]}$

Classification of LO jet shapes (brief)

G. Gur-Ari, M. Papucci \& GP, arXiv:1101.xxxx;

$$
I_{i_{1} \ldots i_{n}}=\int d^{2} x \varepsilon(x) x_{i_{1}} \cdots x_{i_{n}} .
$$

$$
I_{w}^{k l}=\sum_{i \in \text { particles }} E_{i} \frac{p_{i, k}^{\perp}}{E_{i}} \frac{p_{i, l}^{\perp}}{E_{i}} \approx \sum_{i \in \text { particles }} E_{i} \theta_{i} f_{k}\left(\phi_{i}\right) \theta_{i} f_{l}\left(\phi_{i}\right),
$$

ϕ is the azimuthal angle, and $f_{1}(\phi)=\cos (\phi), f_{2}(\phi)=\sin (\phi)$.

$$
I_{k_{1}, \ldots, k_{n}} \equiv \int d^{2} x \varepsilon(x) x_{k_{1}} \cdots x_{k_{n}}=\frac{1}{E_{J}} \sum_{i \in \text { particles }} E_{i} x_{k_{1}}^{(i)} \cdots x_{k_{n}}^{(i)}
$$

invariance under the little group $\mathrm{SO}(2)$ (same Iw spliting function of QCD)

$$
I_{0}=1, \quad I_{1}=0 . \quad I_{i i} \approx \frac{m_{J}^{2}}{E_{J}^{2}} .
$$

Next, consider a tensor product $I_{2} \otimes I_{2}$. There are three nontrivial scalars one may construct,

$$
I_{i i} I_{j j}, \quad I_{i j} I_{i j}, \quad \epsilon_{i j} \epsilon_{k l} I_{i k} I_{j l}
$$

Of these, only two are independent, since

$$
\epsilon_{i j} \epsilon_{k l} I_{i k} I_{j l}=2\left(I_{i i} I_{j j}-I_{i j}^{2}\right)=2 \operatorname{det} I \propto \operatorname{Pf}
$$

Classification of LO jet shapes (brief)

$$
I_{i i j j}=\frac{1}{E_{J}} \sum_{i \in \text { particles }} E_{i} \theta_{i}^{4} \propto \tau_{-2} \quad I_{i i j j k k}=\frac{1}{E_{J}} \sum_{i \in \text { particles }} E_{i} \theta_{i}^{6} \propto \tau_{-4}
$$

At the next order we find $I_{2} I_{4},\left(I_{3}\right)^{2}$, and I_{8}, with the following independent contractions:

$$
\begin{aligned}
I_{2} I_{4} & : \epsilon_{i j} \epsilon_{k l} I_{i k} I_{j l m m}, \epsilon_{i j} I_{i k} I_{j k l l} \\
\left(I_{3}\right)^{2} & : \epsilon_{i j} \epsilon_{k l} I_{i k m} I_{j l m}, I_{i j k} I_{i j k} \\
I_{8} & : I_{i i j j k k l l}
\end{aligned}
$$

Zernike polynomials

$$
\varepsilon(r, \phi)=\frac{a_{0,0}}{R^{2}}+\frac{1}{R^{2}} \sum_{n=1}^{\infty} \sum_{\substack{0 \leq m \leq n, n-m \text { even }}}\left[a_{n, m} R_{n}^{m}\left(\frac{r}{R}\right) \cos (m \phi)+a_{n,-m} R_{n}^{m}\left(\frac{r}{R}\right) \sin (m \phi)\right]
$$

where $R_{n}^{m}(\rho)$ are a set of polynomials of degree n respecting the orthogonality condition

$$
\int_{0}^{1} \mathrm{~d} \rho \rho R_{n}^{m}(\rho) R_{n^{\prime}}^{m}(\rho)=\frac{1}{2 n+2} \delta_{n, n^{\prime}}
$$

$$
\begin{aligned}
\frac{m_{J}^{2}}{E_{J}^{2}} & =\frac{\pi}{6} R^{2}\left(a_{2,0}+3 a_{0,0}\right) \\
\frac{8 s}{E_{J}} \tau_{-2} & =\frac{\pi}{30} R^{4}\left(a_{4,0}+5 a_{2,0}+10 a_{0,0}\right), \\
\frac{32 s}{E_{J}} \tau_{-4} & =\frac{\pi}{140} R^{6}\left(a_{6,0}+7 a_{4,0}+21 a_{2,0}+35 a_{0,0}\right) \\
(\mathrm{Pf}-1) \frac{m_{J}^{4}}{E_{J}^{4}} & =\frac{\pi^{2}}{36} R^{4}\left(a_{2,2}^{2}-a_{2,-2}^{2}\right)
\end{aligned}
$$

Rotation Moment Invariants for Recognition of Symmetric Objects

Jan Flusser, Senior Member, IEEE, and Tomáš Suk

Fig. 1. Test trademarks (from left to right): Mercedes-Benz, Mitsubishi, Recycling, Fischer, and Woolen Stuff.

Abstract-In this paper, a new set of moment invariants with respect to rotation, translation, and scaling suitable for recognition of
objects having N-fold rotation symmetry are presented. Moment objects having N-fold rotation symmetry are presented. Moment
invariants described earlier cannot be used for this purpose beinvariants described earlier cannot be used for this purpose be-
cause most moments of symmetric objects vanish. The invariants proposed here are based on complex moments. Their independence and completeness are proven theoretically and their performance is demonstrated by experiments.

The pseudo scalar jet shape variable?

$$
\mathcal{O}=2 \epsilon_{i j} I_{i k} I_{j k m m}=2 \operatorname{Tr}\left(I_{2} \epsilon I_{4}^{\prime}\right)=\epsilon_{i j} I_{2, i} I_{4, j}=\vec{I}_{2} \times \vec{I}_{4},
$$

Some Interpretation of CDF's di-mass

boosted jet excess

- Simplest explanation is QCD: $\quad R_{\text {mass }} \equiv \frac{n_{B} n_{C}}{n_{A} n_{D}}=1$, not coming from PDF, since the ratio is close to unity. (thanks to S. Ellis for questioning)
- Requires 7-I4 fb of hadronic top equivalence Xsec.
- Assuming new source of tops, tension with "SL" sample is~1.4 σ
- Pf: Deviation from MC is reduced when looking at new Pythia, MG/ME+matching \& Herwig (however none includes I->3 SF).

Summary

\downarrow LHC => new era, boosted massive jets important for studying QCD \& NP discoveries.
\downarrow Jet function (gluon emission) gives correct qualitative description of data => 2 body physics; quark jets.
\checkmark Angularity distribution further confirmed this description, affected by jet algorithm (due to IR safety issues).
\checkmark Interesting excess of di-massive jet events (not in ones lw MET).
-Planar flow (3 body) shows larger deviation at large masses.
\checkmark Data driven pile up corrections works, jet-shape classification.

