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This w
orkshop w

ill focus on im
proving our ability to use jets 

in collider physics applications.  It w
ill bring together theorists 

w
orking on both analytic and M

onte C
arlo jet physics, and 

experim
entalists w

orking to m
easure jet properties, w

ith the goal of 

m
axim

izing the physics potential of jet m
easurem

ents at the LH
C

.



experimentalist

Outline
✦ jet substructure, inner-jet energy flow:                 

(i) jet mass => perturbative @ high mass =>                                         
(ii) angularity <-> 2-body (iii) planar flow <-> 3 body.                                  

✦ First measurements: CDF preliminary (phase II).

theorist

✦ Data-driven method for pile up subtraction.

✦ Generic classification of jet shapes.

✦ Some implications of CDF’s data.

theorist



Jet Mass-Overview

✦Jet mass-sum of  “massless” momenta in h-cal              

        inside the cone: m2
J = (

�
i∈R Pi)2, P i2 = 0

(naively: QCD jets are massless while top jets ~ mt)

✦Jet mass is non-trivial both for S & B for 
concreteness mostly focus on top-jets.



✦ Naively the signal is J ∝ δ(mJ −mt)

✦ In practice: 

Non trivial top-jet mass distribution



✦ Naively the signal is J ∝ δ(mJ −mt)

✦ In practice: 

+ detector smearing.

Non trivial top-jet mass distribution



Almeida, Lee, Perez, Sung,& Virzi (08), see also Fleming, Hoang, Mantry, Stewart (07,08).

http://arxiv.org/find/hep-ph/1/au:+Fleming_S/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Fleming_S/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Hoang_A/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Hoang_A/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Mantry_S/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Mantry_S/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Stewart_I/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Stewart_I/0/1/0/all/0/1


- can interpret the jet function as a probability density functions for a jet with a given pT to 
acquire a mass between mJ and mJ + δmJ

i

✦Boosted QCD Jet via factorization:

Full expression:

J i

QCD jet mass distribution
Ellis, Huston, Hatakeyama, Loch and Tonnesmann, (07); Almeida, Lee, Perez, Sung,& Virzi (08).



- can interpret the jet function as a probability density functions for a jet with a given pT to 
acquire a mass between mJ and mJ + δmJ

i

✦Boosted QCD Jet via factorization:

Full expression:

J i

QCD jet mass distribution

For large jet mass & small R,
no big corrections =>

   leading log can be captured via
perturbative QCD.

Ellis, Huston, Hatakeyama, Loch and Tonnesmann, (07); Almeida, Lee, Perez, Sung,& Virzi (08).



Main idea: calculating mass due to 
two-body QCD bremsstrahlung:

QCD jet mass distribution, Q+G
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QCD jet mass distribution, Q+G

Data is admixture of the two, should be bounded by them:
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Jet mass distribution theory vs. MC 
Sherpa, jet function convolved above pmin

T
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Jet mass distribution theory vs. MC 
Sherpa, jet function convolved above pmin

T
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Rough agreement with MC,
however, sizable discrepancies 

between tools!
Tevatron => mostly quarks.



t-angular info’ encoded in decay products

• When other quarks produced:    

• Tops decay before hadronize:    

Jet sub-structure



t-angular info’ encoded in decay products

• When other quarks produced:    

• Tops decay before hadronize:    

(i) Angularity.
(ii) Planar flow.

(no manipulation of jet energy deposition) 

Jet sub-structure

Fixing mass => more control
(looking @ set of moments):



IR-safe jet-shapes which distinguish 
between massive & QCD jets?



IR-safe jet-shapes which distinguish 
between massive & QCD jets?

✦ Once jet mass fixed @ high scale 

➡ Large class of jet-shapes become perturbatively calculable

θi



IR-safe jet-shapes which distinguish 
between massive & QCD jets?

✦ Once jet mass fixed @ high scale 

➡ Large class of jet-shapes become perturbatively calculable

θi

Berger, K´ucs and Sterman (03)✦ Angularity (2-body final state):

Almeida, Lee, GP,  Sterman,  Sung, & Virzi (08)emphasize cone-edge radiation 

∝a=−2

�

i

ωiθ
4
i



Higher moments, angularity (2 body)

• Given jet mass & momenta, only one additional independent, 
variable to describe energy flow:

• If mass is due to 2-body => sharp prediction (kinematics):

τ−2 ∼
1
m

�

i∈J

Eiθ
4
i

Almeida, Lee, GP, Stermam & Sung, PRD (10). 

θmin ∼ mJ
pJ
⇒ τmin

−2 ≈
�

mJ
pJ

�3

θmax ∼ R ⇒ τmax
−2 ≈ R2 mJ

pJ



2-body jet’s kinematics, Z/W/h  

✦Angularities “distinguish” between Higgs & 
QCD jets (2-body only one variable<=>asymmetry):

vs.



2-body jet’s kinematics, Z/W/h  

✦Angularities “distinguish” between Higgs & 
QCD jets (2-body only one variable<=>asymmetry):

vs.

5

For the CDF data we find ∆Pf � 7% for mJ ∼ 100 GeV.
The measured correction, the MC prediction (including
full detector simulation) and the fit to the functional de-
pendence given in Eq. (19) is shown in Fig. 3 taken from
the CDF data [7]. The vertical axis corresponds to the
change in the observed planar flow as a function of the
planar flow. As in the angularity case, contributions from
single-vertex events are not separated given their small
number. The shape and normalization of the distribution
is consistent with the prediction.
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FIG. 3: On the upper panel we show the CDF data and a

fit based on the relation derived in Eq. (19). On the lower

panel we show the corresponding MC predictions including

full detector simulation [7].

VI. RELATION WITH JET AREAS

Recently, the concept of jet area was introduced [2] as
a way of understanding the behaviour of jet observables
in high instantaneous luminosity environments. It was
shown that once the jet’s size becomes dynamical, as with
modern IRC safe jet algorithms, the concept of jet area
turns out to be useful when assessing the susceptibility
to incoherent energy contributions of various jet-variable
measurements. Our emphasize here is slightly different,
as we focus on applying data-driven corrections to jet-
variable distributions over a large range of instantaneous

luminosities. However, it is interesting to briefly mention
the correspondence with the jet area concept in particular
in the context of the recent study of mass area [12]. Our
aim is two-fold: The first is to show that knowing the jet
mass and other shape variables such as angularity allows
one to more precisely determine the jet mass area (and
possibly other jet shape areas). The second is to argue
that in the region of interest, the difference between jet
mass area and jet area (of massless QCD events) is small,
which implies that our method can be easily adapted
using a global extraction of the median energy density
from data.

We demonstrate our points explicitly using studies of
the Midpoint and anti-kT jet algorithms performed by
the CDF collaboration [7] (the Midpoint results are es-
sentially identical to those obtained with the SISCone
algorithm [19], as expected since the two algorithms use
similar split and merge procedure). However, it is trivial
to see that the same conclusions also applied to other jet
algorithms. In the following we focus on the “passive jet
area,” concept, where analytic results can be obtained.
We focus on the the region with high degree of colli-
mation for ultra massive jets, defined as �2 � 1 where
� ≡ m/(pT R). It is assumed that the boosted jet consists
of two partonic decay products of a heavy particle of mass
m, which are well contained inside the jet (as is now qual-
itatively established by the CDF study of angularity [7],
this assumption holds also for QCD massive jets). It is
useful to define a0

j ≡ πR2 as the naive jet area of radius
R, and following the definitions of [12] we define ∆12

as the rapidity-azimuth difference between two daughter
particles, x = ∆12/R and z = min(pT 1 , pT 2)/pT in order
to characterize the primary daughter particles.

We find the following relation between x and z (assum-
ing R2 � 1)

x2 =
�2

z(1− z)
, (22)

and for later usage denote z1(x = 1) ≡ �2
�
1+�2

�
+O

�
�6

�
.

Let us begin with discussing the SISCone jet finder. In
this case one can minimize the area of the boosted jet by
requiring the two daughter partons to be contained in a
single jet. This is satisfied provided 1 < xc < 1/(1 − z),
with xc being some critical value for x [12]. The left in-
equality implies that 0 < z < z1. On the other hand,
maximizing the boosted jet area is achieved when the
jet is the union of the three cones (around the mother
and two daughter particles). This implies that xc > x,
namely, z > �2

�
1 − �2

�
+ O

�
�6

�
. Since � is by construc-

tion very small, z cannot be changed significantly and
leads, as anticipated, to small differences between the jet
mass area and that of low mass jets analyzed in [2]. For
the anti-kT algorithm, two interesting cases are found:
(1) for 1/(1 + z) < x < 1 the jet area is bigger then
a0

j , and solutions are found for 8�2 < 1, implying that
z1 < z < �2

�
1+3�2

�
+O

�
�6

�
. (2) for 1 < x < 1/(1−z) the

jet area is smallerer then a0
j , and this coincides with the

τ−2 ∝
1
z

dJh

dz
∝ z4 vs.

dJQCD

dz
∝ z3



2-body jet’s kinematics, Z/W/h  

✦Angularities “distinguish” between Higgs & 
QCD jets (2-body only one variable<=>asymmetry):

vs.
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For the CDF data we find ∆Pf � 7% for mJ ∼ 100 GeV.
The measured correction, the MC prediction (including
full detector simulation) and the fit to the functional de-
pendence given in Eq. (19) is shown in Fig. 3 taken from
the CDF data [7]. The vertical axis corresponds to the
change in the observed planar flow as a function of the
planar flow. As in the angularity case, contributions from
single-vertex events are not separated given their small
number. The shape and normalization of the distribution
is consistent with the prediction.
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FIG. 3: On the upper panel we show the CDF data and a

fit based on the relation derived in Eq. (19). On the lower

panel we show the corresponding MC predictions including

full detector simulation [7].

VI. RELATION WITH JET AREAS

Recently, the concept of jet area was introduced [2] as
a way of understanding the behaviour of jet observables
in high instantaneous luminosity environments. It was
shown that once the jet’s size becomes dynamical, as with
modern IRC safe jet algorithms, the concept of jet area
turns out to be useful when assessing the susceptibility
to incoherent energy contributions of various jet-variable
measurements. Our emphasize here is slightly different,
as we focus on applying data-driven corrections to jet-
variable distributions over a large range of instantaneous

luminosities. However, it is interesting to briefly mention
the correspondence with the jet area concept in particular
in the context of the recent study of mass area [12]. Our
aim is two-fold: The first is to show that knowing the jet
mass and other shape variables such as angularity allows
one to more precisely determine the jet mass area (and
possibly other jet shape areas). The second is to argue
that in the region of interest, the difference between jet
mass area and jet area (of massless QCD events) is small,
which implies that our method can be easily adapted
using a global extraction of the median energy density
from data.

We demonstrate our points explicitly using studies of
the Midpoint and anti-kT jet algorithms performed by
the CDF collaboration [7] (the Midpoint results are es-
sentially identical to those obtained with the SISCone
algorithm [19], as expected since the two algorithms use
similar split and merge procedure). However, it is trivial
to see that the same conclusions also applied to other jet
algorithms. In the following we focus on the “passive jet
area,” concept, where analytic results can be obtained.
We focus on the the region with high degree of colli-
mation for ultra massive jets, defined as �2 � 1 where
� ≡ m/(pT R). It is assumed that the boosted jet consists
of two partonic decay products of a heavy particle of mass
m, which are well contained inside the jet (as is now qual-
itatively established by the CDF study of angularity [7],
this assumption holds also for QCD massive jets). It is
useful to define a0

j ≡ πR2 as the naive jet area of radius
R, and following the definitions of [12] we define ∆12

as the rapidity-azimuth difference between two daughter
particles, x = ∆12/R and z = min(pT 1 , pT 2)/pT in order
to characterize the primary daughter particles.

We find the following relation between x and z (assum-
ing R2 � 1)

x2 =
�2

z(1− z)
, (22)

and for later usage denote z1(x = 1) ≡ �2
�
1+�2

�
+O

�
�6

�
.

Let us begin with discussing the SISCone jet finder. In
this case one can minimize the area of the boosted jet by
requiring the two daughter partons to be contained in a
single jet. This is satisfied provided 1 < xc < 1/(1 − z),
with xc being some critical value for x [12]. The left in-
equality implies that 0 < z < z1. On the other hand,
maximizing the boosted jet area is achieved when the
jet is the union of the three cones (around the mother
and two daughter particles). This implies that xc > x,
namely, z > �2

�
1 − �2

�
+ O

�
�6

�
. Since � is by construc-

tion very small, z cannot be changed significantly and
leads, as anticipated, to small differences between the jet
mass area and that of low mass jets analyzed in [2]. For
the anti-kT algorithm, two interesting cases are found:
(1) for 1/(1 + z) < x < 1 the jet area is bigger then
a0

j , and solutions are found for 8�2 < 1, implying that
z1 < z < �2

�
1+3�2

�
+O

�
�6

�
. (2) for 1 < x < 1/(1−z) the

jet area is smallerer then a0
j , and this coincides with the

τ−2 ∝
1
z

dJh

dz
∝ z4 vs.

dJQCD

dz
∝ z3

Difference is
not so big!!



2-body jet’s kinematics, Z/W/h  

==> ;



2-body jet’s kinematics, Z/W/h  

==> ;

(z = mJ/pT )



2-body jet’s kinematics, Z/W/h  

==> ;

(z = mJ/pT )

Peak => special
“democratic”

configuration where
the two particles

have same energy &
min’ distance from 

jet axis  θm ≈z .

φ

W
q

q’



Planar flow

Thaler & Wang, JHEP (08);
Almeida, Lee, GP, Stermam, Sung & Virzi, PRD (09). 

t-angular info’ encoded in decay products

• When other quarks produced:    

• Tops decay before hadronize:    

QCD massive jet
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• Tops decay before hadronize:    

top jet

• Top-jet is 3 body vs. massive QCD jet <=> 2-body (previous result)
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Planar flow

Thaler & Wang, JHEP (08);
Almeida, Lee, GP, Stermam, Sung & Virzi, PRD (09). 

• Top-jet is 3 body vs. massive QCD jet <=> 2-body 

• Planar flow,  Pf, measures the energy ratio between two 
primary axes of cone surface:

where on the RHS we have used that we expect θi ∼ R
for the important contributions (and also since the con-

tributions from the MIs are independent of the actual

hard process that we are interested thus generically we

expect θ = O(R)). The interesting angularity distri-

butions, relevant to highly boosted massive jets are for

a < 0 [6, 12] which emphasize the radiation towards

the cone edge and the leading log approximation where

mJ/pJR � 1 [13]. Consequently, we find that over the

interesting range of parameters we expect the constant

term to dominate with some subdominant linear contri-

bution towards τJ
a ∼

�
τJ
a

�max
. We also find that in gen-

eral the relative correction to angularity is small

δτa

τa
∼

�

i∈R90o

δm2
i

2m2
J

(R12)i
<∼

�

i∈R90o

δm2
i

m2
J

∼ 2δmJ

mJ
� 1 ,

(9)

for example the recent CDF analysis shows that for

pT ≥ 400 GeV, R = 0.7 and mJ ∼ 100 GeV then
δτa
τa

<∼ 2× 4 GeV/100 GeV = O(8%) which is in a good

agreement with the data [6].

Subtraction method for planar flow.
To define planar flow, Pf [12–14], we first construct

for a given jet a 2× 2 matrix IE

Ikl
E =

1

mJ

�

i∈R

Ei
pi,k

Ei

pi,l

Ei
, (10)

where pi,k is the kth
component of its transverse momen-

tum relative to the jet momentum axis. We point that

at small angles Iw actually corresponds to a straightfor-

ward generalization of τ0 promote it to a two dimensional

tensor

τxy
0 ≡ 1

2mJ

�

i∈jet

Ei θx
i θy

=
Iw

2
, (11)

we shall return to this point in the following. Given Iw,

we define Pf for that jet as

Pf = 4
det(IE)

tr(IE)2
=

4λ1λ2

(λ1 + λ2)
2
, (12)

where λ1,2 are the eigenvalues of IE .

IE is a real symmetric matrix thus, without loss of gen-

erality it can be expanded as sum of three basis matrices

IE = p0 σ0 + px σx + pz σz , (13)

where σ0 ≡ 12/
√

2, σx,z are the corresponding Pauli ma-

trices and we use the normalization tr (σiσj) = δij such

that the σis form an orthonormal basis; finally, the pis

are real numbers and the i usefulness of the analogy with

a two+one dimensional Lorentz group become clear in

the following. Pf is given by

Pf =
p2
0 − p2

i

p2
0

≡
m2

IE

p2
0

≡ 1

γ2
IE

≡ 1− β2
IE

(14)

with p2
i ≡ p2

x + p2
z Let us first consider the contribution

to Pf from a single calorimeter cell. It is easy to see

that it satisfies the ”null energy” condition of a massless

particle (p1
0)

2 − (p1
i )

2
= 0 where this is independent of

the chosen frame to calculate Iw. Note that this is the

first point where our result deviates from a generic trivial

description of symmetric real matrices. Thus Pf actually

corresponds to the one over the boost factor for a system

consist of set of massless particles in three dimensions,

or to the ratio of the invariant mass of set of ”massless

particles” to their square of sum of energies.

Let us find the leading order correction from MIs

∆Pf =
∂Pf

∂p0
δp0 +

∂Pf

∂pi
δpi =

2

p0

�
β2

IE
δp0 − βIE δpi

�

=
2

p0

�
(1− Pf)δp0 −

�
1− Pf δpi

�
(15)

In order to obtain the value of p0 in terms of observables

we use Eq. (11)

p0 =

√
2 τ0 . (16)

While τ0 is a simple function of the jet mass and mo-

menta (see e.g) [] as explicitly obtained when evaluating

the jet mass from its four momenta (assuming mJ � PJ

and R� 1)

m2
J �

�
PJ +

�

i∈R

δp2
i

2Ei
, PJ ,�0

�2

≈ PJ

�

i

δp2
i

2Ei

≈ PJ

�

i

Eiθ
2
i = 2PJmJ τ0 ⇒ p0 �

mJ√
2 PJ

.(17)

We thus obtained our final and simple result for the pla-

nar flow correction,

∆Pf =

√
2 PJ

mJ

�
(1− Pf)δp0 ⊕

�
1− Pf δpi

�
. (18)

Let us estimate what is the expected size of δp0,i, since

the correction from the MI is random we genetically ex-

pect δpi ∼ δp0, using Eq. (3) and (17) we find

δp0 �
δmJ√
2 PJ

. (19)

The largest correction is expected for Pf ∼ 0 which is

roughly given by

∆Pfmax ∼
√

2 PJ

mJ

�
δp2

0 + δp2
0 ∼

√
2

δmJ

mJ
, (20)

where using the CDF data we find, say for mJ ∼ 100 GeV

∆Pf <∼ 7% .
Acknowledgments:

[1] G. P. Salam, Eur. Phys. J. C 67, 637 (2010)
[arXiv:0906.1833 [hep-ph]].
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where on the RHS we have used that we expect θi ∼ R
for the important contributions (and also since the con-

tributions from the MIs are independent of the actual

hard process that we are interested thus generically we

expect θ = O(R)). The interesting angularity distri-

butions, relevant to highly boosted massive jets are for

a < 0 [6, 12] which emphasize the radiation towards

the cone edge and the leading log approximation where

mJ/pJR � 1 [13]. Consequently, we find that over the

interesting range of parameters we expect the constant

term to dominate with some subdominant linear contri-

bution towards τJ
a ∼

�
τJ
a

�max
. We also find that in gen-

eral the relative correction to angularity is small

δτa

τa
∼

�

i∈R90o

δm2
i

2m2
J

(R12)i
<∼

�

i∈R90o

δm2
i

m2
J

∼ 2δmJ

mJ
� 1 ,

(9)

for example the recent CDF analysis shows that for

pT ≥ 400 GeV, R = 0.7 and mJ ∼ 100 GeV then
δτa
τa

<∼ 2× 4 GeV/100 GeV = O(8%) which is in a good

agreement with the data [6].

Subtraction method for planar flow.
To define planar flow, Pf [12–14], we first construct

for a given jet a 2× 2 matrix IE

Ikl
E =

1

mJ

�

i∈R

Ei
pi,k

Ei

pi,l

Ei
, (10)

where pi,k is the kth
component of its transverse momen-

tum relative to the jet momentum axis. We point that

at small angles Iw actually corresponds to a straightfor-

ward generalization of τ0 promote it to a two dimensional

tensor

τxy
0 ≡ 1

2mJ

�

i∈jet

Ei θx
i θy

=
Iw

2
, (11)

we shall return to this point in the following. Given Iw,

we define Pf for that jet as

Pf = 4
det(IE)

tr(IE)2
=

4λ1λ2

(λ1 + λ2)
2
, (12)

where λ1,2 are the eigenvalues of IE .

IE is a real symmetric matrix thus, without loss of gen-

erality it can be expanded as sum of three basis matrices

IE = p0 σ0 + px σx + pz σz , (13)

where σ0 ≡ 12/
√

2, σx,z are the corresponding Pauli ma-

trices and we use the normalization tr (σiσj) = δij such

that the σis form an orthonormal basis; finally, the pis

are real numbers and the i usefulness of the analogy with

a two+one dimensional Lorentz group become clear in

the following. Pf is given by

Pf =
p2
0 − p2

i

p2
0

≡
m2

IE

p2
0

≡ 1

γ2
IE

≡ 1− β2
IE

(14)

with p2
i ≡ p2

x + p2
z Let us first consider the contribution

to Pf from a single calorimeter cell. It is easy to see

that it satisfies the ”null energy” condition of a massless

particle (p1
0)

2 − (p1
i )

2
= 0 where this is independent of

the chosen frame to calculate Iw. Note that this is the

first point where our result deviates from a generic trivial

description of symmetric real matrices. Thus Pf actually

corresponds to the one over the boost factor for a system

consist of set of massless particles in three dimensions,

or to the ratio of the invariant mass of set of ”massless

particles” to their square of sum of energies.

Let us find the leading order correction from MIs

∆Pf =
∂Pf

∂p0
δp0 +

∂Pf

∂pi
δpi =

2

p0

�
β2

IE
δp0 − βIE δpi

�

=
2

p0

�
(1− Pf)δp0 −

�
1− Pf δpi

�
(15)

In order to obtain the value of p0 in terms of observables

we use Eq. (11)

p0 =

√
2 τ0 . (16)

While τ0 is a simple function of the jet mass and mo-

menta (see e.g) [] as explicitly obtained when evaluating

the jet mass from its four momenta (assuming mJ � PJ

and R� 1)

m2
J �

�
PJ +

�

i∈R

δp2
i

2Ei
, PJ ,�0

�2

≈ PJ

�

i

δp2
i

2Ei

≈ PJ

�

i

Eiθ
2
i = 2PJmJ τ0 ⇒ p0 �

mJ√
2 PJ

.(17)

We thus obtained our final and simple result for the pla-

nar flow correction,

∆Pf =

√
2 PJ

mJ

�
(1− Pf)δp0 ⊕

�
1− Pf δpi

�
. (18)

Let us estimate what is the expected size of δp0,i, since

the correction from the MI is random we genetically ex-

pect δpi ∼ δp0, using Eq. (3) and (17) we find

δp0 �
δmJ√
2 PJ

. (19)

The largest correction is expected for Pf ∼ 0 which is

roughly given by

∆Pfmax ∼
√

2 PJ

mJ

�
δp2

0 + δp2
0 ∼

√
2

δmJ

mJ
, (20)

where using the CDF data we find, say for mJ ∼ 100 GeV

∆Pf <∼ 7% .
Acknowledgments:

[1] G. P. Salam, Eur. Phys. J. C 67, 637 (2010)
[arXiv:0906.1833 [hep-ph]].
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(i) “moment of inertia “:

(ii) Planar flow:

leading order QCD, Pf=0 top jet, Pf=1



Planar flow, QCD vs top jets   
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Planar flow, QCD vs top jets   



Planar flow, QCD vs top jets   Guess: QCD
Planar flow shows
a “typical” QCD
behavior, might
be calculable

at high planar flow



Planar flow, QCD vs top jets   



Planar flow, QCD vs top jets   

We understand 
the peak in  top 

planar flow, 
“golden triangle”.



Boosted massive jets
@ CDF (phase II)

R, Alon, E. Duchovni, GP & P. Sinervo, for the CDF; blessed preliminary data;
experimentalist



The preliminary data to be looked at
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Top rejection cut.



Jet mass distribution

Distribution of jet mass after MI correction for jets with 400 < pT < 500 GeV/c, cone R=0.7, data and QCD MC



Jet mass distribution,  high mass region
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Jet mass distribution,  high mass region

Pythia 6.216



Jet mass distribution,  high mass region
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Jet mass distribution,  high mass region

Pythia 6.216Data nicely interpolates 
between quark and gluon jet 

functions consistent with 
mostly quark case!



Jet mass distribution,  high mass region
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Jet mass distribution,  high mass region

Pythia 6.216



Jet mass distribution,  high mass region
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CDF MidPoint searchcone IR2+1
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CDF MidPoint searchcone IR2+1
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Good agreement between 
anti-kt  & midpoint. 



CDF MidPoint searchcone IR2+1
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Good agreement between 
anti-kt  & midpoint. 

Midpoint+SearchCone is 
much harder.



MidPoint searchcone IR2+1 => harder jets.

IR-collinear sensitivity & jet mass

Salam, Eur. Phys. J. (2010)

jet 2
jet 1jet 1jet 1 jet 1

!s x (+ )"n!s x (− )"n !s x (+ )"n!s x (− )"n

Infinities cancel Infinities do not cancel

a) b) d)c)
Collinear safe jet alg. Collinear unsafe jet alg

Figure 1: Illustration of collinear safety (left) and collinear unsafety in an IC-PR type algorithm
(right) together with its implication for perturbative calculations (taken from the appendix of
[33]). Partons are vertical lines, their height is proportional to their transverse momentum, and
the horizontal axis indicates rapidity.

W

jet

soft divergence

W

jet jet

W

jet jet

(a) (b) (c)

Figure 2: Configurations illustrating IR unsafety of IC-SM algorithms in events with a W and
two hard partons. The addition of a soft gluon converts the event from having two jets to just
one jet. In contrast to fig. 1, here the explicit angular structure is shown (rather than pt as a
function of rapidity).

to find a new stable cone. Once passed through the split–merge step this can lead to the
modification of the final jets, thus making the algorithm infrared unsafe. This is illustrated
in fig. 2: in an event (a) with just two hard partons (and a W , which balances momentum),
both partons act as seeds, there are two stable cones and two jets. The same occurs in the
(negative) infinite loop diagram (b). However, in diagram (c) where an extra soft gluon
has been emitted, the gluon provides a new seed and causes a new stable cone to be found
containing both hard partons (as long as they have similar momenta and are separated
by less than 2R). This stable cone overlaps with the two original ones and the result of
the split–merge procedure is that only one jet is found. So the number of jets depends
on the presence or absence of a soft gluon and after integration over the virtual/real soft-
gluon momentum the two-jet and one-jet cross sections each get non-cancelling infinite
contributions. This is a serious problem, just like collinear unsafety. A good discussion of
it was given in [39].
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2 perturbative  
massless jets

massive jet



MidPoint searchcone IR2+1 => harder jets.

IR-collinear sensitivity & jet mass

Salam, Eur. Phys. J. (2010)

MidPoint IR3+1 => problem postponed to NLO.
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Figure 1: Illustration of collinear safety (left) and collinear unsafety in an IC-PR type algorithm
(right) together with its implication for perturbative calculations (taken from the appendix of
[33]). Partons are vertical lines, their height is proportional to their transverse momentum, and
the horizontal axis indicates rapidity.
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Figure 2: Configurations illustrating IR unsafety of IC-SM algorithms in events with a W and
two hard partons. The addition of a soft gluon converts the event from having two jets to just
one jet. In contrast to fig. 1, here the explicit angular structure is shown (rather than pt as a
function of rapidity).

to find a new stable cone. Once passed through the split–merge step this can lead to the
modification of the final jets, thus making the algorithm infrared unsafe. This is illustrated
in fig. 2: in an event (a) with just two hard partons (and a W , which balances momentum),
both partons act as seeds, there are two stable cones and two jets. The same occurs in the
(negative) infinite loop diagram (b). However, in diagram (c) where an extra soft gluon
has been emitted, the gluon provides a new seed and causes a new stable cone to be found
containing both hard partons (as long as they have similar momenta and are separated
by less than 2R). This stable cone overlaps with the two original ones and the result of
the split–merge procedure is that only one jet is found. So the number of jets depends
on the presence or absence of a soft gluon and after integration over the virtual/real soft-
gluon momentum the two-jet and one-jet cross sections each get non-cancelling infinite
contributions. This is a serious problem, just like collinear unsafety. A good discussion of
it was given in [39].
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18!

Reconstruction of Top!

!! Leading jet in ttbar events 

has clear top mass peak!

o! All events between 70 and 210 

GeV/c2 for R=1.0!

o! See clear W peak!

!! B quark jet presumably nearby in 

those cases!

o! Clear that higher mass cut gives 

greater QCD rejection!

o! Much optimization to do!

!! B tagging not yet used!

o! Now investigating what its 

impact will be!

o! Will need to assess efficiencies 

and mis-tagging rates!

Weizmann/UofT 

,
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o! Clear that higher mass cut gives 

greater QCD rejection!
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!! B tagging not yet used!
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Planar flow
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Planar flow, no mass cut
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Planar flow, no mass cut
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Excess in di-massive jets
Let us look at the “SL” & ‘hadronic” data samples separately 

(including 30% sys’ uncertainties from JES & mass measurements):
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Let us look at the “SL” & ‘hadronic” data samples separately 

(including 30% sys’ uncertainties from JES & mass measurements):

1 massive jets+MET:  
[130<mj<210 (GeV), 4<sMET<10]

QCDdata driven : 31± 8.1 (stat.)± 9.3 (syst.) ,

tt̄ : 1.9± 0.5 .
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26 observed events => ~ -0.6 standard deviations



Excess in di-massive jets
Let us look at the “SL” & ‘hadronic” data samples separately 

(including 30% sys’ uncertainties from JES & mass measurements):
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tt̄ : 3.0± 0.8 .

1 massive jets+MET:  
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26 observed events => ~ -0.6 standard deviations



Excess in di-massive jets
Let us look at the “SL” & ‘hadronic” data samples separately 

(including 30% sys’ uncertainties from JES & mass measurements):

2 massive jets:
[130<mj<210 (GeV)]

QCDdata driven : 13± 2.4 (stat.)± 3.9 (syst.) ,

tt̄ : 3.0± 0.8 .

1 massive jets+MET:  
[130<mj<210 (GeV), 4<sMET<10]

QCDdata driven : 31± 8.1 (stat.)± 9.3 (syst.) ,

tt̄ : 1.9± 0.5 .

32 observed events => ~ 3.4 standard deviations

26 observed events => ~ -0.6 standard deviations



Back to Theory
theorist

R, Alon, E. Duchovni, GP, S. Pronko & P. Sinervo, arXiv:1101.xxxx.

(i) Meothod for pile up subtraction for massive jets.

(ii) Characterization of massive jets.
G. Gur-Ari, M. Papucci & GP, arXiv:1101.xxxx;

(iii) Some trivial implications of the recent data.



Data-driven method of pile-up correction 
for substructure of massive jets (brief)

• Soft semi-coherent contributions smear E-flow distributions.
Dokshitzer, Lucenti, Marchesini and Salam, JHEP (98); Webber, PLB (94).

• Global corrections elegantly dealt with the concept of jet area.
Cacciari and Salam, PLB (08); Cacciari, Salam and Soyez, JHEP (08).

• What about jet shape specific correction (differential correction)?

• Can be addressed by generalization of the jet area concept.
Cacciari and Salam, PLB (08); Cacciari, Salam and Soyez, JHEP (08); Sapeta and Q. C. Zhang, 1009.1143.

 (where X({p_i,g_i}) is the value of X in the presence of ghosts
 and genuine jet particles p_i and X({p_i}) is its value given
 just the particles p_i, nu_g is the ghost density and <g_t> average
 ghost momentum.)

A_X = [ X({p_i, g_i}) - X({p_i}) ]/(nu_g <g_t>) 

  X_{pileup subtracted} = X - A_X * rho



Data-driven method of pile-up correction 
for massive jets 

• An analytical close form can be obtained for narrow massive 
jets, mass, angularity & Pf (qualitatively verified by recent data).

R, Alon, E. Duchovni, GP, S. Pronko & P. Sinervo, arXiv:1101.xxxx.

2

given predefined range. Below we focus on the high jet

mass region (> 70 GeV) since the QCD contribution is

better controlled there, and since such massive jets are

of special importance for various new physics searches.

We evaluate the variation of X under the additional

incoherent component of radiation

∆X
��
pJ ,mJ

=
∂X

∂mJ

��
pJ ,mJ

δmJ +

�

i∈R90o

∂X

∂Ei

��
pJ ,mJ

δEi , (1)

where pJ is the jet momenta (or transverse momenta for

hadronic collider) and the summation
�

i∈R corresponds

to the sum of the energy of calorimeter cells (Ei) inside

a jet with a size-parameter R. The summation
�

i∈R90o

corresponds to the sum of energy deposited in a cone of

area a0 = πR2
whose axis is rotated by 90

o
in φ direction.

It is assumed here that X is measured in the leading jet

and that the incoherent energy deposition inside the lead-

ing jet is equal to that observed, at least on average, to

the cone perpendicular in azimuth:
�

i∈R=
�

i∈R90o . It

is worth mentioning here again that the method is inde-

pendent of the way the additional incoherent component

of energy is measured. This procedure will work for any

IRC jet algorithm as long as R2 � 1.

Generally, the correction to X (∆X) can be written as

a function of X itself for the variables we are interested

in, so that

∆X(pJ , mJ) = f(X, pJ , mJ)δm2
J ⊕ g(X, pJ , mJ)δE , (2)

where f(X, pJ , mJ) and g(X, pJ , mJ) are analytic func-

tions that are computed below for few jet-variables, and

the multiplicative coefficients δm2
J and δE can be deter-

mined from the data.

The correction procedure for jet’s mass, angularity and

planar flow are derived below. The procedure gives rise

to concrete predictions of the form of the corrections

(∆X(X, pJ , m)) as a function of the value of the jet-

variable. Because the corrections can be determined di-

rectly from the data, their uncertainties are relatively

small and can be controlled experimentally.

III. SUBTRACTION METHOD FOR JET MASS

This case is a simplification of the general case de-

scribed by Eq. (1), since X is one of the two variables

we normally control independently. Nevertheless, in or-

der to demonstrate the procedure we analyze it in some

length. The correction to the jet mass is:

∆mJ

��
pJ ,mJ

=

�

i∈R90o

∂m

∂Ei

��
pT ,mJ

δEi . (3)

To estimate the RHS of this relation note that the jet

mass squared is given by m2
J =

��
i∈R Pi

�2
, and so the

correction to it is

∆m2
J ∼ pJ

�

i∈R90o

δEiθ
2
i ≡

�

i∈R90o

δm2
i . (4)

Since to leading order ∆m2
J = 2mJδmJ we find that the

leading order correction to the jet mass is given by (for

a related discussion see [6])

δmJ ∼
�

i∈R90o

δm2
i

2mJ
. (5)

We thus find that for a fixed pT the correction to the

jet mass is proportional to the inverse of that mass and

the coefficient can be fit from the data. This is in agree-

ment with the CDF results for the Midpoint, anti-kT [13]

or Midpoint/SC (Midpoint using search cones) jet algo-

rithms [7]. In this case, data were analyzed separately

for events with one primary vertex (Nvtx = 1) and for

events with multiple interactions (Nvtx > 1) (i.e. single

and multiple interactions events). The behaviour of the

Nvtx > 1 corrections behave as expected from the anal-

ysis above. Furthermore, the Nvtx = 1 corrections show

the average effect of the underlying event in the hard

scatter on the jet mass, but may not accurately repre-

sent the effect of the soft component given that our cal-

culation assumes it behaves incoherently. The difference

between the two corrections separates out the purely in-

coherent component, and gives further confirmation that

the multiple interactions act purely incoherently, scaling

with both the level of multiple interactions and having

the appropriate R4
dependence on the jet radius. This is

shown in Fig. 1 from [7] which includes both the PYTHIA

6.1.4 Monte Carlo (MC) prediction (including full detec-

tor simulation) and the fit to the functional dependence

given in Eq. (5). The vertical axis corresponds to the

change in the jet mass upon adding the contributions

from the 90
o

cone as a function of the measured jet mass

(the horizontal axis). We do not expect the MC to pro-

vide a precise determination of the overall scale of the

change but rather give insight towards the shape of the

correction, which is clearer since in this case obviously

statistics is less of an issue. Furthermore the reader may

note that the plot also includes the low mass region which

is beyond the focus of the present study.

IV. SUBTRACTION METHOD FOR
ANGULARITY

The small angle expression for angularity is [14, 15]

τa(R, pT ) ∼ 2
a−1

mJ

�

i∈jet

Ei θ2−a
i , (6)

where a ≤ 2 is required for IRC safety. Recently, the a =

−2 distribution was measured by CDF for jets with pT >
400 GeV and mass in the window 90 ≤ mJ ≤ 120 GeV.

To leading order, the correction from incoherent energy
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given predefined range. Below we focus on the high jet

mass region (> 70 GeV) since the QCD contribution is

better controlled there, and since such massive jets are

of special importance for various new physics searches.

We evaluate the variation of X under the additional

incoherent component of radiation

∆X
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pJ ,mJ

δmJ +
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where pJ is the jet momenta (or transverse momenta for

hadronic collider) and the summation
�

i∈R corresponds

to the sum of the energy of calorimeter cells (Ei) inside

a jet with a size-parameter R. The summation
�

i∈R90o

corresponds to the sum of energy deposited in a cone of

area a0 = πR2
whose axis is rotated by 90

o
in φ direction.

It is assumed here that X is measured in the leading jet

and that the incoherent energy deposition inside the lead-

ing jet is equal to that observed, at least on average, to

the cone perpendicular in azimuth:
�

i∈R=
�

i∈R90o . It

is worth mentioning here again that the method is inde-

pendent of the way the additional incoherent component

of energy is measured. This procedure will work for any

IRC jet algorithm as long as R2 � 1.

Generally, the correction to X (∆X) can be written as

a function of X itself for the variables we are interested

in, so that

∆X(pJ , mJ) = f(X, pJ , mJ)δm2
J ⊕ g(X, pJ , mJ)δE , (2)

where f(X, pJ , mJ) and g(X, pJ , mJ) are analytic func-

tions that are computed below for few jet-variables, and

the multiplicative coefficients δm2
J and δE can be deter-

mined from the data.

The correction procedure for jet’s mass, angularity and

planar flow are derived below. The procedure gives rise

to concrete predictions of the form of the corrections

(∆X(X, pJ , m)) as a function of the value of the jet-

variable. Because the corrections can be determined di-

rectly from the data, their uncertainties are relatively

small and can be controlled experimentally.

III. SUBTRACTION METHOD FOR JET MASS

This case is a simplification of the general case de-

scribed by Eq. (1), since X is one of the two variables

we normally control independently. Nevertheless, in or-

der to demonstrate the procedure we analyze it in some

length. The correction to the jet mass is:

∆mJ

��
pJ ,mJ

=
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i∈R90o

∂m

∂Ei

��
pT ,mJ

δEi . (3)

To estimate the RHS of this relation note that the jet

mass squared is given by m2
J =
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i∈R Pi
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, and so the

correction to it is

∆m2
J ∼ pJ
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δEiθ
2
i ≡

�
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δm2
i . (4)

Since to leading order ∆m2
J = 2mJδmJ we find that the

leading order correction to the jet mass is given by (for

a related discussion see [6])

δmJ ∼
�

i∈R90o

δm2
i

2mJ
. (5)

We thus find that for a fixed pT the correction to the

jet mass is proportional to the inverse of that mass and

the coefficient can be fit from the data. This is in agree-

ment with the CDF results for the Midpoint, anti-kT [13]

or Midpoint/SC (Midpoint using search cones) jet algo-

rithms [7]. In this case, data were analyzed separately

for events with one primary vertex (Nvtx = 1) and for

events with multiple interactions (Nvtx > 1) (i.e. single

and multiple interactions events). The behaviour of the

Nvtx > 1 corrections behave as expected from the anal-

ysis above. Furthermore, the Nvtx = 1 corrections show

the average effect of the underlying event in the hard

scatter on the jet mass, but may not accurately repre-

sent the effect of the soft component given that our cal-

culation assumes it behaves incoherently. The difference

between the two corrections separates out the purely in-

coherent component, and gives further confirmation that

the multiple interactions act purely incoherently, scaling

with both the level of multiple interactions and having

the appropriate R4
dependence on the jet radius. This is

shown in Fig. 1 from [7] which includes both the PYTHIA

6.1.4 Monte Carlo (MC) prediction (including full detec-

tor simulation) and the fit to the functional dependence

given in Eq. (5). The vertical axis corresponds to the

change in the jet mass upon adding the contributions

from the 90
o

cone as a function of the measured jet mass

(the horizontal axis). We do not expect the MC to pro-

vide a precise determination of the overall scale of the

change but rather give insight towards the shape of the

correction, which is clearer since in this case obviously

statistics is less of an issue. Furthermore the reader may

note that the plot also includes the low mass region which

is beyond the focus of the present study.

IV. SUBTRACTION METHOD FOR
ANGULARITY

The small angle expression for angularity is [14, 15]

τa(R, pT ) ∼ 2
a−1

mJ

�

i∈jet

Ei θ2−a
i , (6)

where a ≤ 2 is required for IRC safety. Recently, the a =

−2 distribution was measured by CDF for jets with pT >
400 GeV and mass in the window 90 ≤ mJ ≤ 120 GeV.

To leading order, the correction from incoherent energy
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given predefined range. Below we focus on the high jet

mass region (> 70 GeV) since the QCD contribution is

better controlled there, and since such massive jets are

of special importance for various new physics searches.

We evaluate the variation of X under the additional

incoherent component of radiation

∆X
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pJ ,mJ

=
∂X

∂mJ

��
pJ ,mJ

δmJ +

�

i∈R90o

∂X

∂Ei

��
pJ ,mJ

δEi , (1)

where pJ is the jet momenta (or transverse momenta for

hadronic collider) and the summation
�

i∈R corresponds

to the sum of the energy of calorimeter cells (Ei) inside

a jet with a size-parameter R. The summation
�

i∈R90o

corresponds to the sum of energy deposited in a cone of

area a0 = πR2
whose axis is rotated by 90

o
in φ direction.

It is assumed here that X is measured in the leading jet

and that the incoherent energy deposition inside the lead-

ing jet is equal to that observed, at least on average, to

the cone perpendicular in azimuth:
�

i∈R=
�

i∈R90o . It

is worth mentioning here again that the method is inde-

pendent of the way the additional incoherent component

of energy is measured. This procedure will work for any

IRC jet algorithm as long as R2 � 1.

Generally, the correction to X (∆X) can be written as

a function of X itself for the variables we are interested

in, so that

∆X(pJ , mJ) = f(X, pJ , mJ)δm2
J ⊕ g(X, pJ , mJ)δE , (2)

where f(X, pJ , mJ) and g(X, pJ , mJ) are analytic func-

tions that are computed below for few jet-variables, and

the multiplicative coefficients δm2
J and δE can be deter-

mined from the data.

The correction procedure for jet’s mass, angularity and

planar flow are derived below. The procedure gives rise

to concrete predictions of the form of the corrections

(∆X(X, pJ , m)) as a function of the value of the jet-

variable. Because the corrections can be determined di-

rectly from the data, their uncertainties are relatively

small and can be controlled experimentally.

III. SUBTRACTION METHOD FOR JET MASS

This case is a simplification of the general case de-

scribed by Eq. (1), since X is one of the two variables

we normally control independently. Nevertheless, in or-

der to demonstrate the procedure we analyze it in some

length. The correction to the jet mass is:

∆mJ

��
pJ ,mJ

=

�

i∈R90o

∂m

∂Ei

��
pT ,mJ

δEi . (3)

To estimate the RHS of this relation note that the jet

mass squared is given by m2
J =

��
i∈R Pi

�2
, and so the

correction to it is

∆m2
J ∼ pJ

�

i∈R90o

δEiθ
2
i ≡

�

i∈R90o

δm2
i . (4)

Since to leading order ∆m2
J = 2mJδmJ we find that the

leading order correction to the jet mass is given by (for

a related discussion see [6])

δmJ ∼
�

i∈R90o

δm2
i

2mJ
. (5)

We thus find that for a fixed pT the correction to the

jet mass is proportional to the inverse of that mass and

the coefficient can be fit from the data. This is in agree-

ment with the CDF results for the Midpoint, anti-kT [13]

or Midpoint/SC (Midpoint using search cones) jet algo-

rithms [7]. In this case, data were analyzed separately

for events with one primary vertex (Nvtx = 1) and for

events with multiple interactions (Nvtx > 1) (i.e. single

and multiple interactions events). The behaviour of the

Nvtx > 1 corrections behave as expected from the anal-

ysis above. Furthermore, the Nvtx = 1 corrections show

the average effect of the underlying event in the hard

scatter on the jet mass, but may not accurately repre-

sent the effect of the soft component given that our cal-

culation assumes it behaves incoherently. The difference

between the two corrections separates out the purely in-

coherent component, and gives further confirmation that

the multiple interactions act purely incoherently, scaling

with both the level of multiple interactions and having

the appropriate R4
dependence on the jet radius. This is

shown in Fig. 1 from [7] which includes both the PYTHIA

6.1.4 Monte Carlo (MC) prediction (including full detec-

tor simulation) and the fit to the functional dependence

given in Eq. (5). The vertical axis corresponds to the

change in the jet mass upon adding the contributions

from the 90
o

cone as a function of the measured jet mass

(the horizontal axis). We do not expect the MC to pro-

vide a precise determination of the overall scale of the

change but rather give insight towards the shape of the

correction, which is clearer since in this case obviously

statistics is less of an issue. Furthermore the reader may

note that the plot also includes the low mass region which

is beyond the focus of the present study.

IV. SUBTRACTION METHOD FOR
ANGULARITY

The small angle expression for angularity is [14, 15]

τa(R, pT ) ∼ 2
a−1

mJ

�

i∈jet

Ei θ2−a
i , (6)

where a ≤ 2 is required for IRC safety. Recently, the a =

−2 distribution was measured by CDF for jets with pT >
400 GeV and mass in the window 90 ≤ mJ ≤ 120 GeV.

To leading order, the correction from incoherent energy

2

given predefined range. Below we focus on the high jet

mass region (> 70 GeV) since the QCD contribution is

better controlled there, and since such massive jets are

of special importance for various new physics searches.

We evaluate the variation of X under the additional

incoherent component of radiation

∆X
��
pJ ,mJ

=
∂X

∂mJ

��
pJ ,mJ

δmJ +

�

i∈R90o

∂X

∂Ei

��
pJ ,mJ

δEi , (1)

where pJ is the jet momenta (or transverse momenta for

hadronic collider) and the summation
�

i∈R corresponds

to the sum of the energy of calorimeter cells (Ei) inside

a jet with a size-parameter R. The summation
�

i∈R90o

corresponds to the sum of energy deposited in a cone of

area a0 = πR2
whose axis is rotated by 90

o
in φ direction.

It is assumed here that X is measured in the leading jet

and that the incoherent energy deposition inside the lead-

ing jet is equal to that observed, at least on average, to

the cone perpendicular in azimuth:
�

i∈R=
�

i∈R90o . It

is worth mentioning here again that the method is inde-

pendent of the way the additional incoherent component

of energy is measured. This procedure will work for any

IRC jet algorithm as long as R2 � 1.

Generally, the correction to X (∆X) can be written as

a function of X itself for the variables we are interested

in, so that

∆X(pJ , mJ) = f(X, pJ , mJ)δm2
J ⊕ g(X, pJ , mJ)δE , (2)

where f(X, pJ , mJ) and g(X, pJ , mJ) are analytic func-

tions that are computed below for few jet-variables, and

the multiplicative coefficients δm2
J and δE can be deter-

mined from the data.

The correction procedure for jet’s mass, angularity and

planar flow are derived below. The procedure gives rise

to concrete predictions of the form of the corrections

(∆X(X, pJ , m)) as a function of the value of the jet-

variable. Because the corrections can be determined di-

rectly from the data, their uncertainties are relatively

small and can be controlled experimentally.

III. SUBTRACTION METHOD FOR JET MASS

This case is a simplification of the general case de-

scribed by Eq. (1), since X is one of the two variables

we normally control independently. Nevertheless, in or-

der to demonstrate the procedure we analyze it in some

length. The correction to the jet mass is:

∆mJ

��
pJ ,mJ

=

�

i∈R90o

∂m

∂Ei

��
pT ,mJ

δEi . (3)

To estimate the RHS of this relation note that the jet

mass squared is given by m2
J =
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i∈R Pi
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, and so the

correction to it is

∆m2
J ∼ pJ
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i∈R90o
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2
i ≡
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δm2
i . (4)

Since to leading order ∆m2
J = 2mJδmJ we find that the

leading order correction to the jet mass is given by (for

a related discussion see [6])

δmJ ∼
�

i∈R90o

δm2
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2mJ
. (5)

We thus find that for a fixed pT the correction to the

jet mass is proportional to the inverse of that mass and

the coefficient can be fit from the data. This is in agree-

ment with the CDF results for the Midpoint, anti-kT [13]

or Midpoint/SC (Midpoint using search cones) jet algo-

rithms [7]. In this case, data were analyzed separately

for events with one primary vertex (Nvtx = 1) and for

events with multiple interactions (Nvtx > 1) (i.e. single

and multiple interactions events). The behaviour of the

Nvtx > 1 corrections behave as expected from the anal-

ysis above. Furthermore, the Nvtx = 1 corrections show

the average effect of the underlying event in the hard

scatter on the jet mass, but may not accurately repre-

sent the effect of the soft component given that our cal-

culation assumes it behaves incoherently. The difference

between the two corrections separates out the purely in-

coherent component, and gives further confirmation that

the multiple interactions act purely incoherently, scaling

with both the level of multiple interactions and having

the appropriate R4
dependence on the jet radius. This is

shown in Fig. 1 from [7] which includes both the PYTHIA

6.1.4 Monte Carlo (MC) prediction (including full detec-

tor simulation) and the fit to the functional dependence

given in Eq. (5). The vertical axis corresponds to the

change in the jet mass upon adding the contributions

from the 90
o

cone as a function of the measured jet mass

(the horizontal axis). We do not expect the MC to pro-

vide a precise determination of the overall scale of the

change but rather give insight towards the shape of the

correction, which is clearer since in this case obviously

statistics is less of an issue. Furthermore the reader may

note that the plot also includes the low mass region which

is beyond the focus of the present study.
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ANGULARITY

The small angle expression for angularity is [14, 15]

τa(R, pT ) ∼ 2
a−1

mJ
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where a ≤ 2 is required for IRC safety. Recently, the a =

−2 distribution was measured by CDF for jets with pT >
400 GeV and mass in the window 90 ≤ mJ ≤ 120 GeV.

To leading order, the correction from incoherent energy2

given predefined range. Below we focus on the high jet

mass region (> 70 GeV) since the QCD contribution is

better controlled there, and since such massive jets are

of special importance for various new physics searches.

We evaluate the variation of X under the additional

incoherent component of radiation
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i∈R corresponds
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a jet with a size-parameter R. The summation
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corresponds to the sum of energy deposited in a cone of

area a0 = πR2
whose axis is rotated by 90
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in φ direction.

It is assumed here that X is measured in the leading jet

and that the incoherent energy deposition inside the lead-

ing jet is equal to that observed, at least on average, to

the cone perpendicular in azimuth:
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is worth mentioning here again that the method is inde-

pendent of the way the additional incoherent component

of energy is measured. This procedure will work for any
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Generally, the correction to X (∆X) can be written as

a function of X itself for the variables we are interested

in, so that
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where f(X, pJ , mJ) and g(X, pJ , mJ) are analytic func-

tions that are computed below for few jet-variables, and

the multiplicative coefficients δm2
J and δE can be deter-

mined from the data.

The correction procedure for jet’s mass, angularity and

planar flow are derived below. The procedure gives rise

to concrete predictions of the form of the corrections

(∆X(X, pJ , m)) as a function of the value of the jet-

variable. Because the corrections can be determined di-

rectly from the data, their uncertainties are relatively

small and can be controlled experimentally.
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This case is a simplification of the general case de-

scribed by Eq. (1), since X is one of the two variables

we normally control independently. Nevertheless, in or-

der to demonstrate the procedure we analyze it in some

length. The correction to the jet mass is:
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Since to leading order ∆m2
J = 2mJδmJ we find that the

leading order correction to the jet mass is given by (for

a related discussion see [6])
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We thus find that for a fixed pT the correction to the

jet mass is proportional to the inverse of that mass and

the coefficient can be fit from the data. This is in agree-

ment with the CDF results for the Midpoint, anti-kT [13]

or Midpoint/SC (Midpoint using search cones) jet algo-

rithms [7]. In this case, data were analyzed separately

for events with one primary vertex (Nvtx = 1) and for

events with multiple interactions (Nvtx > 1) (i.e. single

and multiple interactions events). The behaviour of the

Nvtx > 1 corrections behave as expected from the anal-

ysis above. Furthermore, the Nvtx = 1 corrections show

the average effect of the underlying event in the hard

scatter on the jet mass, but may not accurately repre-

sent the effect of the soft component given that our cal-

culation assumes it behaves incoherently. The difference

between the two corrections separates out the purely in-

coherent component, and gives further confirmation that

the multiple interactions act purely incoherently, scaling

with both the level of multiple interactions and having

the appropriate R4
dependence on the jet radius. This is

shown in Fig. 1 from [7] which includes both the PYTHIA

6.1.4 Monte Carlo (MC) prediction (including full detec-

tor simulation) and the fit to the functional dependence

given in Eq. (5). The vertical axis corresponds to the

change in the jet mass upon adding the contributions

from the 90
o

cone as a function of the measured jet mass

(the horizontal axis). We do not expect the MC to pro-

vide a precise determination of the overall scale of the

change but rather give insight towards the shape of the

correction, which is clearer since in this case obviously

statistics is less of an issue. Furthermore the reader may

note that the plot also includes the low mass region which

is beyond the focus of the present study.
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where a ≤ 2 is required for IRC safety. Recently, the a =

−2 distribution was measured by CDF for jets with pT >
400 GeV and mass in the window 90 ≤ mJ ≤ 120 GeV.

To leading order, the correction from incoherent energy
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given predefined range. Below we focus on the high jet

mass region (> 70 GeV) since the QCD contribution is

better controlled there, and since such massive jets are

of special importance for various new physics searches.

We evaluate the variation of X under the additional

incoherent component of radiation
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hadronic collider) and the summation
�

i∈R corresponds

to the sum of the energy of calorimeter cells (Ei) inside

a jet with a size-parameter R. The summation
�

i∈R90o

corresponds to the sum of energy deposited in a cone of

area a0 = πR2
whose axis is rotated by 90

o
in φ direction.

It is assumed here that X is measured in the leading jet

and that the incoherent energy deposition inside the lead-

ing jet is equal to that observed, at least on average, to

the cone perpendicular in azimuth:
�

i∈R=
�

i∈R90o . It

is worth mentioning here again that the method is inde-

pendent of the way the additional incoherent component

of energy is measured. This procedure will work for any

IRC jet algorithm as long as R2 � 1.

Generally, the correction to X (∆X) can be written as

a function of X itself for the variables we are interested

in, so that

∆X(pJ , mJ) = f(X, pJ , mJ)δm2
J ⊕ g(X, pJ , mJ)δE , (2)

where f(X, pJ , mJ) and g(X, pJ , mJ) are analytic func-

tions that are computed below for few jet-variables, and

the multiplicative coefficients δm2
J and δE can be deter-

mined from the data.

The correction procedure for jet’s mass, angularity and

planar flow are derived below. The procedure gives rise

to concrete predictions of the form of the corrections

(∆X(X, pJ , m)) as a function of the value of the jet-

variable. Because the corrections can be determined di-

rectly from the data, their uncertainties are relatively

small and can be controlled experimentally.

III. SUBTRACTION METHOD FOR JET MASS

This case is a simplification of the general case de-

scribed by Eq. (1), since X is one of the two variables

we normally control independently. Nevertheless, in or-

der to demonstrate the procedure we analyze it in some

length. The correction to the jet mass is:

∆mJ

��
pJ ,mJ

=

�

i∈R90o

∂m

∂Ei

��
pT ,mJ

δEi . (3)

To estimate the RHS of this relation note that the jet

mass squared is given by m2
J =

��
i∈R Pi

�2
, and so the

correction to it is

∆m2
J ∼ pJ

�

i∈R90o

δEiθ
2
i ≡

�

i∈R90o

δm2
i . (4)

Since to leading order ∆m2
J = 2mJδmJ we find that the

leading order correction to the jet mass is given by (for

a related discussion see [6])

δmJ ∼
�

i∈R90o

δm2
i

2mJ
. (5)

We thus find that for a fixed pT the correction to the

jet mass is proportional to the inverse of that mass and

the coefficient can be fit from the data. This is in agree-

ment with the CDF results for the Midpoint, anti-kT [13]

or Midpoint/SC (Midpoint using search cones) jet algo-

rithms [7]. In this case, data were analyzed separately

for events with one primary vertex (Nvtx = 1) and for

events with multiple interactions (Nvtx > 1) (i.e. single

and multiple interactions events). The behaviour of the

Nvtx > 1 corrections behave as expected from the anal-

ysis above. Furthermore, the Nvtx = 1 corrections show

the average effect of the underlying event in the hard

scatter on the jet mass, but may not accurately repre-

sent the effect of the soft component given that our cal-

culation assumes it behaves incoherently. The difference

between the two corrections separates out the purely in-

coherent component, and gives further confirmation that

the multiple interactions act purely incoherently, scaling

with both the level of multiple interactions and having

the appropriate R4
dependence on the jet radius. This is

shown in Fig. 1 from [7] which includes both the PYTHIA

6.1.4 Monte Carlo (MC) prediction (including full detec-

tor simulation) and the fit to the functional dependence

given in Eq. (5). The vertical axis corresponds to the

change in the jet mass upon adding the contributions

from the 90
o

cone as a function of the measured jet mass

(the horizontal axis). We do not expect the MC to pro-

vide a precise determination of the overall scale of the

change but rather give insight towards the shape of the

correction, which is clearer since in this case obviously

statistics is less of an issue. Furthermore the reader may

note that the plot also includes the low mass region which

is beyond the focus of the present study.

IV. SUBTRACTION METHOD FOR
ANGULARITY

The small angle expression for angularity is [14, 15]

τa(R, pT ) ∼ 2
a−1

mJ

�

i∈jet

Ei θ2−a
i , (6)

where a ≤ 2 is required for IRC safety. Recently, the a =

−2 distribution was measured by CDF for jets with pT >
400 GeV and mass in the window 90 ≤ mJ ≤ 120 GeV.

To leading order, the correction from incoherent energy
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given predefined range. Below we focus on the high jet

mass region (> 70 GeV) since the QCD contribution is

better controlled there, and since such massive jets are

of special importance for various new physics searches.

We evaluate the variation of X under the additional

incoherent component of radiation

∆X
��
pJ ,mJ

=
∂X

∂mJ

��
pJ ,mJ

δmJ +

�

i∈R90o

∂X

∂Ei

��
pJ ,mJ

δEi , (1)

where pJ is the jet momenta (or transverse momenta for

hadronic collider) and the summation
�

i∈R corresponds

to the sum of the energy of calorimeter cells (Ei) inside

a jet with a size-parameter R. The summation
�

i∈R90o

corresponds to the sum of energy deposited in a cone of

area a0 = πR2
whose axis is rotated by 90

o
in φ direction.

It is assumed here that X is measured in the leading jet

and that the incoherent energy deposition inside the lead-

ing jet is equal to that observed, at least on average, to

the cone perpendicular in azimuth:
�

i∈R=
�

i∈R90o . It

is worth mentioning here again that the method is inde-

pendent of the way the additional incoherent component

of energy is measured. This procedure will work for any

IRC jet algorithm as long as R2 � 1.

Generally, the correction to X (∆X) can be written as

a function of X itself for the variables we are interested

in, so that

∆X(pJ , mJ) = f(X, pJ , mJ)δm2
J ⊕ g(X, pJ , mJ)δE , (2)

where f(X, pJ , mJ) and g(X, pJ , mJ) are analytic func-

tions that are computed below for few jet-variables, and

the multiplicative coefficients δm2
J and δE can be deter-

mined from the data.

The correction procedure for jet’s mass, angularity and

planar flow are derived below. The procedure gives rise

to concrete predictions of the form of the corrections

(∆X(X, pJ , m)) as a function of the value of the jet-

variable. Because the corrections can be determined di-

rectly from the data, their uncertainties are relatively

small and can be controlled experimentally.

III. SUBTRACTION METHOD FOR JET MASS

This case is a simplification of the general case de-

scribed by Eq. (1), since X is one of the two variables

we normally control independently. Nevertheless, in or-

der to demonstrate the procedure we analyze it in some

length. The correction to the jet mass is:

∆mJ

��
pJ ,mJ

=

�

i∈R90o

∂m

∂Ei

��
pT ,mJ

δEi . (3)

To estimate the RHS of this relation note that the jet

mass squared is given by m2
J =

��
i∈R Pi

�2
, and so the

correction to it is

∆m2
J ∼ pJ

�

i∈R90o

δEiθ
2
i ≡

�

i∈R90o

δm2
i . (4)

Since to leading order ∆m2
J = 2mJδmJ we find that the

leading order correction to the jet mass is given by (for

a related discussion see [6])

δmJ ∼
�

i∈R90o

δm2
i

2mJ
. (5)

We thus find that for a fixed pT the correction to the

jet mass is proportional to the inverse of that mass and

the coefficient can be fit from the data. This is in agree-

ment with the CDF results for the Midpoint, anti-kT [13]

or Midpoint/SC (Midpoint using search cones) jet algo-

rithms [7]. In this case, data were analyzed separately

for events with one primary vertex (Nvtx = 1) and for

events with multiple interactions (Nvtx > 1) (i.e. single

and multiple interactions events). The behaviour of the

Nvtx > 1 corrections behave as expected from the anal-

ysis above. Furthermore, the Nvtx = 1 corrections show

the average effect of the underlying event in the hard

scatter on the jet mass, but may not accurately repre-

sent the effect of the soft component given that our cal-

culation assumes it behaves incoherently. The difference

between the two corrections separates out the purely in-

coherent component, and gives further confirmation that

the multiple interactions act purely incoherently, scaling

with both the level of multiple interactions and having

the appropriate R4
dependence on the jet radius. This is

shown in Fig. 1 from [7] which includes both the PYTHIA

6.1.4 Monte Carlo (MC) prediction (including full detec-

tor simulation) and the fit to the functional dependence

given in Eq. (5). The vertical axis corresponds to the

change in the jet mass upon adding the contributions

from the 90
o

cone as a function of the measured jet mass

(the horizontal axis). We do not expect the MC to pro-

vide a precise determination of the overall scale of the

change but rather give insight towards the shape of the

correction, which is clearer since in this case obviously

statistics is less of an issue. Furthermore the reader may

note that the plot also includes the low mass region which

is beyond the focus of the present study.

IV. SUBTRACTION METHOD FOR
ANGULARITY

The small angle expression for angularity is [14, 15]

τa(R, pT ) ∼ 2
a−1

mJ

�

i∈jet

Ei θ2−a
i , (6)

where a ≤ 2 is required for IRC safety. Recently, the a =

−2 distribution was measured by CDF for jets with pT >
400 GeV and mass in the window 90 ≤ mJ ≤ 120 GeV.

To leading order, the correction from incoherent energy
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given predefined range. Below we focus on the high jet

mass region (> 70 GeV) since the QCD contribution is

better controlled there, and since such massive jets are

of special importance for various new physics searches.

We evaluate the variation of X under the additional

incoherent component of radiation

∆X
��
pJ ,mJ

=
∂X

∂mJ

��
pJ ,mJ

δmJ +

�

i∈R90o

∂X

∂Ei

��
pJ ,mJ

δEi , (1)

where pJ is the jet momenta (or transverse momenta for

hadronic collider) and the summation
�

i∈R corresponds

to the sum of the energy of calorimeter cells (Ei) inside

a jet with a size-parameter R. The summation
�

i∈R90o

corresponds to the sum of energy deposited in a cone of

area a0 = πR2
whose axis is rotated by 90

o
in φ direction.

It is assumed here that X is measured in the leading jet

and that the incoherent energy deposition inside the lead-

ing jet is equal to that observed, at least on average, to

the cone perpendicular in azimuth:
�

i∈R=
�

i∈R90o . It

is worth mentioning here again that the method is inde-

pendent of the way the additional incoherent component

of energy is measured. This procedure will work for any

IRC jet algorithm as long as R2 � 1.

Generally, the correction to X (∆X) can be written as

a function of X itself for the variables we are interested

in, so that

∆X(pJ , mJ) = f(X, pJ , mJ)δm2
J ⊕ g(X, pJ , mJ)δE , (2)

where f(X, pJ , mJ) and g(X, pJ , mJ) are analytic func-

tions that are computed below for few jet-variables, and

the multiplicative coefficients δm2
J and δE can be deter-

mined from the data.

The correction procedure for jet’s mass, angularity and

planar flow are derived below. The procedure gives rise

to concrete predictions of the form of the corrections

(∆X(X, pJ , m)) as a function of the value of the jet-

variable. Because the corrections can be determined di-

rectly from the data, their uncertainties are relatively

small and can be controlled experimentally.

III. SUBTRACTION METHOD FOR JET MASS

This case is a simplification of the general case de-

scribed by Eq. (1), since X is one of the two variables

we normally control independently. Nevertheless, in or-

der to demonstrate the procedure we analyze it in some

length. The correction to the jet mass is:

∆mJ

��
pJ ,mJ

=

�

i∈R90o

∂m

∂Ei

��
pT ,mJ

δEi . (3)

To estimate the RHS of this relation note that the jet

mass squared is given by m2
J =

��
i∈R Pi

�2
, and so the

correction to it is

∆m2
J ∼ pJ

�

i∈R90o

δEiθ
2
i ≡

�

i∈R90o

δm2
i . (4)

Since to leading order ∆m2
J = 2mJδmJ we find that the

leading order correction to the jet mass is given by (for

a related discussion see [6])

δmJ ∼
�

i∈R90o

δm2
i

2mJ
. (5)

We thus find that for a fixed pT the correction to the

jet mass is proportional to the inverse of that mass and

the coefficient can be fit from the data. This is in agree-

ment with the CDF results for the Midpoint, anti-kT [13]

or Midpoint/SC (Midpoint using search cones) jet algo-

rithms [7]. In this case, data were analyzed separately

for events with one primary vertex (Nvtx = 1) and for

events with multiple interactions (Nvtx > 1) (i.e. single

and multiple interactions events). The behaviour of the

Nvtx > 1 corrections behave as expected from the anal-

ysis above. Furthermore, the Nvtx = 1 corrections show

the average effect of the underlying event in the hard

scatter on the jet mass, but may not accurately repre-

sent the effect of the soft component given that our cal-

culation assumes it behaves incoherently. The difference

between the two corrections separates out the purely in-

coherent component, and gives further confirmation that

the multiple interactions act purely incoherently, scaling

with both the level of multiple interactions and having

the appropriate R4
dependence on the jet radius. This is

shown in Fig. 1 from [7] which includes both the PYTHIA

6.1.4 Monte Carlo (MC) prediction (including full detec-

tor simulation) and the fit to the functional dependence

given in Eq. (5). The vertical axis corresponds to the

change in the jet mass upon adding the contributions

from the 90
o

cone as a function of the measured jet mass

(the horizontal axis). We do not expect the MC to pro-

vide a precise determination of the overall scale of the

change but rather give insight towards the shape of the

correction, which is clearer since in this case obviously

statistics is less of an issue. Furthermore the reader may

note that the plot also includes the low mass region which

is beyond the focus of the present study.

IV. SUBTRACTION METHOD FOR
ANGULARITY

The small angle expression for angularity is [14, 15]

τa(R, pT ) ∼ 2
a−1

mJ

�

i∈jet

Ei θ2−a
i , (6)

where a ≤ 2 is required for IRC safety. Recently, the a =

−2 distribution was measured by CDF for jets with pT >
400 GeV and mass in the window 90 ≤ mJ ≤ 120 GeV.

To leading order, the correction from incoherent energy
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given predefined range. Below we focus on the high jet

mass region (> 70 GeV) since the QCD contribution is

better controlled there, and since such massive jets are

of special importance for various new physics searches.

We evaluate the variation of X under the additional

incoherent component of radiation

∆X
��
pJ ,mJ

=
∂X

∂mJ

��
pJ ,mJ

δmJ +

�

i∈R90o

∂X

∂Ei

��
pJ ,mJ

δEi , (1)

where pJ is the jet momenta (or transverse momenta for

hadronic collider) and the summation
�

i∈R corresponds

to the sum of the energy of calorimeter cells (Ei) inside

a jet with a size-parameter R. The summation
�

i∈R90o

corresponds to the sum of energy deposited in a cone of

area a0 = πR2
whose axis is rotated by 90

o
in φ direction.

It is assumed here that X is measured in the leading jet

and that the incoherent energy deposition inside the lead-

ing jet is equal to that observed, at least on average, to

the cone perpendicular in azimuth:
�

i∈R=
�

i∈R90o . It

is worth mentioning here again that the method is inde-

pendent of the way the additional incoherent component

of energy is measured. This procedure will work for any

IRC jet algorithm as long as R2 � 1.

Generally, the correction to X (∆X) can be written as

a function of X itself for the variables we are interested

in, so that

∆X(pJ , mJ) = f(X, pJ , mJ)δm2
J ⊕ g(X, pJ , mJ)δE , (2)

where f(X, pJ , mJ) and g(X, pJ , mJ) are analytic func-

tions that are computed below for few jet-variables, and

the multiplicative coefficients δm2
J and δE can be deter-

mined from the data.

The correction procedure for jet’s mass, angularity and

planar flow are derived below. The procedure gives rise

to concrete predictions of the form of the corrections

(∆X(X, pJ , m)) as a function of the value of the jet-

variable. Because the corrections can be determined di-

rectly from the data, their uncertainties are relatively

small and can be controlled experimentally.

III. SUBTRACTION METHOD FOR JET MASS

This case is a simplification of the general case de-

scribed by Eq. (1), since X is one of the two variables

we normally control independently. Nevertheless, in or-

der to demonstrate the procedure we analyze it in some

length. The correction to the jet mass is:

∆mJ

��
pJ ,mJ

=

�

i∈R90o

∂m

∂Ei

��
pT ,mJ

δEi . (3)

To estimate the RHS of this relation note that the jet

mass squared is given by m2
J =

��
i∈R Pi

�2
, and so the

correction to it is

∆m2
J ∼ pJ

�

i∈R90o

δEiθ
2
i ≡

�

i∈R90o

δm2
i . (4)

Since to leading order ∆m2
J = 2mJδmJ we find that the

leading order correction to the jet mass is given by (for

a related discussion see [6])

δmJ ∼
�

i∈R90o

δm2
i

2mJ
. (5)

We thus find that for a fixed pT the correction to the

jet mass is proportional to the inverse of that mass and

the coefficient can be fit from the data. This is in agree-

ment with the CDF results for the Midpoint, anti-kT [13]

or Midpoint/SC (Midpoint using search cones) jet algo-

rithms [7]. In this case, data were analyzed separately

for events with one primary vertex (Nvtx = 1) and for

events with multiple interactions (Nvtx > 1) (i.e. single

and multiple interactions events). The behaviour of the

Nvtx > 1 corrections behave as expected from the anal-

ysis above. Furthermore, the Nvtx = 1 corrections show

the average effect of the underlying event in the hard

scatter on the jet mass, but may not accurately repre-

sent the effect of the soft component given that our cal-

culation assumes it behaves incoherently. The difference

between the two corrections separates out the purely in-

coherent component, and gives further confirmation that

the multiple interactions act purely incoherently, scaling

with both the level of multiple interactions and having

the appropriate R4
dependence on the jet radius. This is

shown in Fig. 1 from [7] which includes both the PYTHIA

6.1.4 Monte Carlo (MC) prediction (including full detec-

tor simulation) and the fit to the functional dependence

given in Eq. (5). The vertical axis corresponds to the

change in the jet mass upon adding the contributions

from the 90
o

cone as a function of the measured jet mass

(the horizontal axis). We do not expect the MC to pro-

vide a precise determination of the overall scale of the

change but rather give insight towards the shape of the

correction, which is clearer since in this case obviously

statistics is less of an issue. Furthermore the reader may

note that the plot also includes the low mass region which

is beyond the focus of the present study.

IV. SUBTRACTION METHOD FOR
ANGULARITY

The small angle expression for angularity is [14, 15]

τa(R, pT ) ∼ 2
a−1

mJ

�

i∈jet

Ei θ2−a
i , (6)

where a ≤ 2 is required for IRC safety. Recently, the a =

−2 distribution was measured by CDF for jets with pT >
400 GeV and mass in the window 90 ≤ mJ ≤ 120 GeV.

To leading order, the correction from incoherent energy

2

given predefined range. Below we focus on the high jet

mass region (> 70 GeV) since the QCD contribution is

better controlled there, and since such massive jets are

of special importance for various new physics searches.

We evaluate the variation of X under the additional

incoherent component of radiation

∆X
��
pJ ,mJ

=
∂X

∂mJ

��
pJ ,mJ

δmJ +

�

i∈R90o

∂X

∂Ei

��
pJ ,mJ

δEi , (1)

where pJ is the jet momenta (or transverse momenta for

hadronic collider) and the summation
�

i∈R corresponds

to the sum of the energy of calorimeter cells (Ei) inside

a jet with a size-parameter R. The summation
�

i∈R90o

corresponds to the sum of energy deposited in a cone of

area a0 = πR2
whose axis is rotated by 90

o
in φ direction.

It is assumed here that X is measured in the leading jet

and that the incoherent energy deposition inside the lead-

ing jet is equal to that observed, at least on average, to

the cone perpendicular in azimuth:
�

i∈R=
�

i∈R90o . It

is worth mentioning here again that the method is inde-

pendent of the way the additional incoherent component

of energy is measured. This procedure will work for any

IRC jet algorithm as long as R2 � 1.

Generally, the correction to X (∆X) can be written as

a function of X itself for the variables we are interested

in, so that

∆X(pJ , mJ) = f(X, pJ , mJ)δm2
J ⊕ g(X, pJ , mJ)δE , (2)

where f(X, pJ , mJ) and g(X, pJ , mJ) are analytic func-

tions that are computed below for few jet-variables, and

the multiplicative coefficients δm2
J and δE can be deter-

mined from the data.

The correction procedure for jet’s mass, angularity and

planar flow are derived below. The procedure gives rise

to concrete predictions of the form of the corrections

(∆X(X, pJ , m)) as a function of the value of the jet-

variable. Because the corrections can be determined di-

rectly from the data, their uncertainties are relatively

small and can be controlled experimentally.

III. SUBTRACTION METHOD FOR JET MASS

This case is a simplification of the general case de-

scribed by Eq. (1), since X is one of the two variables

we normally control independently. Nevertheless, in or-

der to demonstrate the procedure we analyze it in some

length. The correction to the jet mass is:

∆mJ

��
pJ ,mJ

=

�

i∈R90o

∂m

∂Ei

��
pT ,mJ

δEi . (3)

To estimate the RHS of this relation note that the jet

mass squared is given by m2
J =

��
i∈R Pi

�2
, and so the

correction to it is

∆m2
J ∼ pJ

�

i∈R90o

δEiθ
2
i ≡

�

i∈R90o

δm2
i . (4)

Since to leading order ∆m2
J = 2mJδmJ we find that the

leading order correction to the jet mass is given by (for

a related discussion see [6])

δmJ ∼
�

i∈R90o

δm2
i

2mJ
. (5)

We thus find that for a fixed pT the correction to the

jet mass is proportional to the inverse of that mass and

the coefficient can be fit from the data. This is in agree-

ment with the CDF results for the Midpoint, anti-kT [13]

or Midpoint/SC (Midpoint using search cones) jet algo-

rithms [7]. In this case, data were analyzed separately

for events with one primary vertex (Nvtx = 1) and for

events with multiple interactions (Nvtx > 1) (i.e. single

and multiple interactions events). The behaviour of the

Nvtx > 1 corrections behave as expected from the anal-

ysis above. Furthermore, the Nvtx = 1 corrections show

the average effect of the underlying event in the hard

scatter on the jet mass, but may not accurately repre-

sent the effect of the soft component given that our cal-

culation assumes it behaves incoherently. The difference

between the two corrections separates out the purely in-

coherent component, and gives further confirmation that

the multiple interactions act purely incoherently, scaling

with both the level of multiple interactions and having

the appropriate R4
dependence on the jet radius. This is

shown in Fig. 1 from [7] which includes both the PYTHIA

6.1.4 Monte Carlo (MC) prediction (including full detec-

tor simulation) and the fit to the functional dependence

given in Eq. (5). The vertical axis corresponds to the

change in the jet mass upon adding the contributions

from the 90
o

cone as a function of the measured jet mass

(the horizontal axis). We do not expect the MC to pro-

vide a precise determination of the overall scale of the

change but rather give insight towards the shape of the

correction, which is clearer since in this case obviously

statistics is less of an issue. Furthermore the reader may

note that the plot also includes the low mass region which

is beyond the focus of the present study.

IV. SUBTRACTION METHOD FOR
ANGULARITY

The small angle expression for angularity is [14, 15]

τa(R, pT ) ∼ 2
a−1

mJ

�

i∈jet

Ei θ2−a
i , (6)

where a ≤ 2 is required for IRC safety. Recently, the a =

−2 distribution was measured by CDF for jets with pT >
400 GeV and mass in the window 90 ≤ mJ ≤ 120 GeV.

To leading order, the correction from incoherent energy2

given predefined range. Below we focus on the high jet

mass region (> 70 GeV) since the QCD contribution is

better controlled there, and since such massive jets are

of special importance for various new physics searches.

We evaluate the variation of X under the additional

incoherent component of radiation

∆X
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pJ ,mJ

=
∂X

∂mJ

��
pJ ,mJ

δmJ +
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i∈R90o

∂X

∂Ei

��
pJ ,mJ

δEi , (1)

where pJ is the jet momenta (or transverse momenta for

hadronic collider) and the summation
�

i∈R corresponds

to the sum of the energy of calorimeter cells (Ei) inside

a jet with a size-parameter R. The summation
�

i∈R90o

corresponds to the sum of energy deposited in a cone of

area a0 = πR2
whose axis is rotated by 90

o
in φ direction.

It is assumed here that X is measured in the leading jet

and that the incoherent energy deposition inside the lead-

ing jet is equal to that observed, at least on average, to

the cone perpendicular in azimuth:
�

i∈R=
�

i∈R90o . It

is worth mentioning here again that the method is inde-

pendent of the way the additional incoherent component

of energy is measured. This procedure will work for any

IRC jet algorithm as long as R2 � 1.

Generally, the correction to X (∆X) can be written as

a function of X itself for the variables we are interested

in, so that

∆X(pJ , mJ) = f(X, pJ , mJ)δm2
J ⊕ g(X, pJ , mJ)δE , (2)

where f(X, pJ , mJ) and g(X, pJ , mJ) are analytic func-

tions that are computed below for few jet-variables, and

the multiplicative coefficients δm2
J and δE can be deter-

mined from the data.

The correction procedure for jet’s mass, angularity and

planar flow are derived below. The procedure gives rise

to concrete predictions of the form of the corrections

(∆X(X, pJ , m)) as a function of the value of the jet-

variable. Because the corrections can be determined di-

rectly from the data, their uncertainties are relatively

small and can be controlled experimentally.

III. SUBTRACTION METHOD FOR JET MASS

This case is a simplification of the general case de-

scribed by Eq. (1), since X is one of the two variables

we normally control independently. Nevertheless, in or-

der to demonstrate the procedure we analyze it in some

length. The correction to the jet mass is:

∆mJ

��
pJ ,mJ

=

�

i∈R90o

∂m

∂Ei

��
pT ,mJ

δEi . (3)

To estimate the RHS of this relation note that the jet

mass squared is given by m2
J =

��
i∈R Pi

�2
, and so the

correction to it is

∆m2
J ∼ pJ

�

i∈R90o

δEiθ
2
i ≡

�

i∈R90o

δm2
i . (4)

Since to leading order ∆m2
J = 2mJδmJ we find that the

leading order correction to the jet mass is given by (for

a related discussion see [6])

δmJ ∼
�

i∈R90o

δm2
i

2mJ
. (5)

We thus find that for a fixed pT the correction to the

jet mass is proportional to the inverse of that mass and

the coefficient can be fit from the data. This is in agree-

ment with the CDF results for the Midpoint, anti-kT [13]

or Midpoint/SC (Midpoint using search cones) jet algo-

rithms [7]. In this case, data were analyzed separately

for events with one primary vertex (Nvtx = 1) and for

events with multiple interactions (Nvtx > 1) (i.e. single

and multiple interactions events). The behaviour of the

Nvtx > 1 corrections behave as expected from the anal-

ysis above. Furthermore, the Nvtx = 1 corrections show

the average effect of the underlying event in the hard

scatter on the jet mass, but may not accurately repre-

sent the effect of the soft component given that our cal-

culation assumes it behaves incoherently. The difference

between the two corrections separates out the purely in-

coherent component, and gives further confirmation that

the multiple interactions act purely incoherently, scaling

with both the level of multiple interactions and having

the appropriate R4
dependence on the jet radius. This is

shown in Fig. 1 from [7] which includes both the PYTHIA

6.1.4 Monte Carlo (MC) prediction (including full detec-

tor simulation) and the fit to the functional dependence

given in Eq. (5). The vertical axis corresponds to the

change in the jet mass upon adding the contributions

from the 90
o

cone as a function of the measured jet mass

(the horizontal axis). We do not expect the MC to pro-

vide a precise determination of the overall scale of the

change but rather give insight towards the shape of the

correction, which is clearer since in this case obviously

statistics is less of an issue. Furthermore the reader may

note that the plot also includes the low mass region which

is beyond the focus of the present study.

IV. SUBTRACTION METHOD FOR
ANGULARITY

The small angle expression for angularity is [14, 15]
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a−1
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Ei θ2−a
i , (6)

where a ≤ 2 is required for IRC safety. Recently, the a =

−2 distribution was measured by CDF for jets with pT >
400 GeV and mass in the window 90 ≤ mJ ≤ 120 GeV.

To leading order, the correction from incoherent energy
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tions that are computed below for few jet-variables, and

the multiplicative coefficients δm2
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to concrete predictions of the form of the corrections
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variable. Because the corrections can be determined di-

rectly from the data, their uncertainties are relatively

small and can be controlled experimentally.
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To estimate the RHS of this relation note that the jet
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leading order correction to the jet mass is given by (for

a related discussion see [6])
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We thus find that for a fixed pT the correction to the

jet mass is proportional to the inverse of that mass and

the coefficient can be fit from the data. This is in agree-

ment with the CDF results for the Midpoint, anti-kT [13]

or Midpoint/SC (Midpoint using search cones) jet algo-

rithms [7]. In this case, data were analyzed separately

for events with one primary vertex (Nvtx = 1) and for

events with multiple interactions (Nvtx > 1) (i.e. single

and multiple interactions events). The behaviour of the

Nvtx > 1 corrections behave as expected from the anal-

ysis above. Furthermore, the Nvtx = 1 corrections show

the average effect of the underlying event in the hard

scatter on the jet mass, but may not accurately repre-

sent the effect of the soft component given that our cal-

culation assumes it behaves incoherently. The difference

between the two corrections separates out the purely in-

coherent component, and gives further confirmation that

the multiple interactions act purely incoherently, scaling

with both the level of multiple interactions and having

the appropriate R4
dependence on the jet radius. This is

shown in Fig. 1 from [7] which includes both the PYTHIA

6.1.4 Monte Carlo (MC) prediction (including full detec-

tor simulation) and the fit to the functional dependence

given in Eq. (5). The vertical axis corresponds to the

change in the jet mass upon adding the contributions

from the 90
o

cone as a function of the measured jet mass

(the horizontal axis). We do not expect the MC to pro-

vide a precise determination of the overall scale of the

change but rather give insight towards the shape of the

correction, which is clearer since in this case obviously

statistics is less of an issue. Furthermore the reader may

note that the plot also includes the low mass region which

is beyond the focus of the present study.

IV. SUBTRACTION METHOD FOR
ANGULARITY

The small angle expression for angularity is [14, 15]

τa(R, pT ) ∼ 2
a−1

mJ

�

i∈jet

Ei θ2−a
i , (6)

where a ≤ 2 is required for IRC safety. Recently, the a =

−2 distribution was measured by CDF for jets with pT >
400 GeV and mass in the window 90 ≤ mJ ≤ 120 GeV.

To leading order, the correction from incoherent energy
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FIG. 1: On the upper panel we show the CDF data and a

fit based on the relation derived in Eq. (5). The data col-

lected had on average 3 multiple interactions per event (in-

cluding the hard interaction). On the lower panel we show the

corresponding MC predictions including full detector simula-

tion [7].

deposition is given by

∆τa =
∂τa

∂mJ
δmJ +

�

i∈R90o

∂τa

∂Ei
δEi

� − τJ
a

2m2
J

�

i∈R90o

δm2
i +

2
a−1

pJmJ

�

i∈R90o

δm2
i θ−a

i

=

�

i∈R90o

δm2
i

2m2
J

�
2

amJ

pJ
θ−a

i ⊕ τJ
a

�
, (7)

where we use Eq. (4) to simplify the RHS. We note that

τJ
a corresponds to the jet angularity before the correction.

We also note that the two types of contributions should

be added incoherently in quadrature as indicated by the

⊕ symbol. Eq. (7) implies that for a fixed jet mass (as is

often applied in new physics searches) the leading order

correction to angularity consists of two terms: a constant

and a term proportional to the value of the angularity

itself.

Let us denote by R12 the ratio between the second and

the first terms in the parenthesis of the RHS of Eq. (7),

R12 =
2

a

τJ
a

mJ

pJ

�
i∈R90o δm2

i θ−a
i�

i∈R90o δm2
i

. (8)

The above ratio can be estimated by taking the minimum

and maximum value for the angularity,
�
τJ
a

�min, max
,

which may be obtained from the leading order pertur-

bative QCD result [9, 16],

�
τJ
a

�min �
�

mJ

2pJ

�1−a

,
�
τJ
a

�max � 2
a−1 R−a mJ

pJ
. (9)

We therefore find that the ratio between the minimum

and maximum contributions

�
Rmin, max

12

�

i
is:

�
Rmin

12

�
i
∼ 2 θ−a

i

�
mJ

pJ

�a

∼ 2

�
mJ

RpJ

�a

,

(Rmax
12 )i ∼ 2 θ−a

i Ra ∼ 2 ,

where on the RHS we have used the approximation θi ∼
R for the most important contributions.

The interesting angularity distributions, relevant to

highly boosted massive jets, are those with negative

a [9, 15] which emphasize the radiation towards the edge

of the cone. Consequently, we find that over the inter-

esting range of parameters the constant corection term

dominates with some subdominant linear contribution

towards
�
τJ
a

�max
. We also find that in general the rela-

tive correction to angularity is small

∆τa

τa
∼

�

i∈R90o

δm2
i

2m2
J

(R12)i �
�

i∈R90o

δm2
i

m2
J

∼ 2δmJ

mJ
� 1.

(10)

Analysis of the expected corrections at CDF shows that

for pT ≥ 400 GeV, R = 0.7 and mJ ∼ 100 GeV then
δτa
τa

� 2× 4 GeV/100 GeV = O(8%), which is in a good

agreement with the data [9]. The measured correction,

the PYTHIA 6.1.4 Monte Carlo (MC) prediction (includ-

ing full detector simulation) and the fit to the functional

dependence given in Eq. (7) are shown in Fig. 2 [7]. The

vertical axis corresponds to the change in the angular-

ity upon adding the contributions from the 90
o

cone as a

function of the measured angularity (the horizontal axis).

The small number of events after having imposed the

high mass requirement does not allow us to separate out

contributions from single interaction events and events

with multiple interactions, as the data is dominated by

Nvtx > 1 events. The form of the distribution is consis-

tent with the prediction.

V. SUBTRACTION METHOD FOR PLANAR
FLOW

To define the planar flow, Pf [15, 17, 18], we first

construct, for a given jet, a 2× 2 matrix IE

Ikl
E =

1

mJ

�

i∈R

Ei
pi,k

Ei

pi,l

Ei
, (11)
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fit based on the relation derived in Eq. (5). The data col-

lected had on average 3 multiple interactions per event (in-

cluding the hard interaction). On the lower panel we show the

corresponding MC predictions including full detector simula-

tion [7].

deposition is given by

∆τa =
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δmJ +
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δEi
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i ⊕ τJ
a

�
, (7)

where we use Eq. (4) to simplify the RHS. We note that

τJ
a corresponds to the jet angularity before the correction.

We also note that the two types of contributions should

be added incoherently in quadrature as indicated by the

⊕ symbol. Eq. (7) implies that for a fixed jet mass (as is

often applied in new physics searches) the leading order

correction to angularity consists of two terms: a constant

and a term proportional to the value of the angularity

itself.

Let us denote by R12 the ratio between the second and

the first terms in the parenthesis of the RHS of Eq. (7),

R12 =
2

a

τJ
a

mJ

pJ
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i∈R90o δm2

i θ−a
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i∈R90o δm2
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. (8)

The above ratio can be estimated by taking the minimum

and maximum value for the angularity,
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τJ
a

�min, max
,

which may be obtained from the leading order pertur-

bative QCD result [9, 16],
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τJ
a
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mJ

2pJ

�1−a

,
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τJ
a

�max � 2
a−1 R−a mJ

pJ
. (9)

We therefore find that the ratio between the minimum

and maximum contributions
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Rmin, max

12
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is:
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Rmin

12
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i
∼ 2 θ−a
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mJ

pJ

�a

∼ 2

�
mJ

RpJ

�a

,

(Rmax
12 )i ∼ 2 θ−a

i Ra ∼ 2 ,

where on the RHS we have used the approximation θi ∼
R for the most important contributions.

The interesting angularity distributions, relevant to

highly boosted massive jets, are those with negative

a [9, 15] which emphasize the radiation towards the edge

of the cone. Consequently, we find that over the inter-

esting range of parameters the constant corection term

dominates with some subdominant linear contribution

towards
�
τJ
a

�max
. We also find that in general the rela-

tive correction to angularity is small

∆τa
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(R12)i �
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Analysis of the expected corrections at CDF shows that

for pT ≥ 400 GeV, R = 0.7 and mJ ∼ 100 GeV then
δτa
τa

� 2× 4 GeV/100 GeV = O(8%), which is in a good

agreement with the data [9]. The measured correction,

the PYTHIA 6.1.4 Monte Carlo (MC) prediction (includ-

ing full detector simulation) and the fit to the functional

dependence given in Eq. (7) are shown in Fig. 2 [7]. The

vertical axis corresponds to the change in the angular-

ity upon adding the contributions from the 90
o

cone as a

function of the measured angularity (the horizontal axis).

The small number of events after having imposed the

high mass requirement does not allow us to separate out

contributions from single interaction events and events

with multiple interactions, as the data is dominated by

Nvtx > 1 events. The form of the distribution is consis-

tent with the prediction.

V. SUBTRACTION METHOD FOR PLANAR
FLOW

To define the planar flow, Pf [15, 17, 18], we first

construct, for a given jet, a 2× 2 matrix IE

Ikl
E =

1

mJ

�

i∈R

Ei
pi,k

Ei

pi,l

Ei
, (11)
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fit based on the relation derived in Eq. (5). The data col-

lected had on average 3 multiple interactions per event (in-

cluding the hard interaction). On the lower panel we show the

corresponding MC predictions including full detector simula-

tion [7].
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where we use Eq. (4) to simplify the RHS. We note that

τJ
a corresponds to the jet angularity before the correction.

We also note that the two types of contributions should

be added incoherently in quadrature as indicated by the

⊕ symbol. Eq. (7) implies that for a fixed jet mass (as is

often applied in new physics searches) the leading order

correction to angularity consists of two terms: a constant

and a term proportional to the value of the angularity

itself.

Let us denote by R12 the ratio between the second and

the first terms in the parenthesis of the RHS of Eq. (7),

R12 =
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The above ratio can be estimated by taking the minimum

and maximum value for the angularity,
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,

which may be obtained from the leading order pertur-

bative QCD result [9, 16],
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,
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,
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12 )i ∼ 2 θ−a
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where on the RHS we have used the approximation θi ∼
R for the most important contributions.

The interesting angularity distributions, relevant to

highly boosted massive jets, are those with negative

a [9, 15] which emphasize the radiation towards the edge

of the cone. Consequently, we find that over the inter-

esting range of parameters the constant corection term

dominates with some subdominant linear contribution

towards
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�max
. We also find that in general the rela-

tive correction to angularity is small
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Analysis of the expected corrections at CDF shows that

for pT ≥ 400 GeV, R = 0.7 and mJ ∼ 100 GeV then
δτa
τa

� 2× 4 GeV/100 GeV = O(8%), which is in a good

agreement with the data [9]. The measured correction,

the PYTHIA 6.1.4 Monte Carlo (MC) prediction (includ-

ing full detector simulation) and the fit to the functional

dependence given in Eq. (7) are shown in Fig. 2 [7]. The

vertical axis corresponds to the change in the angular-

ity upon adding the contributions from the 90
o

cone as a

function of the measured angularity (the horizontal axis).

The small number of events after having imposed the

high mass requirement does not allow us to separate out

contributions from single interaction events and events

with multiple interactions, as the data is dominated by

Nvtx > 1 events. The form of the distribution is consis-

tent with the prediction.

V. SUBTRACTION METHOD FOR PLANAR
FLOW

To define the planar flow, Pf [15, 17, 18], we first

construct, for a given jet, a 2× 2 matrix IE

Ikl
E =

1

mJ
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i∈R

Ei
pi,k

Ei
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Ei
, (11)
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fit based on the relation derived in Eq. (5). The data col-

lected had on average 3 multiple interactions per event (in-
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corresponding MC predictions including full detector simula-
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where we use Eq. (4) to simplify the RHS. We note that

τJ
a corresponds to the jet angularity before the correction.

We also note that the two types of contributions should

be added incoherently in quadrature as indicated by the

⊕ symbol. Eq. (7) implies that for a fixed jet mass (as is

often applied in new physics searches) the leading order

correction to angularity consists of two terms: a constant

and a term proportional to the value of the angularity

itself.

Let us denote by R12 the ratio between the second and

the first terms in the parenthesis of the RHS of Eq. (7),

R12 =
2

a

τJ
a

mJ

pJ

�
i∈R90o δm2

i θ−a
i�

i∈R90o δm2
i

. (8)

The above ratio can be estimated by taking the minimum

and maximum value for the angularity,
�
τJ
a

�min, max
,

which may be obtained from the leading order pertur-

bative QCD result [9, 16],

�
τJ
a

�min �
�

mJ

2pJ

�1−a

,
�
τJ
a

�max � 2
a−1 R−a mJ

pJ
. (9)

We therefore find that the ratio between the minimum

and maximum contributions

�
Rmin, max

12

�

i
is:

�
Rmin

12

�
i
∼ 2 θ−a

i

�
mJ

pJ

�a

∼ 2

�
mJ

RpJ

�a

,

(Rmax
12 )i ∼ 2 θ−a

i Ra ∼ 2 ,

where on the RHS we have used the approximation θi ∼
R for the most important contributions.

The interesting angularity distributions, relevant to

highly boosted massive jets, are those with negative

a [9, 15] which emphasize the radiation towards the edge

of the cone. Consequently, we find that over the inter-

esting range of parameters the constant corection term

dominates with some subdominant linear contribution

towards
�
τJ
a

�max
. We also find that in general the rela-

tive correction to angularity is small

∆τa

τa
∼

�

i∈R90o

δm2
i

2m2
J

(R12)i �
�

i∈R90o

δm2
i

m2
J

∼ 2δmJ

mJ
� 1.

(10)

Analysis of the expected corrections at CDF shows that

for pT ≥ 400 GeV, R = 0.7 and mJ ∼ 100 GeV then
δτa
τa

� 2× 4 GeV/100 GeV = O(8%), which is in a good

agreement with the data [9]. The measured correction,

the PYTHIA 6.1.4 Monte Carlo (MC) prediction (includ-

ing full detector simulation) and the fit to the functional

dependence given in Eq. (7) are shown in Fig. 2 [7]. The

vertical axis corresponds to the change in the angular-

ity upon adding the contributions from the 90
o

cone as a

function of the measured angularity (the horizontal axis).

The small number of events after having imposed the

high mass requirement does not allow us to separate out

contributions from single interaction events and events

with multiple interactions, as the data is dominated by

Nvtx > 1 events. The form of the distribution is consis-

tent with the prediction.

V. SUBTRACTION METHOD FOR PLANAR
FLOW

To define the planar flow, Pf [15, 17, 18], we first

construct, for a given jet, a 2× 2 matrix IE

Ikl
E =

1

mJ

�

i∈R

Ei
pi,k

Ei

pi,l

Ei
, (11)
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cluding the hard interaction). On the lower panel we show the
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where we use Eq. (4) to simplify the RHS. We note that
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We also note that the two types of contributions should

be added incoherently in quadrature as indicated by the

⊕ symbol. Eq. (7) implies that for a fixed jet mass (as is

often applied in new physics searches) the leading order
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�
τJ
a

�min �
�

mJ

2pJ

�1−a

,
�
τJ
a

�max � 2
a−1 R−a mJ

pJ
. (9)

We therefore find that the ratio between the minimum

and maximum contributions

�
Rmin, max

12

�

i
is:

�
Rmin

12

�
i
∼ 2 θ−a

i

�
mJ

pJ

�a

∼ 2

�
mJ

RpJ

�a

,

(Rmax
12 )i ∼ 2 θ−a

i Ra ∼ 2 ,

where on the RHS we have used the approximation θi ∼
R for the most important contributions.

The interesting angularity distributions, relevant to

highly boosted massive jets, are those with negative

a [9, 15] which emphasize the radiation towards the edge

of the cone. Consequently, we find that over the inter-

esting range of parameters the constant corection term

dominates with some subdominant linear contribution

towards
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τJ
a

�max
. We also find that in general the rela-

tive correction to angularity is small
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(R12)i �
�

i∈R90o

δm2
i

m2
J

∼ 2δmJ

mJ
� 1.

(10)

Analysis of the expected corrections at CDF shows that

for pT ≥ 400 GeV, R = 0.7 and mJ ∼ 100 GeV then
δτa
τa

� 2× 4 GeV/100 GeV = O(8%), which is in a good

agreement with the data [9]. The measured correction,

the PYTHIA 6.1.4 Monte Carlo (MC) prediction (includ-

ing full detector simulation) and the fit to the functional

dependence given in Eq. (7) are shown in Fig. 2 [7]. The

vertical axis corresponds to the change in the angular-

ity upon adding the contributions from the 90
o

cone as a

function of the measured angularity (the horizontal axis).

The small number of events after having imposed the

high mass requirement does not allow us to separate out

contributions from single interaction events and events

with multiple interactions, as the data is dominated by

Nvtx > 1 events. The form of the distribution is consis-

tent with the prediction.

V. SUBTRACTION METHOD FOR PLANAR
FLOW

To define the planar flow, Pf [15, 17, 18], we first

construct, for a given jet, a 2× 2 matrix IE

Ikl
E =

1

mJ

�

i∈R

Ei
pi,k
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panel we show the corresponding MC predictions including

full detector simulation [7].

where pi,k is the kth component of the ith particle’s
transverse momentum relative to the jet momentum axis.
We point out that at small angles Iw corresponds to a
straightforward generalization of τ0, but promoted to a
two-dimensional tensor

τxy
0 ≡ 1

2mJ

�

i∈jet

Ei θx
i θy =

Iw

2
. (12)

We shall return to this point. Given Iw, we define Pf
for that jet as

Pf = 4
det(IE)
tr(IE)2

=
4λ1λ2

(λ1 + λ2)2
, (13)

where λ1,2 are the eigenvalues of IE .
IE is a real symmetric matrix thus, without loss of

generality it can be expanded as a sum of three basis
matrices

IE = p0 σ0 + px σx + pz σz , (14)

where σ0 ≡ 12/
√

2 (12 is a unit matrix), σx,z are the cor-
responding Pauli matrices and we use the normalization
tr (σiσj) = δij such that the σis form an orthonormal ba-
sis; finally, the pis are real numbers and the usefulness of

the analogy with a two+one dimensional Lorentz group
become clear since Pf is now given by

Pf =
p2
0 − p2

i

p2
0

≡
m2

IE

p2
0

≡ 1
γ2

IE

≡ 1− β2
IE

(15)

with p2
i ≡ p2

x + p2
z. Let us first consider the contribution

to Pf from a single calorimeter cell. It is easy to see
that it satisfies the ”null energy” condition of a massless
particle (p1

0)2−(p1
i )2 = 0 where this is independent of the

chosen frame in which Iw is calculated. Note that this is
the first point where our result deviates from a generic
trivial description of symmetric real matrices. Thus Pf

actually corresponds to one over the boost factor for a
system consisting of a set of massless particles in three
dimensions, or to the ratio of the invariant mass of set of
”massless particles” to their square of sum of energies.

Let us find the leading order correction due to incoher-
ent energy depositions

∆Pf =
∂Pf

∂p0
δp0 +

∂Pf

∂pi
δpi =

2
p0

�
β2

IE
δp0 − βIE δpi

�

=
2
p0

�
(1− Pf)δp0 −

�
1− Pf δpi

�
(16)

In order to obtain the value of p0 in terms of observables
we use Eq. (12)

p0 =
√

2 τ0 . (17)

While τ0 is a simple function of the jet mass and mo-
menta, as explicitly obtained when evaluating the jet
mass from its four momenta (assuming mJ � PJ and
R� 1)

m2
J �

�
PJ +

�

i∈R

δp2
i

2Ei
, PJ ,�0

�2

≈ PJ

�

i

δp2
i

2Ei

≈ PJ

�

i

Eiθ
2
i = 2PJmJ τ0 ⇒ p0 �

mJ√
2 PJ

.(18)

We thus obtain the final and simple result for the planar
flow correction,

∆Pf =
√

2 PJ

mJ

�
(1− Pf)δp0 ⊕

�
1− Pf δpi

�
.(19)

Let us estimate what is the expected size of δp0,i. Since
the correction from the incoherent radiation is random
we generally expect δpi ∼ δp0. Using Eq. (5) and (18).
we find

δp0 �
δmJ√
2 PJ

. (20)

The largest correction is expected for Pf ∼ 0 which is
roughly given by

∆Pfmax ∼
√

2 PJ

mJ

�
δp2

0 + δp2
0 ∼

√
2

δmJ

mJ
(21)
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where pi,k is the kth component of the ith particle’s
transverse momentum relative to the jet momentum axis.
We point out that at small angles Iw corresponds to a
straightforward generalization of τ0, but promoted to a
two-dimensional tensor

τxy
0 ≡ 1

2mJ

�

i∈jet

Ei θx
i θy =

Iw

2
. (12)

We shall return to this point. Given Iw, we define Pf
for that jet as

Pf = 4
det(IE)
tr(IE)2

=
4λ1λ2

(λ1 + λ2)2
, (13)

where λ1,2 are the eigenvalues of IE .
IE is a real symmetric matrix thus, without loss of

generality it can be expanded as a sum of three basis
matrices

IE = p0 σ0 + px σx + pz σz , (14)

where σ0 ≡ 12/
√

2 (12 is a unit matrix), σx,z are the cor-
responding Pauli matrices and we use the normalization
tr (σiσj) = δij such that the σis form an orthonormal ba-
sis; finally, the pis are real numbers and the usefulness of

the analogy with a two+one dimensional Lorentz group
become clear since Pf is now given by

Pf =
p2
0 − p2

i

p2
0

≡
m2

IE

p2
0

≡ 1
γ2

IE

≡ 1− β2
IE

(15)

with p2
i ≡ p2

x + p2
z. Let us first consider the contribution

to Pf from a single calorimeter cell. It is easy to see
that it satisfies the ”null energy” condition of a massless
particle (p1

0)2−(p1
i )2 = 0 where this is independent of the

chosen frame in which Iw is calculated. Note that this is
the first point where our result deviates from a generic
trivial description of symmetric real matrices. Thus Pf

actually corresponds to one over the boost factor for a
system consisting of a set of massless particles in three
dimensions, or to the ratio of the invariant mass of set of
”massless particles” to their square of sum of energies.

Let us find the leading order correction due to incoher-
ent energy depositions

∆Pf =
∂Pf

∂p0
δp0 +

∂Pf

∂pi
δpi =

2
p0

�
β2

IE
δp0 − βIE δpi

�

=
2
p0

�
(1− Pf)δp0 −

�
1− Pf δpi

�
(16)

In order to obtain the value of p0 in terms of observables
we use Eq. (12)

p0 =
√

2 τ0 . (17)

While τ0 is a simple function of the jet mass and mo-
menta, as explicitly obtained when evaluating the jet
mass from its four momenta (assuming mJ � PJ and
R� 1)

m2
J �

�
PJ +

�

i∈R

δp2
i

2Ei
, PJ ,�0

�2

≈ PJ

�

i

δp2
i

2Ei

≈ PJ

�

i

Eiθ
2
i = 2PJmJ τ0 ⇒ p0 �

mJ√
2 PJ

.(18)

We thus obtain the final and simple result for the planar
flow correction,

∆Pf =
√

2 PJ

mJ

�
(1− Pf)δp0 ⊕

�
1− Pf δpi

�
.(19)

Let us estimate what is the expected size of δp0,i. Since
the correction from the incoherent radiation is random
we generally expect δpi ∼ δp0. Using Eq. (5) and (18).
we find

δp0 �
δmJ√
2 PJ

. (20)

The largest correction is expected for Pf ∼ 0 which is
roughly given by

∆Pfmax ∼
√

2 PJ

mJ

�
δp2

0 + δp2
0 ∼

√
2

δmJ
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where pi,k is the kth component of the ith particle’s
transverse momentum relative to the jet momentum axis.
We point out that at small angles Iw corresponds to a
straightforward generalization of τ0, but promoted to a
two-dimensional tensor

τxy
0 ≡ 1

2mJ
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i∈jet

Ei θx
i θy =

Iw

2
. (12)

We shall return to this point. Given Iw, we define Pf
for that jet as

Pf = 4
det(IE)
tr(IE)2

=
4λ1λ2

(λ1 + λ2)2
, (13)

where λ1,2 are the eigenvalues of IE .
IE is a real symmetric matrix thus, without loss of

generality it can be expanded as a sum of three basis
matrices

IE = p0 σ0 + px σx + pz σz , (14)

where σ0 ≡ 12/
√

2 (12 is a unit matrix), σx,z are the cor-
responding Pauli matrices and we use the normalization
tr (σiσj) = δij such that the σis form an orthonormal ba-
sis; finally, the pis are real numbers and the usefulness of

the analogy with a two+one dimensional Lorentz group
become clear since Pf is now given by

Pf =
p2
0 − p2

i

p2
0

≡
m2

IE

p2
0

≡ 1
γ2

IE

≡ 1− β2
IE

(15)

with p2
i ≡ p2

x + p2
z. Let us first consider the contribution

to Pf from a single calorimeter cell. It is easy to see
that it satisfies the ”null energy” condition of a massless
particle (p1

0)2−(p1
i )2 = 0 where this is independent of the

chosen frame in which Iw is calculated. Note that this is
the first point where our result deviates from a generic
trivial description of symmetric real matrices. Thus Pf

actually corresponds to one over the boost factor for a
system consisting of a set of massless particles in three
dimensions, or to the ratio of the invariant mass of set of
”massless particles” to their square of sum of energies.

Let us find the leading order correction due to incoher-
ent energy depositions

∆Pf =
∂Pf

∂p0
δp0 +

∂Pf

∂pi
δpi =

2
p0

�
β2

IE
δp0 − βIE δpi

�

=
2
p0

�
(1− Pf)δp0 −

�
1− Pf δpi

�
(16)

In order to obtain the value of p0 in terms of observables
we use Eq. (12)

p0 =
√

2 τ0 . (17)

While τ0 is a simple function of the jet mass and mo-
menta, as explicitly obtained when evaluating the jet
mass from its four momenta (assuming mJ � PJ and
R� 1)

m2
J �

�
PJ +

�

i∈R

δp2
i

2Ei
, PJ ,�0

�2

≈ PJ

�

i

δp2
i

2Ei

≈ PJ

�

i

Eiθ
2
i = 2PJmJ τ0 ⇒ p0 �

mJ√
2 PJ

.(18)

We thus obtain the final and simple result for the planar
flow correction,

∆Pf =
√

2 PJ

mJ

�
(1− Pf)δp0 ⊕

�
1− Pf δpi

�
.(19)

Let us estimate what is the expected size of δp0,i. Since
the correction from the incoherent radiation is random
we generally expect δpi ∼ δp0. Using Eq. (5) and (18).
we find

δp0 �
δmJ√
2 PJ

. (20)

The largest correction is expected for Pf ∼ 0 which is
roughly given by

∆Pfmax ∼
√

2 PJ

mJ

�
δp2

0 + δp2
0 ∼

√
2

δmJ

mJ
(21)
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where pi,k is the kth component of the ith particle’s
transverse momentum relative to the jet momentum axis.
We point out that at small angles Iw corresponds to a
straightforward generalization of τ0, but promoted to a
two-dimensional tensor
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0 ≡ 1
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i θy =
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2
. (12)

We shall return to this point. Given Iw, we define Pf
for that jet as

Pf = 4
det(IE)
tr(IE)2

=
4λ1λ2

(λ1 + λ2)2
, (13)

where λ1,2 are the eigenvalues of IE .
IE is a real symmetric matrix thus, without loss of

generality it can be expanded as a sum of three basis
matrices

IE = p0 σ0 + px σx + pz σz , (14)

where σ0 ≡ 12/
√

2 (12 is a unit matrix), σx,z are the cor-
responding Pauli matrices and we use the normalization
tr (σiσj) = δij such that the σis form an orthonormal ba-
sis; finally, the pis are real numbers and the usefulness of

the analogy with a two+one dimensional Lorentz group
become clear since Pf is now given by
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≡ 1
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IE

(15)

with p2
i ≡ p2

x + p2
z. Let us first consider the contribution

to Pf from a single calorimeter cell. It is easy to see
that it satisfies the ”null energy” condition of a massless
particle (p1

0)2−(p1
i )2 = 0 where this is independent of the

chosen frame in which Iw is calculated. Note that this is
the first point where our result deviates from a generic
trivial description of symmetric real matrices. Thus Pf

actually corresponds to one over the boost factor for a
system consisting of a set of massless particles in three
dimensions, or to the ratio of the invariant mass of set of
”massless particles” to their square of sum of energies.

Let us find the leading order correction due to incoher-
ent energy depositions

∆Pf =
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δp0 +
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∂pi
δpi =

2
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δp0 − βIE δpi
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=
2
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(1− Pf)δp0 −
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(16)

In order to obtain the value of p0 in terms of observables
we use Eq. (12)

p0 =
√

2 τ0 . (17)

While τ0 is a simple function of the jet mass and mo-
menta, as explicitly obtained when evaluating the jet
mass from its four momenta (assuming mJ � PJ and
R� 1)
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We thus obtain the final and simple result for the planar
flow correction,

∆Pf =
√

2 PJ
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(1− Pf)δp0 ⊕
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1− Pf δpi

�
.(19)

Let us estimate what is the expected size of δp0,i. Since
the correction from the incoherent radiation is random
we generally expect δpi ∼ δp0. Using Eq. (5) and (18).
we find

δp0 �
δmJ√
2 PJ

. (20)

The largest correction is expected for Pf ∼ 0 which is
roughly given by

∆Pfmax ∼
√

2 PJ

mJ

�
δp2

0 + δp2
0 ∼

√
2

δmJ

mJ
(21)
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where pi,k is the kth component of the ith particle’s
transverse momentum relative to the jet momentum axis.
We point out that at small angles Iw corresponds to a
straightforward generalization of τ0, but promoted to a
two-dimensional tensor

τxy
0 ≡ 1

2mJ

�

i∈jet

Ei θx
i θy =

Iw

2
. (12)

We shall return to this point. Given Iw, we define Pf
for that jet as

Pf = 4
det(IE)
tr(IE)2

=
4λ1λ2

(λ1 + λ2)2
, (13)

where λ1,2 are the eigenvalues of IE .
IE is a real symmetric matrix thus, without loss of

generality it can be expanded as a sum of three basis
matrices

IE = p0 σ0 + px σx + pz σz , (14)

where σ0 ≡ 12/
√

2 (12 is a unit matrix), σx,z are the cor-
responding Pauli matrices and we use the normalization
tr (σiσj) = δij such that the σis form an orthonormal ba-
sis; finally, the pis are real numbers and the usefulness of

the analogy with a two+one dimensional Lorentz group
become clear since Pf is now given by

Pf =
p2
0 − p2

i

p2
0

≡
m2

IE

p2
0

≡ 1
γ2

IE

≡ 1− β2
IE

(15)

with p2
i ≡ p2

x + p2
z. Let us first consider the contribution

to Pf from a single calorimeter cell. It is easy to see
that it satisfies the ”null energy” condition of a massless
particle (p1

0)2−(p1
i )2 = 0 where this is independent of the

chosen frame in which Iw is calculated. Note that this is
the first point where our result deviates from a generic
trivial description of symmetric real matrices. Thus Pf

actually corresponds to one over the boost factor for a
system consisting of a set of massless particles in three
dimensions, or to the ratio of the invariant mass of set of
”massless particles” to their square of sum of energies.

Let us find the leading order correction due to incoher-
ent energy depositions

∆Pf =
∂Pf

∂p0
δp0 +

∂Pf

∂pi
δpi =

2
p0

�
β2

IE
δp0 − βIE δpi

�

=
2
p0

�
(1− Pf)δp0 −

�
1− Pf δpi

�
(16)

In order to obtain the value of p0 in terms of observables
we use Eq. (12)

p0 =
√

2 τ0 . (17)

While τ0 is a simple function of the jet mass and mo-
menta, as explicitly obtained when evaluating the jet
mass from its four momenta (assuming mJ � PJ and
R� 1)

m2
J �

�
PJ +

�

i∈R

δp2
i

2Ei
, PJ ,�0

�2

≈ PJ

�

i

δp2
i

2Ei

≈ PJ

�

i

Eiθ
2
i = 2PJmJ τ0 ⇒ p0 �

mJ√
2 PJ

.(18)

We thus obtain the final and simple result for the planar
flow correction,

∆Pf =
√

2 PJ

mJ

�
(1− Pf)δp0 ⊕

�
1− Pf δpi

�
.(19)

Let us estimate what is the expected size of δp0,i. Since
the correction from the incoherent radiation is random
we generally expect δpi ∼ δp0. Using Eq. (5) and (18).
we find

δp0 �
δmJ√
2 PJ

. (20)

The largest correction is expected for Pf ∼ 0 which is
roughly given by

∆Pfmax ∼
√

2 PJ

mJ

�
δp2

0 + δp2
0 ∼

√
2

δmJ

mJ
(21)
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where pi,k is the kth component of the ith particle’s
transverse momentum relative to the jet momentum axis.
We point out that at small angles Iw corresponds to a
straightforward generalization of τ0, but promoted to a
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We shall return to this point. Given Iw, we define Pf
for that jet as

Pf = 4
det(IE)
tr(IE)2

=
4λ1λ2

(λ1 + λ2)2
, (13)

where λ1,2 are the eigenvalues of IE .
IE is a real symmetric matrix thus, without loss of

generality it can be expanded as a sum of three basis
matrices

IE = p0 σ0 + px σx + pz σz , (14)

where σ0 ≡ 12/
√

2 (12 is a unit matrix), σx,z are the cor-
responding Pauli matrices and we use the normalization
tr (σiσj) = δij such that the σis form an orthonormal ba-
sis; finally, the pis are real numbers and the usefulness of

the analogy with a two+one dimensional Lorentz group
become clear since Pf is now given by

Pf =
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≡
m2

IE

p2
0

≡ 1
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IE

≡ 1− β2
IE

(15)

with p2
i ≡ p2

x + p2
z. Let us first consider the contribution

to Pf from a single calorimeter cell. It is easy to see
that it satisfies the ”null energy” condition of a massless
particle (p1

0)2−(p1
i )2 = 0 where this is independent of the

chosen frame in which Iw is calculated. Note that this is
the first point where our result deviates from a generic
trivial description of symmetric real matrices. Thus Pf

actually corresponds to one over the boost factor for a
system consisting of a set of massless particles in three
dimensions, or to the ratio of the invariant mass of set of
”massless particles” to their square of sum of energies.

Let us find the leading order correction due to incoher-
ent energy depositions

∆Pf =
∂Pf

∂p0
δp0 +

∂Pf

∂pi
δpi =

2
p0
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β2

IE
δp0 − βIE δpi
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=
2
p0

�
(1− Pf)δp0 −
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1− Pf δpi

�
(16)

In order to obtain the value of p0 in terms of observables
we use Eq. (12)

p0 =
√

2 τ0 . (17)

While τ0 is a simple function of the jet mass and mo-
menta, as explicitly obtained when evaluating the jet
mass from its four momenta (assuming mJ � PJ and
R� 1)

m2
J �
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PJ +
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δp2
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2Ei
, PJ ,�0
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≈ PJ
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δp2
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2Ei

≈ PJ
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i

Eiθ
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i = 2PJmJ τ0 ⇒ p0 �

mJ√
2 PJ

.(18)

We thus obtain the final and simple result for the planar
flow correction,

∆Pf =
√

2 PJ

mJ

�
(1− Pf)δp0 ⊕

�
1− Pf δpi

�
.(19)

Let us estimate what is the expected size of δp0,i. Since
the correction from the incoherent radiation is random
we generally expect δpi ∼ δp0. Using Eq. (5) and (18).
we find

δp0 �
δmJ√
2 PJ

. (20)

The largest correction is expected for Pf ∼ 0 which is
roughly given by

∆Pfmax ∼
√

2 PJ

mJ

�
δp2

0 + δp2
0 ∼

√
2

δmJ

mJ
(21)
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where pi,k is the kth component of the ith particle’s
transverse momentum relative to the jet momentum axis.
We point out that at small angles Iw corresponds to a
straightforward generalization of τ0, but promoted to a
two-dimensional tensor

τxy
0 ≡ 1
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i θy =
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We shall return to this point. Given Iw, we define Pf
for that jet as

Pf = 4
det(IE)
tr(IE)2

=
4λ1λ2

(λ1 + λ2)2
, (13)

where λ1,2 are the eigenvalues of IE .
IE is a real symmetric matrix thus, without loss of

generality it can be expanded as a sum of three basis
matrices

IE = p0 σ0 + px σx + pz σz , (14)

where σ0 ≡ 12/
√

2 (12 is a unit matrix), σx,z are the cor-
responding Pauli matrices and we use the normalization
tr (σiσj) = δij such that the σis form an orthonormal ba-
sis; finally, the pis are real numbers and the usefulness of

the analogy with a two+one dimensional Lorentz group
become clear since Pf is now given by

Pf =
p2
0 − p2
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p2
0

≡
m2

IE

p2
0

≡ 1
γ2

IE

≡ 1− β2
IE

(15)

with p2
i ≡ p2

x + p2
z. Let us first consider the contribution

to Pf from a single calorimeter cell. It is easy to see
that it satisfies the ”null energy” condition of a massless
particle (p1

0)2−(p1
i )2 = 0 where this is independent of the

chosen frame in which Iw is calculated. Note that this is
the first point where our result deviates from a generic
trivial description of symmetric real matrices. Thus Pf

actually corresponds to one over the boost factor for a
system consisting of a set of massless particles in three
dimensions, or to the ratio of the invariant mass of set of
”massless particles” to their square of sum of energies.

Let us find the leading order correction due to incoher-
ent energy depositions

∆Pf =
∂Pf

∂p0
δp0 +

∂Pf

∂pi
δpi =

2
p0
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β2

IE
δp0 − βIE δpi
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=
2
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(1− Pf)δp0 −
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1− Pf δpi

�
(16)

In order to obtain the value of p0 in terms of observables
we use Eq. (12)

p0 =
√

2 τ0 . (17)

While τ0 is a simple function of the jet mass and mo-
menta, as explicitly obtained when evaluating the jet
mass from its four momenta (assuming mJ � PJ and
R� 1)

m2
J �
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PJ +
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2Ei
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We thus obtain the final and simple result for the planar
flow correction,

∆Pf =
√

2 PJ

mJ

�
(1− Pf)δp0 ⊕

�
1− Pf δpi

�
.(19)

Let us estimate what is the expected size of δp0,i. Since
the correction from the incoherent radiation is random
we generally expect δpi ∼ δp0. Using Eq. (5) and (18).
we find

δp0 �
δmJ√
2 PJ

. (20)

The largest correction is expected for Pf ∼ 0 which is
roughly given by

∆Pfmax ∼
√

2 PJ

mJ
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δp2

0 + δp2
0 ∼

√
2
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where pi,k is the kth component of the ith particle’s
transverse momentum relative to the jet momentum axis.
We point out that at small angles Iw corresponds to a
straightforward generalization of τ0, but promoted to a
two-dimensional tensor
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0 ≡ 1
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i θy =
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We shall return to this point. Given Iw, we define Pf
for that jet as

Pf = 4
det(IE)
tr(IE)2

=
4λ1λ2

(λ1 + λ2)2
, (13)

where λ1,2 are the eigenvalues of IE .
IE is a real symmetric matrix thus, without loss of

generality it can be expanded as a sum of three basis
matrices

IE = p0 σ0 + px σx + pz σz , (14)

where σ0 ≡ 12/
√

2 (12 is a unit matrix), σx,z are the cor-
responding Pauli matrices and we use the normalization
tr (σiσj) = δij such that the σis form an orthonormal ba-
sis; finally, the pis are real numbers and the usefulness of

the analogy with a two+one dimensional Lorentz group
become clear since Pf is now given by
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≡ 1
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≡ 1− β2
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(15)

with p2
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x + p2
z. Let us first consider the contribution

to Pf from a single calorimeter cell. It is easy to see
that it satisfies the ”null energy” condition of a massless
particle (p1

0)2−(p1
i )2 = 0 where this is independent of the

chosen frame in which Iw is calculated. Note that this is
the first point where our result deviates from a generic
trivial description of symmetric real matrices. Thus Pf

actually corresponds to one over the boost factor for a
system consisting of a set of massless particles in three
dimensions, or to the ratio of the invariant mass of set of
”massless particles” to their square of sum of energies.

Let us find the leading order correction due to incoher-
ent energy depositions

∆Pf =
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∂pi
δpi =

2
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=
2
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In order to obtain the value of p0 in terms of observables
we use Eq. (12)

p0 =
√

2 τ0 . (17)

While τ0 is a simple function of the jet mass and mo-
menta, as explicitly obtained when evaluating the jet
mass from its four momenta (assuming mJ � PJ and
R� 1)
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We thus obtain the final and simple result for the planar
flow correction,

∆Pf =
√

2 PJ
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(1− Pf)δp0 ⊕
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1− Pf δpi
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Let us estimate what is the expected size of δp0,i. Since
the correction from the incoherent radiation is random
we generally expect δpi ∼ δp0. Using Eq. (5) and (18).
we find

δp0 �
δmJ√
2 PJ
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The largest correction is expected for Pf ∼ 0 which is
roughly given by
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straightforward generalization of τ0, but promoted to a
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We shall return to this point. Given Iw, we define Pf
for that jet as

Pf = 4
det(IE)
tr(IE)2

=
4λ1λ2

(λ1 + λ2)2
, (13)

where λ1,2 are the eigenvalues of IE .
IE is a real symmetric matrix thus, without loss of

generality it can be expanded as a sum of three basis
matrices

IE = p0 σ0 + px σx + pz σz , (14)

where σ0 ≡ 12/
√

2 (12 is a unit matrix), σx,z are the cor-
responding Pauli matrices and we use the normalization
tr (σiσj) = δij such that the σis form an orthonormal ba-
sis; finally, the pis are real numbers and the usefulness of

the analogy with a two+one dimensional Lorentz group
become clear since Pf is now given by
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≡ 1
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≡ 1− β2
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with p2
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x + p2
z. Let us first consider the contribution

to Pf from a single calorimeter cell. It is easy to see
that it satisfies the ”null energy” condition of a massless
particle (p1

0)2−(p1
i )2 = 0 where this is independent of the

chosen frame in which Iw is calculated. Note that this is
the first point where our result deviates from a generic
trivial description of symmetric real matrices. Thus Pf

actually corresponds to one over the boost factor for a
system consisting of a set of massless particles in three
dimensions, or to the ratio of the invariant mass of set of
”massless particles” to their square of sum of energies.

Let us find the leading order correction due to incoher-
ent energy depositions

∆Pf =
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δp0 +
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∂pi
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2
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=
2
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1− Pf δpi

�
(16)

In order to obtain the value of p0 in terms of observables
we use Eq. (12)

p0 =
√

2 τ0 . (17)

While τ0 is a simple function of the jet mass and mo-
menta, as explicitly obtained when evaluating the jet
mass from its four momenta (assuming mJ � PJ and
R� 1)
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We thus obtain the final and simple result for the planar
flow correction,

∆Pf =
√

2 PJ

mJ
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(1− Pf)δp0 ⊕
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1− Pf δpi

�
.(19)

Let us estimate what is the expected size of δp0,i. Since
the correction from the incoherent radiation is random
we generally expect δpi ∼ δp0. Using Eq. (5) and (18).
we find

δp0 �
δmJ√
2 PJ

. (20)

The largest correction is expected for Pf ∼ 0 which is
roughly given by

∆Pfmax ∼
√

2 PJ

mJ
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δp2

0 + δp2
0 ∼

√
2
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5

For the CDF data we find ∆Pf � 7% for mJ ∼ 100 GeV.
The measured correction, the MC prediction (including
full detector simulation) and the fit to the functional de-
pendence given in Eq. (19) is shown in Fig. 3 taken from
the CDF data [7]. The vertical axis corresponds to the
change in the observed planar flow as a function of the
planar flow. As in the angularity case, contributions from
single-vertex events are not separated given their small
number. The shape and normalization of the distribution
is consistent with the prediction.
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fit based on the relation derived in Eq. (19). On the lower

panel we show the corresponding MC predictions including

full detector simulation [7].

VI. RELATION WITH JET AREAS

Recently, the concept of jet area was introduced [2] as
a way of understanding the behaviour of jet observables
in high instantaneous luminosity environments. It was
shown that once the jet’s size becomes dynamical, as with
modern IRC safe jet algorithms, the concept of jet area
turns out to be useful when assessing the susceptibility
to incoherent energy contributions of various jet-variable
measurements. Our emphasize here is slightly different,
as we focus on applying data-driven corrections to jet-
variable distributions over a large range of instantaneous

luminosities. However, it is interesting to briefly mention
the correspondence with the jet area concept in particular
in the context of the recent study of mass area [12]. Our
aim is two-fold: The first is to show that knowing the jet
mass and other shape variables such as angularity allows
one to more precisely determine the jet mass area (and
possibly other jet shape areas). The second is to argue
that in the region of interest, the difference between jet
mass area and jet area (of massless QCD events) is small,
which implies that our method can be easily adapted
using a global extraction of the median energy density
from data.

We demonstrate our points explicitly using studies of
the Midpoint and anti-kT jet algorithms performed by
the CDF collaboration [7] (the Midpoint results are es-
sentially identical to those obtained with the SISCone
algorithm [19], as expected since the two algorithms use
similar split and merge procedure). However, it is trivial
to see that the same conclusions also applied to other jet
algorithms. In the following we focus on the “passive jet
area,” concept, where analytic results can be obtained.
We focus on the the region with high degree of colli-
mation for ultra massive jets, defined as �2 � 1 where
� ≡ m/(pT R). It is assumed that the boosted jet consists
of two partonic decay products of a heavy particle of mass
m, which are well contained inside the jet (as is now qual-
itatively established by the CDF study of angularity [7],
this assumption holds also for QCD massive jets). It is
useful to define a0

j ≡ πR2 as the naive jet area of radius
R, and following the definitions of [12] we define ∆12

as the rapidity-azimuth difference between two daughter
particles, x = ∆12/R and z = min(pT 1 , pT 2)/pT in order
to characterize the primary daughter particles.

We find the following relation between x and z (assum-
ing R2 � 1)

x2 =
�2

z(1− z)
, (22)

and for later usage denote z1(x = 1) ≡ �2
�
1+�2

�
+O

�
�6

�
.

Let us begin with discussing the SISCone jet finder. In
this case one can minimize the area of the boosted jet by
requiring the two daughter partons to be contained in a
single jet. This is satisfied provided 1 < xc < 1/(1 − z),
with xc being some critical value for x [12]. The left in-
equality implies that 0 < z < z1. On the other hand,
maximizing the boosted jet area is achieved when the
jet is the union of the three cones (around the mother
and two daughter particles). This implies that xc > x,
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�
1 − �2

�
+ O

�
�6

�
. Since � is by construc-
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�
1+3�2
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+O

�
�6

�
. (2) for 1 < x < 1/(1−z) the

jet area is smallerer then a0
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stabilizes both the jet momentum and the cone is SO(2), the rotations around the jet axis.

In the present paper we focus on highly-collimated jets, working at leading order in the small cone size

θi <R�1. We will further assume that all the particles that make up the jet are massless. Under these

assumptions, we propose a complete classification of energy flow observables which are IR safe and Lorentz

invariant, up to Lorentz transformations that change the jet momentum and the cone. Furthermore the

observables may be naturally arranged as an expansion in terms of the energy resolution and the cone

size (or alternatively the energy and angular resolutions).

In the narrow cone approximation the experimental calorimeter information of the jet is fully specified by

the energy distribution on a surface perpendicular to the jet axis, ε(�x), with �x ≡ (x1, x2) corresponding to

a set of coordinates on the two dimensional jet surface. To obtain the classification, we begin by describing

a given energy distribution ε(�x) in terms of its moments,

Ii1...in =

�
d2x ε(x) xi1 · · · xin .

Observables are then constructed by taking products of these moments, and forming SO(2) scalars by

contracting their indices. Invariance under boosts along the jet axis is then achieved by adding a factor

of EJ raised to some power. Since the moments are written in terms of the energy distribution, they are

manifestly IR safe.

Moments of higher rank are of higher order in the cone size R, since x ∝ θ, the opening angle. Moreover,

since I ∼ �(x), observables that are products of a larger number of moments are more sensitive to errors

in energy measurement (we will be more precise about this point below). This allows us to arrange the

observables in an expansion by energy resolution and cone size as will be shown in section III. At the

lowest orders in this expansion we find the jet mass and the angularity with a = −2. At the next order

we find the angularity with a = −4 and the planar flow. Yet higher orders produce the whole tower of

angularities with a = −2k, as well as many new observables.

The paper is organized as follows. In the next section we review the definition of planar flow, showing

how it naturally leads to the expansion of the energy distribution in terms of moments. In section III we

define the moment expansion, find the first few observables, and precisely identify the small parameters in

which we expand. In section IV we turn to a classification of the leading observables that characterize jets

with up to 4 particles. In section V we present an alternative approach to the study of jet substructure,

based on an expansion in terms of orthogonal functions. Finally, in section VI we analyze one of the new

observables discovered in the classification, developing techniques that may be applied to other observables

as well. Section VII contains a few comments on the application of this formalism to the case of hadron

colliders and our conclusions.

II. MASS, PLANAR FLOW, AND THE SECOND MOMENT

Planar flow is defined in terms of the matrix Iw, with components1

Ikl
w =

�

i∈particles

Ei

p⊥i,k
Ei

p⊥i,l
Ei

≈
�

i∈particles

Ei θifk(φi) θifl(φi) ,

where p⊥ is the particle momentum in the detector plane, φ is the azimuthal angle, and f1(φ) =

cos(φ) , f2(φ) = sin(φ) . The approximation is made under the assumptions detailed above. Planar flow

1 We use a different normalization for Iw than that of [11], without affecting the planar flow definition.
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III. EXPANSION IN MOMENTS

The n-th moment In of the energy distribution ε(x) is defined by

Ik1,...,kn ≡
�

d2x ε(x) xk1 · · ·xkn =
1

EJ

�

i∈particles

Ei x(i)
k1

· · ·x(i)
kn

.

The zeroth moment is (4). The first moment is the expectation value, or dipole. It is set to zero by the

requirement that the total transverse momentum of the jet vanishes, a state which can be reached by

rotating the jet. This fixes the origin of the detection plane, which in turn determines the jet axis. We

have then

I0 = 1 , I1 = 0 .

The first non-trivial moment is therefore I2, as expected. We are looking to define observables that are

invariant under the little group SO(2), the Lorentz subgroup that doesn’t change the jet momentum or

the cone. SO(2) has two independent invariant tensors, δij and �ij . The only SO(2) scalar that is linear

in I2 is the normalized version of (2), namely

Iii ≈
m2

J

E2
J

.

Next, consider a tensor product I2 ⊗ I2. There are three nontrivial scalars one may construct,

IiiIjj , IijIij , �ij�klIikIjl .

Of these, only two are independent, since

�ij�klIikIjl = 2(IiiIjj − I2
ij) = 2 det I .

Also, the first scalar, IiiIjj , factorizes in lower-rank scalars. We therefore find only one new observable,

det(I), which is an un-normalized version of planar flow.

Before proceeding with the expansion, let us clarify in what sense the moment expansion is an expansion in

small parameters. Planar flow, composed of I2⊗I2, is apparently of a higher order than the mass squared,

composed of a single I2. To quantify this statement, first note that energy distribution is constrained

to lie within a small cone of radius R � 1. Since In ∼ xn ∼ θn, we have that In scales as Rn. As an

expansion in R, planar flow is of order 4 while the jet mass squared is of order 2.

Another small parameter we may consider is the angular resolution ∆θ, which is ultimately limited by

the calorimeter cell size. Including its effect gives In ∼ (θ ± ∆θ)n = θn ± n∆θ θn−1 + · · · . The error on

the value of an observable due to the finite angular resolution is therefore proportional to the total rank

of moments composing this observable. Planar flow has error ∼ 4∆θ, while the mass squared has error

∼ 2∆θ. Regardless of which small angular parameter we choose, measuring a moment of higher rank

requires a more accurate detector.

As for the energy, the only small parameter is the energy resolution ∆ε. A single moment is proportional

to ε(x), so for a given observable the error due to energy resolution will increase with the number of

moments that make up the observable. Planar flow will tend to have a larger error than the mass.

IV. THE FIRST FEW ORDERS

We are now in a position to classify all the jet energy flow observables.
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• When other quarks produced:    

• Tops decay before hadronize:    
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❍❍❍❍❍R
∆ε

1 2 3 4

2 I2 - - -

4 I4 (I2)
2

- -

6 I6 I2I4, (I3)
2

(I2)
3

-

8 I8 I2I6, I3I5, (I4)
2 I2(I3)

2, (I2)
2I4 (I2)

4

TABLE I: Moment products that correspond to given orders in energy resolution ∆ε and cone size R. Observables

are constructed by contracting these products in various ways.

Table I lists the outer products that appear in the first few orders of the expansion. Note that there are no
observables with an odd power of R since we cannot fully contract an odd number of SO(2) indices. Each
outer product may be contracted in several different ways, giving rise to different observables. However,
algebraic relations will reduce the total number of independent contractions.
On top of this expansion it is useful to consider jets that consist of a given number of particles (or
detector cell towers). A jet of N particles is characterized by 3N − 4 variables, corresponding to the
number of particle momentum components, minus the jet axis, the jet momentum, and the SO(2) angle
associated to the overall rotation around the jet axis.2 For given N we can then identify the lowest order,
Lorentz-invariant observables that characterize such jets. Let us list the observables for jets with up to 4
particles.
The two lowest order observables are

Iii =
1

EJ

�

i∈particles

Eiθ
2
i ≈

m2
J

E2
J

,

Iiijj =
1

EJ

�

i∈particles

Eiθ
4
i ≈

�
8s

EJ

�
τ−2 .

Therefore, the natural observables for describing a two-particle jet are the mass and the angularity τ−2.
To describe 3-particle jets we need 3 more observables in addition to the mass and τ−2. As shown above,
the outer product (I2)2 has one independent contraction, �ik�jlIijIkl ∼ det I, the planar flow. Next we
have I6 which has one contraction,

Iiijjkk =
1

EJ

�

i∈particles

Eiθ
6
i =

�
32s

EJ

�
τ−4 ,

corresponding to the angularity of next higher order (GGA: phrasing: I had “corresponding to the
next order of angularity”). Generally, I2n with n > 1 has only one contraction, Ii1i1···inin ∼

�
i Eiθ2n

i ,
which corresponds to an angularity with a = 2(1− n).
At the next order we find I2I4, (I3)2, and I8, with the following independent contractions:

I2I4 : �ij�klIikIjlmm , �ijIikIjkll

(I3)2 : �ij�klIikmIjlm , IijkIijk

I8 : Iiijjkkll

2 This is at leading order. Soft phenomena, such as color connection with other jets in the event, will generally break this
symmetry.

∝ τ−2

5

❍❍❍❍❍R
∆ε

1 2 3 4

2 I2 - - -

4 I4 (I2)
2

- -

6 I6 I2I4, (I3)
2

(I2)
3

-

8 I8 I2I6, I3I5, (I4)
2 I2(I3)

2, (I2)
2I4 (I2)

4

TABLE I: Moment products that correspond to given orders in energy resolution ∆ε and cone size R. Observables

are constructed by contracting these products in various ways.

Table I lists the outer products that appear in the first few orders of the expansion. Note that there are no
observables with an odd power of R since we cannot fully contract an odd number of SO(2) indices. Each
outer product may be contracted in several different ways, giving rise to different observables. However,
algebraic relations will reduce the total number of independent contractions.
On top of this expansion it is useful to consider jets that consist of a given number of particles (or
detector cell towers). A jet of N particles is characterized by 3N − 4 variables, corresponding to the
number of particle momentum components, minus the jet axis, the jet momentum, and the SO(2) angle
associated to the overall rotation around the jet axis.2 For given N we can then identify the lowest order,
Lorentz-invariant observables that characterize such jets. Let us list the observables for jets with up to 4
particles.
The two lowest order observables are

Iii =
1

EJ

�

i∈particles

Eiθ
2
i ≈

m2
J

E2
J

,

Iiijj =
1

EJ

�

i∈particles

Eiθ
4
i ≈

�
8s

EJ

�
τ−2 .

Therefore, the natural observables for describing a two-particle jet are the mass and the angularity τ−2.
To describe 3-particle jets we need 3 more observables in addition to the mass and τ−2. As shown above,
the outer product (I2)2 has one independent contraction, �ik�jlIijIkl ∼ det I, the planar flow. Next we
have I6 which has one contraction,

Iiijjkk =
1

EJ

�

i∈particles

Eiθ
6
i =

�
32s

EJ

�
τ−4 ,

corresponding to the angularity of next higher order (GGA: phrasing: I had “corresponding to the
next order of angularity”). Generally, I2n with n > 1 has only one contraction, Ii1i1···inin ∼

�
i Eiθ2n

i ,
which corresponds to an angularity with a = 2(1− n).
At the next order we find I2I4, (I3)2, and I8, with the following independent contractions:

I2I4 : �ij�klIikIjlmm , �ijIikIjkll

(I3)2 : �ij�klIikmIjlm , IijkIijk

I8 : Iiijjkkll

2 This is at leading order. Soft phenomena, such as color connection with other jets in the event, will generally break this
symmetry.

∝ τ−4

5

❍❍❍❍❍R
∆ε

1 2 3 4

2 I2 - - -

4 I4 (I2)
2

- -

6 I6 I2I4, (I3)
2

(I2)
3

-

8 I8 I2I6, I3I5, (I4)
2 I2(I3)

2, (I2)
2I4 (I2)

4

TABLE I: Moment products that correspond to given orders in energy resolution ∆ε and cone size R. Observables

are constructed by contracting these products in various ways.

Table I lists the outer products that appear in the first few orders of the expansion. Note that there are no
observables with an odd power of R since we cannot fully contract an odd number of SO(2) indices. Each
outer product may be contracted in several different ways, giving rise to different observables. However,
algebraic relations will reduce the total number of independent contractions.
On top of this expansion it is useful to consider jets that consist of a given number of particles (or
detector cell towers). A jet of N particles is characterized by 3N − 4 variables, corresponding to the
number of particle momentum components, minus the jet axis, the jet momentum, and the SO(2) angle
associated to the overall rotation around the jet axis.2 For given N we can then identify the lowest order,
Lorentz-invariant observables that characterize such jets. Let us list the observables for jets with up to 4
particles.
The two lowest order observables are

Iii =
1

EJ

�

i∈particles

Eiθ
2
i ≈

m2
J

E2
J

,

Iiijj =
1

EJ

�

i∈particles

Eiθ
4
i ≈

�
8s

EJ

�
τ−2 .

Therefore, the natural observables for describing a two-particle jet are the mass and the angularity τ−2.
To describe 3-particle jets we need 3 more observables in addition to the mass and τ−2. As shown above,
the outer product (I2)2 has one independent contraction, �ik�jlIijIkl ∼ det I, the planar flow. Next we
have I6 which has one contraction,

Iiijjkk =
1

EJ

�

i∈particles

Eiθ
6
i =

�
32s

EJ

�
τ−4 ,

corresponding to the angularity of next higher order (GGA: phrasing: I had “corresponding to the
next order of angularity”). Generally, I2n with n > 1 has only one contraction, Ii1i1···inin ∼

�
i Eiθ2n

i ,
which corresponds to an angularity with a = 2(1− n).
At the next order we find I2I4, (I3)2, and I8, with the following independent contractions:

I2I4 : �ij�klIikIjlmm , �ijIikIjkll

(I3)2 : �ij�klIikmIjlm , IijkIijk

I8 : Iiijjkkll

2 This is at leading order. Soft phenomena, such as color connection with other jets in the event, will generally break this
symmetry.

5

❍❍❍❍❍R
∆ε

1 2 3 4

2 I2 - - -

4 I4 (I2)
2

- -

6 I6 I2I4, (I3)
2

(I2)
3

-

8 I8 I2I6, I3I5, (I4)
2 I2(I3)

2, (I2)
2I4 (I2)

4

TABLE I: Moment products that correspond to given orders in energy resolution ∆ε and cone size R. Observables

are constructed by contracting these products in various ways.

Table I lists the outer products that appear in the first few orders of the expansion. Note that there are no
observables with an odd power of R since we cannot fully contract an odd number of SO(2) indices. Each
outer product may be contracted in several different ways, giving rise to different observables. However,
algebraic relations will reduce the total number of independent contractions.
On top of this expansion it is useful to consider jets that consist of a given number of particles (or
detector cell towers). A jet of N particles is characterized by 3N − 4 variables, corresponding to the
number of particle momentum components, minus the jet axis, the jet momentum, and the SO(2) angle
associated to the overall rotation around the jet axis.2 For given N we can then identify the lowest order,
Lorentz-invariant observables that characterize such jets. Let us list the observables for jets with up to 4
particles.
The two lowest order observables are

Iii =
1

EJ

�

i∈particles

Eiθ
2
i ≈

m2
J

E2
J

,

Iiijj =
1

EJ

�

i∈particles

Eiθ
4
i ≈

�
8s

EJ

�
τ−2 .

Therefore, the natural observables for describing a two-particle jet are the mass and the angularity τ−2.
To describe 3-particle jets we need 3 more observables in addition to the mass and τ−2. As shown above,
the outer product (I2)2 has one independent contraction, �ik�jlIijIkl ∼ det I, the planar flow. Next we
have I6 which has one contraction,

Iiijjkk =
1

EJ

�

i∈particles

Eiθ
6
i =

�
32s

EJ

�
τ−4 ,

corresponding to the angularity of next higher order (GGA: phrasing: I had “corresponding to the
next order of angularity”). Generally, I2n with n > 1 has only one contraction, Ii1i1···inin ∼

�
i Eiθ2n

i ,
which corresponds to an angularity with a = 2(1− n).
At the next order we find I2I4, (I3)2, and I8, with the following independent contractions:

I2I4 : �ij�klIikIjlmm , �ijIikIjkll

(I3)2 : �ij�klIikmIjlm , IijkIijk

I8 : Iiijjkkll

2 This is at leading order. Soft phenomena, such as color connection with other jets in the event, will generally break this
symmetry.

Classification of LO jet shapes (brief)



6

The additional contractions IijIijkk, IijjIikk can be shown to be linearly dependent on these. Any

combination of them can be chosen as the remaining observable for 3-particle jets. In lumping I8 with

the rest we assumed for simplicity that energy and angular measurements have comparable weight in the

small parameter expansion. Of course, if this assumption is not true, I8 may be preferred or disfavored

in comparison with the other contractions.

Note that an observable—such as planar flow—which includes one or more � symbols vanishes when

all particles are on a line.3 Since two particles always lie on a line, these observables contribute at

leading order to 3-particle jets. They can therefore be used to distinguish QCD jets, which favor 2-parton

configurations, from e.g. top jets that favor 3-body decays.

Finally, 4-particle jets are described by eight variables. So far we found nine leading order observables,

Iii , Iiijj , �ij�klIikIjl , Iiijjkk , �ij�klIikIjlmm ,

�ijIikIjkll , �ij�klIikmIjlm , IijkIijk , Iiijjkkll .

Of these, any leading eight can be chosen to describe the jet.

V. EXPANSION IN ZERNIKE POLYNOMIALS

One can expand ε(x) in a series of orthogonal functions. There are various choices, but since ε(r, φ) is

defined on a disc of radius R, perhaps the most convenient expansion is in terms of the Zernike polynomials,

which form an orthogonal basis on the unit disc [? ]. This set of functions is widely used in optics, in

particular in the study of optical aberrations where the expansion coefficients have simple geometrical

meaning. The expansion of ε(x) is

ε(r, φ) =
a0,0

R2
+

1

R2

∞�

n=1

�

0≤m≤n,
n−m even

�
an,mRm

n

� r

R

�
cos(mφ) + an,−mRm

n

� r

R

�
sin(mφ)

�
,

where Rm
n (ρ) are a set of polynomials of degree n respecting the orthogonality condition

� 1

0
dρρRm

n (ρ)Rm
n�(ρ) =

1

2n + 2
δn,n� .

The orthogonality among different m’s trivially comes from the orthogonality of the trigonometric func-

tions.

The conditions I0 = 1 and I1 = 0 fix a0,0 = 1/π and a1,±1 to vanish. One can further expand the moments

defined in Sect. III in terms of the an,m. One then finds that a moment of order r will be expressed as

a linear combination of an,m’s with n ≤ r. Moreover upon tracing over k of the r indices m will be

constrained to be ≤ r−k. An even/odd number of indices correspond to m (and thus n) being even/odd.

The lowest order invariants like the mass, the angularities with a = 2, 4 and planar flow have the following

3 To see this, first rotate the line configuration to lie on the x1 axis, and then note that the � tensor forces an x2 factor to
appear. This factor vanishes wherever ε(x) �= 0.

Zernike polynomials
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expression in terms of the Zernike coefficients am,n:

m2
J

E2
J

=
π

6
R2 (a2,0 + 3a0,0) ,

8s

EJ
τ−2 =

π

30
R4 (a4,0 + 5a2,0 + 10a0,0) ,

32s

EJ
τ−4 =

π

140
R6 (a6,0 + 7a4,0 + 21a2,0 + 35a0,0) ,

(Pf− 1)
m4

J

E4
J

=
π2

36
R4

�
a2
2,2 − a2

2,−2

�
.

In optics the lowest order coefficients have specific names. In particular a1,±1 is the tilt, a2,0 is the defocus,
a2,±2 are the 0◦ and 45◦–astigmatism respectively, a3,±1 is the coma, a4,0 is the spherical aberration. The
optical analogy provides us with additional geometrical understanding of what is being probed by the
jet shapes defined in the previous sections. MP: not sure. Maybe remove it or demote it to a
footnote?

VI. ANALYSIS OF �I2I4

We now try to gain some intuition regarding one of the new observables found in Sect. IV, O ≡
2�ijIikIjkmm. Note that any observable which includes an odd number of �ij symbols is a pseudo-scalar
with respect to parity on the detector plane. It therefore vanishes for any energy distribution that is
symmetric under reflection through an arbitrary axis.
Let I �4 be the I4 moment, traced once, Ikkij . Both I2 and I �4 are real, symmetric matrices, so we can write
them in terms of the Pauli matrices,

I2 = I2,0
σ0

2
+ I2,1

σ3

2
+ I2,2

σ1

2
,

I �4 = I4,0
σ0

2
+ I4,1

σ3

2
+ I4,2

σ1

2
.

The observable can then be written as

O = 2�ijIikIjkmm = 2Tr(I2�I
�
4) = �ijI2,iI4,j .

Note that O doesn’t depend on the σ0 components (the trace). Treating I2,i, I4,j as d = 2 vectors, we see
that

O = �I2 × �I4 , (5)

where the product is the cross product in d = 2 which produces a scalar.
To get further insight, let us compute the components of these vectors. We do this for a general moment
I �2k with all indices traced except two. It is expanded in Pauli matrices just like I2, I �4 above, and we
denote its corresponding d = 2 vector by Ii

2k. We write the result using polar coordinates, x1 = r cos(φ),
x2 = r sin(φ).

I1
2k = Tr(I �2kσ3) = I �2k,11 − I �2k,22 =

� R

0
dr

� 2π

0
dφ ε(r, φ) r2k+1 cos(2φ) ,

I2
2k = Tr(I �2kσ1) = 2I �2k,12 =

� R

0
dr

� 2π

0
dφ ε(r, φ) r2k+1 sin(2φ) .
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proposed here are based on complex moments. Their independence
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I. INTRODUCTION

MOMENT invariants have become a classical tool for ob-
ject recognition during last 40 years. No doubt they are

one of the most important and most frequently used shape de-
scriptors. Even if they suffer from some intrinsic limitations (the
most important of which is their globality, which prevents them
from being used for recognition of occluded objects), they fre-
quently serve as a reference method for evaluation of the per-
formance of other shape descriptors. Despite of large amount of
effort and huge number of published papers, there are still open
problems to be resolved.

A. State-of-The-Art in Brief

The history of moment invariants begun in the 19th century,
many years before the appearance of the first computers, under
the framework of the theory of algebraic invariants. The theory
of algebraic invariants probably originate from the famous
German mathematician David Hilbert [1] and was thoroughly
studied also in [2], [3].

Moment invariants were firstly introduced to the pattern
recognition community in 1962 by Hu [4], who employed the
results of the theory of algebraic invariants and derived his
seven famous invariants to in-plane rotation of 2-D objects and
further studied in classical papers [6], [5], [7]. Since that time,
numerous works have been devoted to various improvements
and generalizations of Hu’s invariants and also to its use in
many application areas.
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Dudani [8] and Belkasim [9] described their application to
aircraft silhouette recognition, Wong and Hall [10], Goshtasby
[11], and Flusser and Suk [12] employed moment invariants
in template matching and registration of satellite images,
Mukundan [13] applied them to estimate the position and the
attitude of the object in 3-D space, Sluzek [14] proposed to
use local moment invariants in industrial quality inspection and
many other authors used moment invariants for character recog-
nition [9], [15]–[18]. Maitra [19] and Hupkens [20] made them
invariant also to contrast changes, Wang [21] proposed illumi-
nation invariants particularly suitable for texture classification.
Li [22] and Wong [23] presented the systems of invariants
up to the orders nine and five, respectively. Lin and Tianxu
[24] published another technique how to derive higher-order
moment invariants. Unfortunately, the invariant sets presented
in their papers are algebraically dependent. Flusser [25], [26]
proposed a unified method how to derive independent sets of
rotation invariants of any orders and proved that the original
Hu’s invariants are dependent and incomplete.

The aforementioned papers dealt with invariants to transla-
tion, rotation, and scaling (TRS). In addition to them, there have
been numerous papers on moment invariants to affine and pro-
jective transforms, to photometric (color) changes and to linear
filtering of an image. Other groups of papers have dealt with
reconstruction power of moments, with their numerical proper-
ties, and also with moments with respect to special orthogonal
polynomials. However, these aspects of moment invariants are
not the topics of this paper, so we do not cite particular refer-
ences.

B. Topic of This Paper

As many authors have pointed out, objects having certain de-
gree of symmetry may cause problems in moment-based recog-
nition systems. The reason is that many moments and, conse-
quently, many moment invariants vanish for symmetric objects.
For example, all odd-order moments of a centrosymmetric ob-
ject equal identically zero.

The goal of this paper is to develop TRS moment invari-
ants which are particularly suitable for objects having -fold
rotation symmetry. This is very important when recognizing
man-made objects and natural shapes. To achieve this, we sub-
stantially generalize our recent theory published in [25] and
[26], taking into account -fold symmetric objects for arbitrary

including infinity.
The rest of the paper is organized as follows. In Section II,

we briefly recall the derivation of TRS invariants from complex
moments, introduced in [25] and [26]. Section III performs the
core of the paper. We generalize the construction of the invariant

1057-7149/$20.00 © 2006 IEEE

FLUSSER AND SUK: ROTATION MOMENT INVARIANTS 3787

In particular, if is integer then .
2)

3) If is finite, the number of elements of is

where and symbol means integer part of .
For it holds

In practical pattern recognition experiments, the number of
folds may not be known a priori. In that case, we can apply
a fold detector (see [29], [30], and [31] for algorithms detecting
the number of folds) to all elements of the training set before
we choose an appropriate system of moment invariants. In case
of equal fold numbers of all classes, proper invariants can be
chosen directly according to Theorem 3 or 3a. However, it is
not realistic to meet such a simple situation in practice. Different
shape classes use to have different numbers of folds. The pre-
vious theory does not provide a solution to this problem.

As can be seen from Lemma 2, we cannot simply choose one
of the numbers of folds detected as the appropriate for con-
structing invariant basis according to Theorem 3 (although one
could intuitively expect the highest number of folds to be a good
choice, it is not that case). More sophisticated choice is to take
the least common multiple of all finite fold numbers and then to
apply Theorem 3. Unfortunately, taking the least common mul-
tiple often leads to high-order instable invariants. This is why,
in practice, one may prefer a decomposition of the problem into
two steps—first, preclassification into “groups of classes” ac-
cording to the number of folds is performed and then final clas-
sification is done by means of moment invariants, which are de-
fined separately in each group. This decomposition can be per-
formed explicitly in a separate preclassification stage or implic-
itly during the classification. The word “implicitly” here means
that the number of folds of an unknown object is not explicitly
tested, however, at the beginning we must test the numbers of
folds in the training set. Let us explain the latter version.

Let us have classes altogether such that classes have
folds of symmetry; .

The set of proper invariants can be chosen as follows.

Algorithm Select Inv

Set .
for

1) Compute the discriminability among all classes
with fold numbers by means of .
Discriminability can by defined in terms of Euclidean,
Mahalanobis, or another metric.

2) If then , where
goto

endfor

Fig. 1. Test trademarks (from left to right): Mercedes-Benz, Mitsubishi, Recy-
cling, Fischer, and Woolen Stuff.

Starting from the highest symmetry, this algorithm selects in
each loop those invariants which are able to distinguish among
objects with the fold numbers and higher, but which may
equal zero for some (or all) other objects. Note that for some

the algorithm need not to select any invariant because the
discriminability can be assured by the invariants selected before
or because .

In addition to rotation symmetry, axial symmetry appears
often in practical experiments and it also contributes to the
vanishing of some moments. There is a close connection be-
tween axial and rotation symmetry—if an object has axes
of symmetry then it is also rotationally symmetric
and is exactly its number of folds [32]. Thus, we will not
discussed the choice of invariants for axially symmetric objects
separately.

IV. NUMERICAL EXPERIMENTS

In order to illustrate how important is a careful choice of the
invariants, in particular, pattern recognition tasks, we carried out
the following experimental study.

A. Trademark Recognition

In the first experiment, we tested the capability of recognizing
objects having the same number of folds, particularly .
As a test set we used three trademarks of major companies
(Mercedes-Benz, Mitsubishi, and Fischer) and two commonly
used symbols (“recycling” and “woolen stuff”). All trademarks
were downloaded from the respective websites, resampled to
128 128 pixels and binarized. We decided to use trademarks
as the test objects because most trademarks have certain degree
of symmetry and all commercial trademark recognition systems
face the problem of symmetry. A comprehensive case study on
trademark recognition and retrieval [33] used the Hu’s moment
invariants as a preselector; here we show that Theorem 3 yields
more discriminative features.

As can be seen in Fig. 1, all our test marks have threefold ro-
tation symmetry. Each mark was rotated ten times by randomly
generated angles. Since the spatial resolution of the images was
relatively high, the discretization effect was negligible. Moment
invariants from Theorem 3 ( and ) pro-
vide an excellent discrimination power even if we take only two
simplest of them (see Fig. 2), while the invariants from Theorem
2 are not able to distinguish the marks at all (see Fig. 3).

B. Recognition of Simple Shapes

In the second experiment, we used nine simple binary pat-
terns with various numbers of folds: capitals F and L ,
rectangle and diamond , equilateral triangle and tripod

, cross , and circle and ring (see
Fig. 4). As in the previous case, each pattern was ten times ro-
tated by ten random angles.
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gree of symmetry may cause problems in moment-based recog-
nition systems. The reason is that many moments and, conse-
quently, many moment invariants vanish for symmetric objects.
For example, all odd-order moments of a centrosymmetric ob-
ject equal identically zero.

The goal of this paper is to develop TRS moment invari-
ants which are particularly suitable for objects having -fold
rotation symmetry. This is very important when recognizing
man-made objects and natural shapes. To achieve this, we sub-
stantially generalize our recent theory published in [25] and
[26], taking into account -fold symmetric objects for arbitrary

including infinity.
The rest of the paper is organized as follows. In Section II,

we briefly recall the derivation of TRS invariants from complex
moments, introduced in [25] and [26]. Section III performs the
core of the paper. We generalize the construction of the invariant
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The pseudo scalar jet shape variable?
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expression in terms of the Zernike coefficients am,n:
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π
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EJ
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π

30
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π
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(Pf− 1)
m4
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E4
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=
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2,2 − a2
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�
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In optics the lowest order coefficients have specific names. In particular a1,±1 is the tilt, a2,0 is the defocus,
a2,±2 are the 0◦ and 45◦–astigmatism respectively, a3,±1 is the coma, a4,0 is the spherical aberration. The
optical analogy provides us with additional geometrical understanding of what is being probed by the jet
shapes defined in the previous sections.

VI. ANALYSIS OF �I2I4

We now try to gain some intuition regarding one of the new observables found in Sect. IV, O ≡
2�ijIikIjkmm. Note that any observable which includes an odd number of �ij symbols is a pseudo-scalar
with respect to parity on the detector plane. It therefore vanishes for any energy distribution that is
symmetric under reflection through an arbitrary axis.
Let I �4 be the I4 moment, traced once, Ikkij . Both I2 and I �4 are real, symmetric matrices, so we can write
them in terms of the Pauli matrices,

I2 = I2,0
σ0

2
+ I2,1

σ3

2
+ I2,2

σ1

2
,

I �4 = I4,0
σ0

2
+ I4,1

σ3

2
+ I4,2

σ1

2
.

The observable can then be written as

O = 2�ijIikIjkmm = 2Tr(I2�I
�
4) = �ijI2,iI4,j .

Note that O doesn’t depend on the σ0 components (the trace). Treating I2,i, I4,j as d = 2 vectors, we see
that

O = �I2 × �I4 , (5)

where the product is the cross product in d = 2 which produces a scalar.
To get further insight, let us compute the components of these vectors. We do this for a general moment
I �2k with all indices traced except two. It is expanded in Pauli matrices just like I2, I �4 above, and we
denote its corresponding d = 2 vector by Ii

2k. We write the result using polar coordinates, x1 = r cos(φ),
x2 = r sin(φ).

I1
2k = Tr(I �2kσ3) = I �2k,11 − I �2k,22 =

� R

0
dr

� 2π

0
dφ ε(r, φ) r2k+1 cos(2φ) ,

I2
2k = Tr(I �2kσ1) = 2I �2k,12 =

� R

0
dr

� 2π

0
dφ ε(r, φ) r2k+1 sin(2φ) .
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Some Interpretation of CDF’s di-mass 
boosted jet excess

• Assuming new source of tops, tension with “SL” sample is~1.4σ

• Requires 7-14 fb of hadronic top equivalence Xsec.

• Simplest explanation is QCD:

Implications of the Measurement of Ultra-Massive Boosted Jets at CDF

Yochay Eshel, Oram Gedalia, Gilad Perez and Yotam Soreq
Department of Particle Physics & Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel

The CDF collaboration reported a 3.44 σ deviation from the estimated background in events
with two ultra-massive boosted jets. We discuss the interpretation of the measurement and its
fundamental implications. In case new physics is involved, the most naive contribution is from a
new particle produced with a cross section that is a few times higher than that of the top quark, and
a sizable hadronic branching ratio. We quantify the resulting tension of a possible larger top pair
cross section with the absence of excess found in events with one massive boosted jet and missing
energy. The measured planar flow distribution shows deviation from CDF’s Pythia QCD prediction
at high planarity, while we find a somewhat smaller deviation when comparing with other Monte
Carlo tools. As a simple toy model, we analyze the case of a light gluino with R-parity violation,
and show that it can be made consistent with the data.

Introduction. New physics searches at colliders typi-
cally focus on signals with leptons and/or missing energy.
Recently, there has been some interest in extending the
hunt to include particles that decay only to quarks and
gluons (see e.g. [1, 2] for some theoretical studies), as
was done in an analysis by CDF [3] . In this analysis the
focus was on supersymmetry (SUSY) with R-parity vio-
lation (RPV), where a light gluino decays to three quarks.
However, this results in a multi-jet signal, which makes
it challenging to distinguish from the QCD background.
Indeed, it was found in [3] that the current sensitivity
is far below the expected signal, thus it is not useful for
obtaining a bound on the parameter space of SUSY (or
any alternative theory which would produce this type of
a signal).

Progress has been recently achieved in another CDF
study by restricting the data sample to include only high
transverse momentum (pT ) and high mass jets [4–6], thus
reducing the QCD background much more than the sig-
nal and increasing the sensitivity (as was anticipated
in [2]). The idea is that the decay products of a highly
boosted massive object would collimate to a single jet
in the detector. While the data is still dominated by
the QCD background, it has much larger discrimination
power. Moreover, it is possible to use various jet sub-
structure analysis techniques to further improve the ef-
ficiency. Applying this approach enabled to obtain the
strongest existing bound on the cross section for the pro-
duction of a (high-pT ) top pair, even without relying on
substructure analysis.

The CDF study focused on events including two
boosted jets (pT > 400 GeV for the leading jet) with mass
close to the top mass (130-210 GeV) and pseudorapidity
η � 0.7 (to be precise, an η cut was applied only for the
leading jet, but it was found that the second jet admitted
a similarly bounded η value) [5]. The jet algorithms used
are Midpoint and anti-kT with R = 1.0 (R = 0.7 was
also checked), which were in excellent agreement. As
discussed below, the estimated number of background

events within the data sample of 5.95 fb−1 is

QCD : 13± 2.4 (stat.)± 3.9 (syst.) ,

tt̄ : 3.0± 0.8 .
(1)

The number of observed events was 32 [6], which consti-
tutes a deviation of 3.44 standard deviations (σ) from the
above expectation. In order to translate this to cross sec-
tion, we perform the following exercise. The SM NNLO
cross section for tt̄ production with pT > 400 GeV is
4.5 fb [5, 7]. Multiplying this by a branching ratio of 4/9
for hadronic tops, we get 2 fb, which corresponds to the
3 events reported in Eq. (1). Thus the difference between
the 32 observed events and the mean value of Eq. (1) is
translated to a cross section of

σexcess ∼ (11± 3) fb . (2)

This is the excess found in [6] in terms of hadronic top-
equivalent cross section, under the assumption that the
signal cannot be accounted for within the SM. The data
can also be used to provide an upper bound on the top
pair production cross section, which is given by 20 fb at
95% confidence level [5, 6].

The evaluation of the QCD background in Eq. (1) was
done in the following way. The search was divided into
four different regions in terms of the jet masses. Region A
corresponds to events with two “light” jets, with masses
in the range of 30-50 GeV. Regions B and C are for one
massive jet (130-210 GeV) and one light jet, depending
on which is the leading jet in terms of pT . Finally, re-
gion D corresponds to two massive jets. There are three
basic assumptions involved: i) all the events in regions
A-C come only from QCD; ii) the actual cross section can
be factorized into the partonic cross section, which only
weakly depends on the masses of the final states, and the
jet and soft functions [8]; iii) the masses of the leading
and sub-leading jets are largely uncorrelated variables for
QCD jet production, and the correlation cancels in the
ratio Rmass described below. Under these assumptions,
we have

Rmass ≡
nBnC

nAnD
= 1 , (3)

not coming from PDF, since the ratio is close to unity.

• Pf: Deviation from MC is reduced when looking at new Pythia, 

     MG/ME+matching & Herwig (however none includes 1->3 SF).

(thanks to S. Ellis for questioning)



Summary
✦ LHC => new era, boosted massive jets important for 

studying QCD & NP discoveries. 

✦Jet function (gluon emission) gives correct qualitative 

description of data => 2 body physics; quark jets. 

✦ Angularity distribution further confirmed this description, 

affected by jet algorithm (due to IR safety issues).

✦Interesting excess of di-massive jet events (not in ones \w MET).

✦Planar flow (3 body) shows larger deviation at large masses.

✦Data driven pile up corrections works, jet-shape classification.


