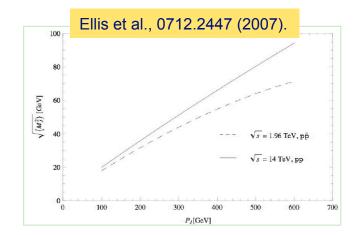
Massive High P_T Jets: Updates from CDF

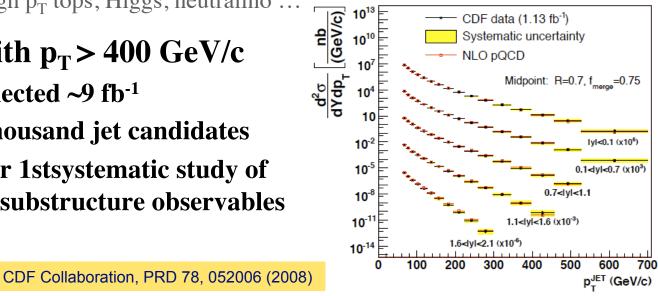
Outline

- **1. Introduction and Motivation**
- 2. Data Selection
- 3. Calibrating and Correcting Jet Observables
- 4. Systematic Uncertainties
- **5.** Algorithm Dependencies
- 6. Next Steps

Representing CDF Collaboration

Raz Alon, Gilad Perez & Ehud Duchovni Weizmann Institute of Science & Pekka K. Sinervo, FRSC University of Toronto

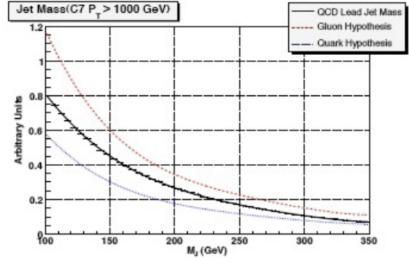

Study Motivation


Mass of high-p_T jets important property – but mostly theory studies

- High mass: QCD at NLO predicts jet mass \bigcirc (eg., Ellis et al, 0712.2447, Alemeida, et al. 0810.0934)
- Such jets form significant background to new physics signals
 - \triangleright Examples: high p_T tops, Higgs, neutralino ...

Focus on jets with $p_T > 400 \text{ GeV/c}$

- CDF II has collected ~9 fb⁻¹
- Have several thousand jet candidates
- **Opportunity for 1stsystematic study of** jet mass, other substructure observables


Weizmann/UofT

2

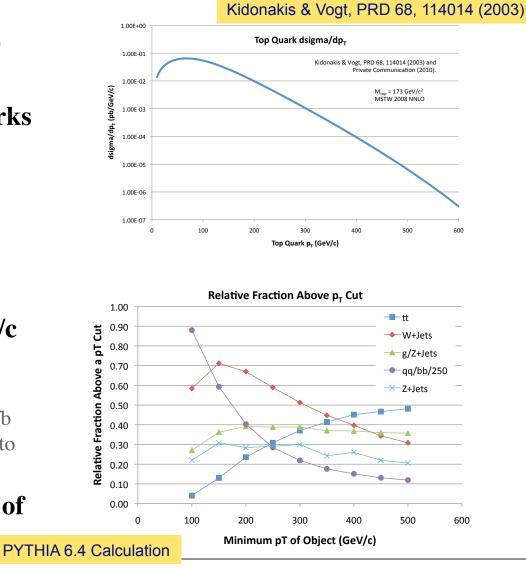
NLO QCD Predicts Jet Function

Expect high mass jets arise primarily from 1-gluon radiation

$$\frac{\sigma}{dp_T dm^{jet}} \quad J^{q,g}(m^{jet}, p_T, R) \frac{d\hat{\sigma}}{dp_T}$$
$$J^{q,g}(m^{jet}, p_T, R) \cong \alpha_s \left(m^{jet}\right) \frac{4C^{q,g}}{\pi m^{jet}} \log\left(Rp_T / m^{jet}\right)$$

Alemeida, et al. 0810.0934

• Robust NLO prediction for

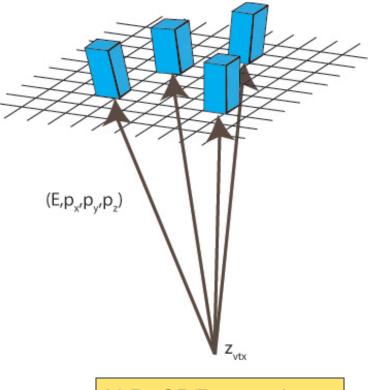

- Shape of high mass tail (and quark/gluon difference)
- > Relative rate of high mass QCD jets

Boosted Objects at Tevatron

- SM sources for high-p_T objects calculable
 - Dominated by light quarks & gluons

Expect other contributions

- Fraction of top quarks
 ~1.5% for p_T > 400 GeV/c
 - Total rate 4.45±0.5 fb (Kidonakis & Vogt)
 - PYTHIA 6.216 rate is 6.4 fb (scaling total cross section to measured world average)
- Expect W/Z production of similar order


4

Strategy for Analysis

- Select high p_T jets in CDF central calorimeter
 - Use tower segmentation to measure jet mass
 - Confirm with tracking information
 - Employ standard "e-scheme" for mass calculation
 - > 4-vector sum over towers in jet
 - > Each tower is a particle with m = 0
 - > Four vector sum gives (E,p_x,p_y,p_z)

Employ Midpoint cone jets

- Best understood in CDF II context
- Compare results with anti-k_T and Midpoint with "search cones" (Midpoint/SC)

N.B. CDF central towers are $\Delta\eta \ x \ \Delta\phi \sim 0.11 \ x \ 0.26$

Jet Algorithms

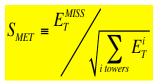
- Cone algorithms used for most Tevatron studies
 - Long history quite separate from e⁺e⁻ work
 - JetClu was CDF reference
 - Required "seed" to initiate
 - Significant IRC sensitivity
- Midpoint developed to reduce IRC sensitivity
 - Use seeds, but then recluster with seeds
 "midway" between all jets

Use Fastjet Framework!

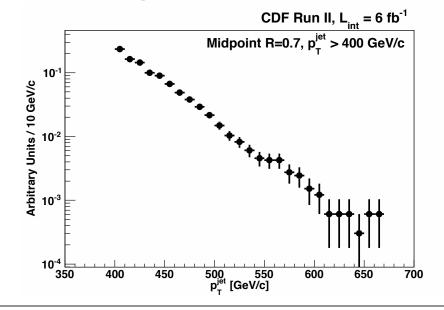
M. Cacciari, G.P. Salam and G. Soyez, Phys. Lett. B641, 57 (2006) [hep-ph/0512210]. Cone algorithms had "dark tower" problem

- Unclustered energy due to split/merge/iteration procedure
- Proposed solution: Midpoint with "search cones"
 - > Find jets with cone size R/2
 - > Fix jet direction, cluster with size R
- Midpoint/SC was used for various studies 2006-2008
- Anti-k_T algorithm developed
 - No IR sensitivity
 - Still retained many of the benefits of a "cone" algorithm

Data Selection


Analyzed inclusive jet sample

- Trigger requires $E_T > 100 \text{ GeV}$
- Analyzed 5.95 fb⁻¹ sample
- Selected data with focus on high p_T objects
 - Kept any event with
 - > Jet with $p_T > 300 \text{ GeV/c}$ and $|\eta| < 0.7$
 - Used cones of R=0.4, 0.7 and 1.0


Processed 76M events

- Selected subsample with
 - > p_T > 400 GeV/c > $|\eta| \in (0.1, 0.7)$

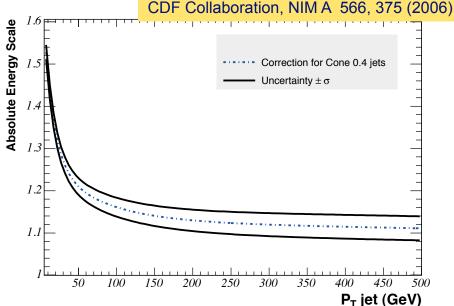
Performed cleaning cuts

- Event vertex, jet quality and loose S_{MET} (< 14)
- Resulted in 2700 events using jets with R=0.7

Jet Mass Corrections

Corrected jet mass using standard jet corrections

- Further correction needed for multiple interactions (MI)
- Use N_{vtx}=1 and N_{vtx}>1 events to determine MI effect


Investigated other effects:

• Effect of calorimeter inhomogen

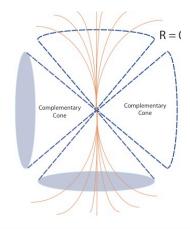
Varied pseudorapidity window – no significant changes in mass

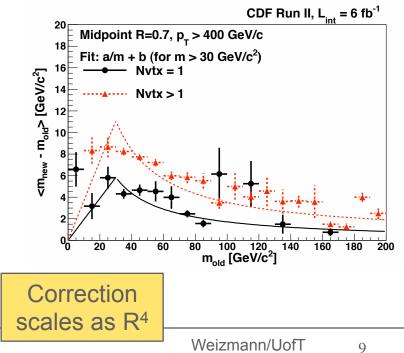
• Calorimeter segmentation and jet recombination

- > Varied position of towers (especially azimuth) and corrections for geometry
- Calorimeter response across face of jet
 - > Detailed study of tracking/calorimeter response in data and MC/detector simulation
- Jet energy scale vs algorithm (Midpoint, Midpoint/SC, anti-k_T)
 - Saw < 1 % difference</p>

Effects of MI and UE

Additional contribution from


- Underlying Event (UE)
- Multiple Interactions (MI)
 - > Average # interactions ~3/crossing

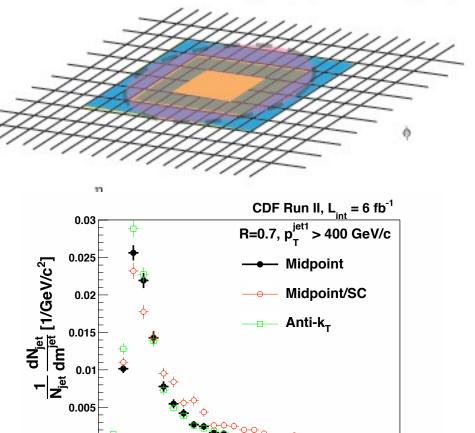

Looked at purely dijet events

- Took towers in cones, and added to leading jet in event
 - Mass shift, on average, is same shift coming from UE and MI

Separately measure N_{vtx}=1 events

• Gives UE correction separately

Inter-Jet Energy Calibration

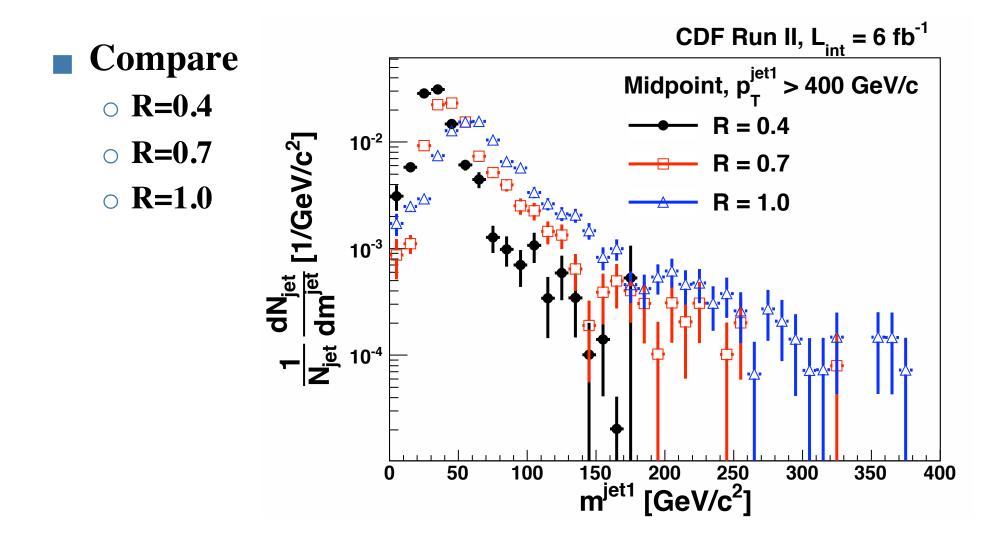

Jet mass arises from deposition of varying energy per tower

- Performed study to compare momentum flow vs calorimeter energy internal to jet
 - Defined 3 rings and compared observed p_T/E_T with simulation

Resulted in constraints on calorimeter relative response

- At m^{jet}=60 GeV/c², σ_m =1 GeV/c²
- \circ At m^{jet}=120 GeV/c², σ_m =10 GeV/c²
- Largest source of systematic uncertainty

Ring 1 ΔηΧΔφ=0.44x0.52 (yellow) Ring 2 ΔηΧΔφ=0.88x1.04 (green) Ring 3 ΔηΧΔφ=1.32x1.57 (blue)


m^{jet1} [GeV/c²]

50

250

300

Comparison with Cone Size

Systematics on m^{jet}

Sources of systematics:

• Calorimeter energy scale

Varies from 1 to 10 GeV/c² for
 65 to 120 GeV/c² mass jets

• UE and MI modelling

 Estimate 2 GeV/c² based on uncertainty in high mass correction

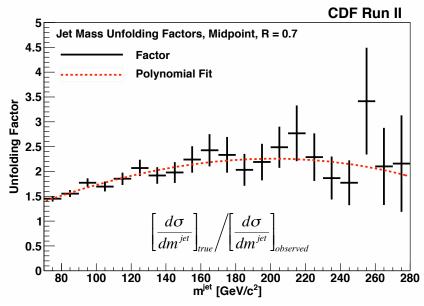
• PDF Uncertainties

- Used standard 20 eigenvector decomposition to assess MC uncertainties
- Shown when direct comparison made with PYTHIA 6.216

Uncertainties are uncorrelated

- Combined in quadrature, gives total jet mass uncertainty of
 - > 3.4 GeV/c^2 for $m^{\text{jet}} = 60 \text{ GeV/c}^2$
 - > $10.2 \text{ GeV/c}^2 \text{ for } \text{m}^{\text{jet}} > 100 \text{ GeV/c}^2$
- Effects jet mass distributions arising from bin-to-bin migration
 - Small systematic shifts in other substructure variables
 - Determined using 90° cone approach (see G. Perez's talk)

Determining Jet Function


Key prediction is "jet function"

$$J^{q,g}(m_{jet}, p_T, R) \cong \alpha_s(m_{jet}) \frac{4C^{q,g}}{\pi m_{jet}} \log(Rp_T / m_{jet})$$

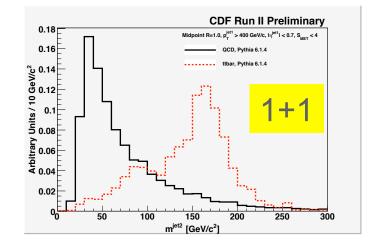
Just m^{jet} distribution?

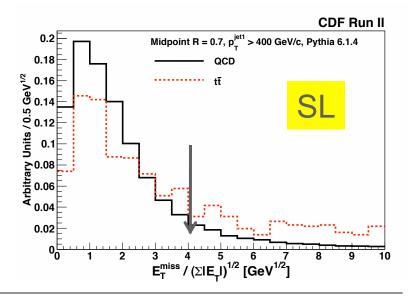
However, large correction comes from jet p_T cut

- p_T of low mass jets has
 ~10% broader resolution than high mass jets
- More events in sample with true p_T < 400 GeV/c at low m_{jet} vs high m_{jet}
 - Aggravated by much larger rate at low jet mass

Verified by studies of recoil jet

- No intrinsic p_T bias
- **Calculated correction with MC**
 - Hadronization uncertainty 10%

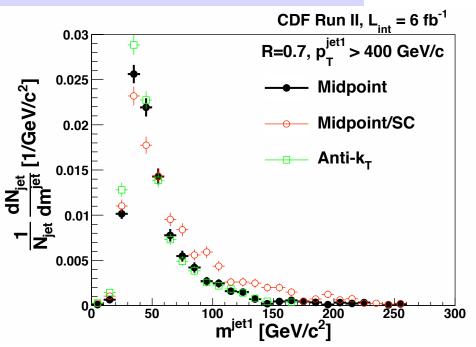

Reducing Top Contamination


Expect about 1.6 fb of high p_T jets from top in sample

- Eliminate by rejecting events with
 - > m^{jet2} > 100 GeV/c²
 - > Missing E_T Significance $(S_{MET}) > 4$
- Use jet cone of R=1.0 for improving top jet tagging
- Lose 28% of jet candidates
 - > 2576 events using R=0.7 jets
 - > 145 events with jet with $p_T > 500 \text{ GeV/c}$

After top-rejection, expect ~0.3 fb of top jets

• Comparable rates for W/Z jets



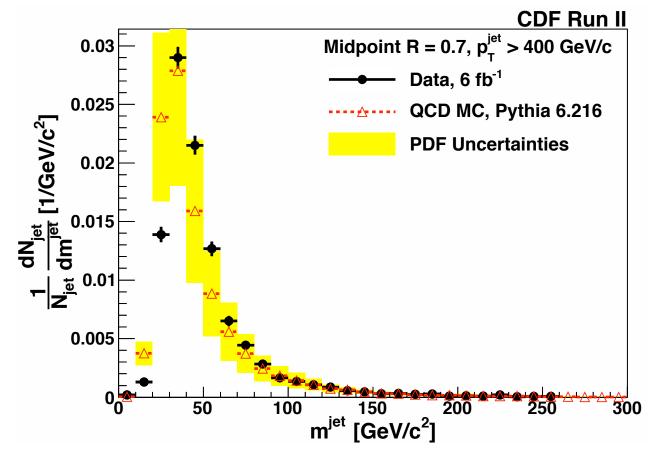
Properties of QCD Jet Sample

After top rejection

- Left with sample dominated by light quarks and gluon
- Compare high mass region with QCD theory
- Algorithm dependence?
 - > Midpoint and anti- k_T very similar
 - > Midpoint/SC quite different

Cut Flow					
All Data, 5.95 fb ⁻¹	75,764,270 events				
	$\mathbf{R} = 0.4$	R = 0.7			
At least one jet with					
$p_{\rm T} > 400 {\rm ~GeV/c},$	2153 events	2700 events			
$ \eta $ in (0.1, 0.7),					
and event quality cuts					
$m^{\text{Jet2}} < 100 \text{ GeV/c}^2$ and					
$S_{MET} < 4$	1837 events	2108 events			
(with $p_T^{jet2} > 100 \text{ GeV/c and MI}$					
corrections)					

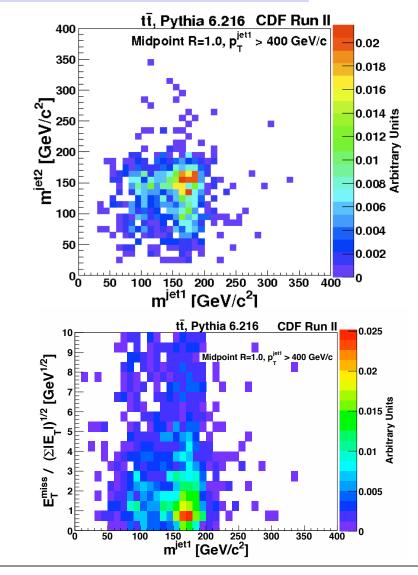
- Low-mass peak arises from nonperturbative QCD effects
 - Opportunity to study the properties of the high mass jets
 - Gilad will say more...


Comparison with PYTHIA

PYTHIA 6.216

- Standard CDF II QCD sample
- PDF
 uncertainties
 based on
 eigenvector
 decomposition

Agreement is reasonable


- Low-mass peak few GeV/c² lower
- Large PDF uncertainties at low mass

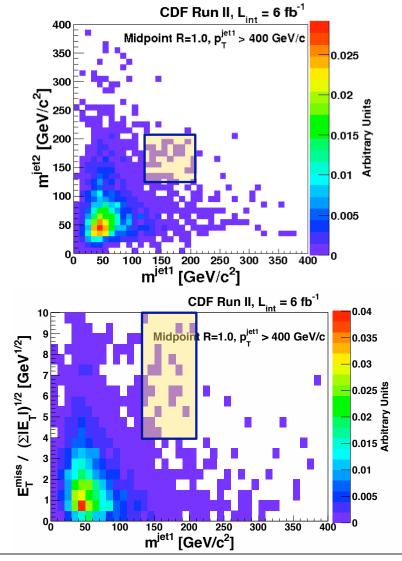
Search for Boosted Top

- Analysis suggests sensitivity to boosted top

 γ ~ 2.5
- Two topologies:
 - **1.** All hadronic ("1+1")
 - > Two massive jets recoiling ($\epsilon \sim 11\%$)
 - 2. Semi-leptonic decay ("SL")
 - > Require $S_{MET} > 4 (\epsilon \sim 7\%)$
- MC predicts ~0.8 fb
 - Divided about 60:40
 between topologies
 - > Highest efficiency channel for top ($\sim 18\%$)
 - Important handles for background:
 - masses of QCD di-jets not correlated
 - > Jet mass and S_{MET} not correlated

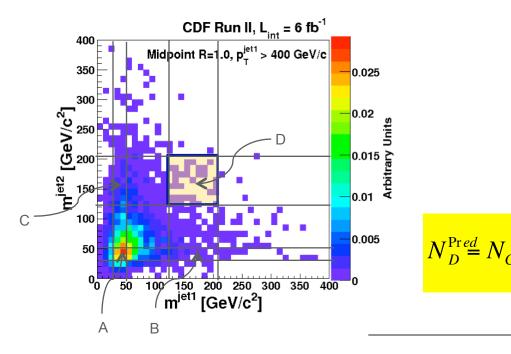
Strategy for Detecting Top

Keep selection simple


• Focus on two separate channels

All Hadronic Top (1+1)

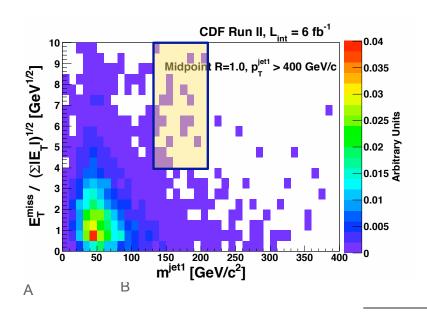
- Require 2 jets with 130 < m^{jet} < 210 GeV/c²
- Require S_{MET} < 4
- Estimate background using "ABCD" technique


Semi-leptonic top

- **Require 4 > S_{MET} > 10**
- Require 1 jet with 130 < m^{jet} < 210 GeV/c²
- Estimate background using "ABCD" technique

Best "Simple" Counting of 1+1

- With R=1.0 cones, m^{jet1} and m^{jet2} are equally powerful
 - Use jet mass (130,210) GeV/c² to define ttbar candidates
 - Expect 3.0±0.8 top quark events to populate this region


Employ data to estimate backgrounds

- Define mass windows $m^{jet} \in (130,210) \text{ GeV/c}^2$ $m^{jet} \in (30,50) \text{ GeV/c}^2$
 - Use fact that m^{jet}
 distributions uncorrelated
 for background
 - Signal is region D
 - In "1+1" sample, predict 13±2.4 (stat) bkgd events

• Observe $N_D = 32$ events

Best "Simple" Counting for SL

- In case of recoil semileptonic top, use m^{jet1} and S_{MET}
 - Assumption is the S_{MET} and m^{jet1} are uncorrelated
 - Expect 1.9±0.5 top quark events to populate this region

Employ data to estimate backgrounds

- ∪se regions m^{jet1} ∈(30,50) & (130,210) GeV/c²
- $S_{MET} \in (2,3) \& S_{MET} \in (4,10)$
 - In "SL" sample, predict 31±8 (stat) bkgd events
 - **Observe** N_D =26 events
 - About a -0.6 σ deficit!

Region	m ^{jet 1}	S_{MET}	Data	MC
	(GeV/c^2)	$(\sqrt{GeV/c^2})$	(Events)	(Events)
A	(30,50)	(2,3)	256	0.01
В	(130, 210)	(2,3)	42	1.07
С	(30, 50)	(4,10)	191	0.03
D (signal)	(130, 210)	(4,10)	26	1.90
Predicted QCD in D			31.3 ± 8.1	

Uncertainties

- Background uncertainty (±10.2 GeV/c² jet mass scale)
 - ±30% uncertainty
- Uncertainties on top efficiency (SM production)
 - Primarily jet energy scale of ±3% on pT -> ±25% on σ
- Background statistics
 - ±11% from counting
- Luminosity
 - ±6% on integrated luminosity
- **MC** m^{top} (±2 GeV/c²)
 - ±0.3%

- Overall uncertainties added in quadrature
 - ±41% overall
- Incorporated into upper limit calculation
- Use a CL_s frequentist method
 - Marginalize nuisance parameters
 - Same as used in Higgs and single top searches

Top Quark Cross Section Limit

Assume we observe signal + background

• Set upper limit on SM production σ for top quark with $p_T > 400$ GeV/c

Observe 58 events with 44+/-8 background

- Calculate 95% CL upper limit using CL_s method
 - Systematic uncertainties incorporated a la CDF 8128 (T. Junk)
 - > $N_{LIM} = 43.3$ events

• Efficiency from MC

- > 452 & 283 ttbar expected in 2 channels (out of 4041 MC events)
- > Efficiency = 0.182

Upper limit on cross section for p_T > 400 GeV/c

$$\sigma_{95\%} = \frac{N_{LIM}}{\int L \, dt \, \varepsilon}$$
$$= \frac{43.3}{(5.95)(0.182)} = 40 \text{ fb}$$

Can also set limit on 1+1 only

- Assume massive (m ~ mtop) object, pair-produced, decaying hadronically
- Include SM top as background

$$\sigma_{95\%} = \frac{N_{LIM}}{\int L \, dt \, \varepsilon} = \frac{30.2}{(5.95)(0.254)} = 20 \, \text{fb}$$

Conclusions

- First measurement of jet mass (and substructure) for high p_T jets
 - Being confronted by data forces one to understand systematics
 - Multiple interaction corrections
 - Calibration of mass scale
 - Allows for test of QCD predictions
 - Algorithm dependence
 - > Anti-k_T and Midpoint very similar
 - > Midpoint/SC produces "fatter" jets

Next talk will show substructure results

Search for boosted top possible

- Achieve $S / \sqrt{B} \approx 0.75$
- Set $\sigma < 40$ fb at 95% CL
- Limited by statistics!
- Real task is to observe at LHC
 - Tevatron program will end 2011
 - ATLAS and CMS already have comparable sized samples with 50 pb⁻¹
 - o Much higher p_T jets already!

BACKUP SLIDES

MI/UE Corrections

- Looked at how to make MI correction in a variety of ways
 - Looked at mass corrections event-by-event
 - But statistical fluctuations large, event-to-event
 - Chose to develop a parametrized correction
- Note that:

$$\delta m^{jet} \simeq \frac{E_{tower} E_{jet} \Delta R}{m^{jet}}$$

Expect MI correction to scale with R⁴:

- Exactly what we see when comparing R=0.4 and R=0.7
- PYTHIA UE agrees well with data – same UE mass correction
- Use that to scale corrections for R=1.0
 - Method doesn't work with larger cone because of overlap

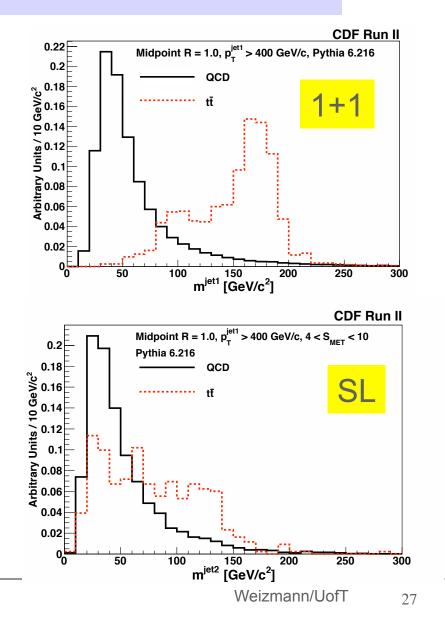
Internal Jet Energy Scale

Overall jet energy scale known to 3%

- The relative energy scale between rings known to 10-20%, depending on ring
- Use this to constrain how far energy scale can shift
- Do first for m^{jet} ~ 60 GeV/c² use average jet profile
 - Extract from that a limit on how much "Ring 1" energy scale can be off - ± 6%
 - Then do the same for mjet ~ 120 GeV/c²

Resulting systematic uncertainty is 9.6 GeV/c²

- Conservative estimate used a very broad energy profile
 - No localized substructure assumed
- Take this as systematic uncertainty
 - Could constrain it better using single particle response
 - Note that fixed cone size is an advantage here


Reconstruction of Top

Leading jet in ttbar events has clear top mass peak

- All events between 70 and 210 GeV/c² for R=1.0
- See evidence of W peak
 - B quark jet presumably nearby in those cases
- Clear that higher mass cut gives greater QCD rejection
 - > But also start to lose efficiency
- S_{MET} cut effectively identifies semi-leptonic decays (8%)

B tagging not used

- Can estimate mis-tags using data -> ~0.05 %/jet
- But large uncertainty in tagging efficiency in high pT jets —

Background Calculations

Background calculations used "ABCD" technique

SL

Region	m ^{jet 1}	SMET	Data	MC
	(GeV/c^2)	$(\sqrt{GeV/c^2})$	(Events)	(Events)
А	(30,50)	(2,3)	256	0.01
В	(130, 210)	(2,3)	42	1.07
С	(30, 50)	(4,10)	191	0.03
D (signal)	(130, 210)	(4,10)	26	1.90
Predicted QCD in D			31.3 ± 8.1	

1+1

Region	m ^{jet 1}	m ^{jet2}	Data	$t\overline{t}$ MC
	(GeV/c^2)	(GeV/c^2)	(Events)	(Events)
A	(30,50)	(30,50)	370	0.00
В	(130, 210)	(30,50)	47	0.08
С	(30, 50)	(130, 210)	102	0.01
D (signal)	(130, 210)	(130, 210)	32	3.03
Predicted QCD in D			$13.0\!\pm\!2.4$	