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Study Motivation


  Mass of high-pT jets important �
property – but mostly theory studies

o  High mass: QCD at NLO predicts jet mass  

(eg., Ellis et al, 0712.2447,  Alemeida, et al. 0810.0934)

o  Such jets form significant background �

to new physics signals

  Examples: high pT tops, Higgs, neutralino … 


  Focus on jets with pT > 400 GeV/c

o  CDF II has collected ~9 fb-1


o  Have several thousand jet candidates

o  Opportunity for 1stsystematic study of �

jet mass, other substructure observables


Ellis et al., 0712.2447 (2007). 

CDF Collaboration, PRD 78, 052006 (2008) 
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NLO QCD Predicts Jet Function


  Expect high mass jets arise primarily 
from 1-gluon radiation


o  Robust NLO prediction for

  Shape of high mass tail (and quark/gluon difference)

  Relative rate of high mass QCD jets


Weizmann/UofT 
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Boosted Objects at Tevatron


  SM sources for high-pT 
objects calculable

o  Dominated by light quarks 

& gluons 


  Expect other 
contributions

o  Fraction of top quarks 

~1.5% for pT > 400 GeV/c

  Total rate 4.45±0.5 fb 

(Kidonakis & Vogt)

  PYTHIA 6.216 rate is 6.4 fb 

(scaling total cross section to 
measured world average)


o  Expect W/Z production of 
similar order


Weizmann/UofT 
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Strategy for Analysis


  Select high pT jets in CDF�
central calorimeter

o  Use tower segmentation to measure�

jet mass

  Confirm with tracking information


o  Employ standard “e-scheme” for �
mass calculation

  4-vector sum over towers in jet

  Each tower is a particle with m = 0

  Four vector sum gives (E,px,py,pz)


  Employ Midpoint cone jets

o  Best understood in CDF II context

o  Compare results with anti-kT and�

Midpoint with “search cones” (Midpoint/SC)


 Weizmann/UofT 

N.B. CDF central 
towers are  
Δη x Δφ ~ 0.11 x 0.26 
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Jet Algorithms


  Cone algorithms used for 
most Tevatron studies

o  Long history – quite 

separate from e+e- work

o  JetClu was CDF reference


  Required “seed” to initiate

  Significant IRC sensitivity


  Midpoint developed to 
reduce IRC sensitivity

o  Use seeds, but then 

recluster with seeds 
“midway” between all jets


  Cone algorithms had “dark 
tower” problem

o  Unclustered energy due to 

split/merge/iteration 
procedure


o  Proposed solution:  Midpoint 
with “search cones”


  Find jets with cone size R/2

  Fix jet direction, cluster with size R


o  Midpoint/SC was used for 
various studies 2006-2008


  Anti-kT algorithm developed

o  No IR sensitivity

o  Still retained many of the 

benefits of a “cone” algorithm


Weizmann/UofT 

Use Fastjet Framework! 
M. Cacciari, G.P. Salam and G. Soyez,  
Phys. Lett. B641, 57 (2006) [hep-ph/0512210]. 
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Data Selection


  Analyzed inclusive jet sample

o  Trigger requires ET > 100 GeV

o   Analyzed 5.95 fb-1 sample


  Selected data with focus on 
high pT objects

o  Kept any event with


  Jet with pT > 300 GeV/c �
and |η| < 0.7


  Used cones of R=0.4, 0.7 �
and 1.0


  Processed 76M events

o  Selected subsample with 


  pT > 400 GeV/c

  |η| ∈ (0.1,0.7)


  Performed �
cleaning cuts

o  Event vertex, jet quality �

and loose SMET (< 14)


  Resulted in 2700 events�
using jets with R=0.7


Weizmann/UofT 

S
MET

!
E
T

MISS

E
T

i

i towers

"

 [GeV/c]
jet

T
p

350 400 450 500 550 600 650 700

A
rb

it
ra

ry
 U

n
it

s
 /
 1

0
 G

e
V

/c

-410

-310

-210

-110

 > 400 GeV/c
jet

T
Midpoint R=0.7, p

-1
 = 6 fb

int
CDF Run II, L



8


Jet Mass Corrections


  Corrected jet mass using �
standard jet corrections

o  Further correction needed for �

multiple interactions (MI)

o  Use Nvtx=1 and Nvtx>1 events �

to determine MI effect


  Investigated other effects:

o  Effect of calorimeter inhomogeneity at η=0


  Varied pseudorapidity window – no significant changes in mass


o  Calorimeter segmentation and jet recombination

  Varied position of towers (especially azimuth) and corrections for geometry


o  Calorimeter response across face of jet

  Detailed study of tracking/calorimeter response in data and MC/detector simulation


o  Jet energy scale vs algorithm (Midpoint, Midpoint/SC, anti-kT)

  Saw < 1 % difference



 Weizmann/UofT 
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Effects of MI and UE


  Additional contribution from

o  Underlying Event (UE)

o  Multiple Interactions (MI)


  Average # interactions ~3/crossing


  Looked at purely dijet events

o  Defined cones (same size as jet) at 90o in 

azimuth (same η)

o  Took towers in cones, �

and added to leading jet in event

  Mass shift, on average, is same shift 

coming from UE and MI


  Separately measure Nvtx=1 events

o  Gives UE correction separately




Weizmann/UofT 
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Inter-Jet Energy Calibration


  Jet mass arises from 
deposition of varying energy 
per tower

o  Performed study to compare 

momentum flow vs calorimeter 
energy internal to jet


  Defined 3 rings and compared 
observed pT/ET with simulation


  Resulted in constraints on 
calorimeter relative response

o  At mjet=60 GeV/c2, σm=1 GeV/c2


o  At mjet=120 GeV/c2, σm=10 GeV/c2


  Largest source of systematic 
uncertainty



 Weizmann/UofT 
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Comparison with Cone Size


  Compare 

o R=0.4

o R=0.7

o R=1.0


Weizmann/UofT 
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Systematics on mjet


  Sources of systematics:

o  Calorimeter energy scale


  Varies from 1 to 10 GeV/c2 for 
65 to 120 GeV/c2 mass jets


o  UE and MI modelling

  Estimate 2 GeV/c2 based on 

uncertainty in high mass 
correction


o  PDF Uncertainties

  Used standard 20 eigenvector 

decomposition to assess MC 
uncertainties


  Shown when direct comparison 
made with PYTHIA 6.216


  Uncertainties are 
uncorrelated

o  Combined in quadrature, gives 

total jet mass uncertainty of 

  3.4 GeV/c2 for mjet = 60 GeV/c2


  10.2 GeV/c2 for mjet > 100 GeV/c2


  Effects jet mass distributions 
arising from bin-to-bin 
migration

o  Small systematic shifts in other 

substructure variables

o  Determined using 90o cone 

approach (see G. Perez’s talk)


Weizmann/UofT 
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Determining Jet Function


  Key prediction is “jet 
function”


o  Just mjet distribution?


  However, large correction 
comes from jet pT cut

o  pT of low mass jets has 

~10% broader resolution 
than high mass jets


o  More events in sample with 
true pT < 400 GeV/c at low 
mjet vs high mjet


  Aggravated by much larger rate 
at low jet mass


Weizmann/UofT 
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Reducing Top Contamination


  Expect about 1.6 fb of high pT jets 
from top in sample

o  Eliminate by rejecting events with


  mjet2 > 100 GeV/c2


  Missing ET Significance (SMET) > 4

o  Use jet cone of R=1.0 for �

improving top jet tagging

o  Lose 28% of jet candidates


  2576 events using R=0.7 jets

  145 events with jet with pT > 500 GeV/c


  After top-rejection, �
expect ~0.3 fb of top jets

o  Comparable rates for W/Z jets


Weizmann/UofT 
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Properties of QCD Jet Sample


  After top rejection

o  Left with sample dominated 

by light quarks and gluon

o  Compare high mass region 

with QCD theory

o  Algorithm dependence?


  Midpoint and anti-kT very similar

  Midpoint/SC quite different


Weizmann/UofT 

  Low-mass peak arises from non-
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Comparison with PYTHIA


  PYTHIA 6.216

o  Standard CDF II 

QCD sample

o  PDF 

uncertainties 
based on 
eigenvector 
decomposition


  Agreement is 
reasonable

o  Low-mass peak 

few GeV/c2 lower

o  Large PDF 

uncertainties at 
low mass


Weizmann/UofT 
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Search for Boosted Top


  Analysis suggests sensitivity to 
boosted top


  Two topologies:

1.  All hadronic (“1+1”)


  Two massive jets recoiling (ε ~11%)


2.  Semi-leptonic decay (“SL”)

  Require  SMET > 4 (ε ~ 7%)


  MC predicts ~0.8 fb

o  Divided about 60:40 �

between topologies

  Highest efficiency channel for top (~18%)


o  Important handles for 
background:  

  masses of QCD di-jets not correlated

  Jet mass and SMET not correlated


Weizmann/UofT 
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Strategy for Detecting Top


  Keep selection simple

o  Focus on two separate channels


  All Hadronic Top (1+1)

o  Require 2 jets with �

130 < mjet < 210 GeV/c2


o  Require SMET < 4 

o  Estimate background using 
“ABCD” technique


  Semi-leptonic top

o  Require 4 > SMET > 10 

o  Require 1 jet with �

130 < mjet < 210 GeV/c2


o  Estimate background using 
“ABCD” technique
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Best “Simple” Counting of 1+1


  With R=1.0 cones, mjet1 and 
mjet2 are equally powerful

o  Use jet mass (130,210) GeV/c2 

to define ttbar candidates

o  Expect 3.0±0.8 top quark 

events to populate this region


Weizmann/UofT 
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Best “Simple” Counting for SL


  In case of recoil semileptonic 
top, use mjet1 and SMET


o  Assumption is the SMET and 
mjet1 are uncorrelated


o  Expect 1.9±0.5 top quark 
events to populate this region


Weizmann/UofT 
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Uncertainties


  Background uncertainty 
(±10.2 GeV/c2 jet mass scale)

o  ±30% uncertainty


  Uncertainties on top 
efficiency (SM production)

o  Primarily jet energy scale of 

±3% on pT -> ±25% on σ


  Background statistics

o  ±11% from counting


  Luminosity 

o  ±6% on integrated luminosity


  MC mtop (±2 GeV/c2)

o  ±0.3%





  Overall uncertainties added 
in quadrature

o  ±41% overall


  Incorporated into upper 
limit calculation


  Use a CLs frequentist 
method

o Marginalize nuisance 

parameters

o  Same as used in Higgs 

and single top searches


Weizmann/UofT 
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Top Quark Cross Section Limit


  Assume we observe signal + 
background

o  Set upper limit on SM 

production σ for top quark �
with pT > 400 GeV/c


  Observe 58 events with 44+/-8 
background

o  Calculate 95% CL upper limit 

using CLs method

  Systematic uncertainties incorporated a 

la CDF 8128 (T. Junk)

  NLIM = 43.3 events


o  Efficiency from MC

  452 & 283 ttbar expected in 2 

channels (out of 4041 MC events)

  Efficiency = 0.182


  Upper limit on cross section 
for pT > 400 GeV/c




  Can also set limit on 1+1 only


o  Assume massive (m ~ mtop) object, 
pair-produced, decaying hadronically


o  Include SM top as background


Weizmann/UofT 
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Conclusions


  First measurement of jet 
mass (and substructure) for 
high pT jets

o  Being confronted by data 

forces one to understand 
systematics


  Multiple interaction corrections

  Calibration of mass scale


o  Allows for test of QCD 
predictions


o  Algorithm dependence

  Anti-kT and Midpoint very similar

  Midpoint/SC produces “fatter” jets


  Next talk will show 
substructure results


  Search for boosted top 
possible

o  Achieve


o  Set σ < 40 fb at 95% CL

o  Limited by statistics!


  Real task is to observe at LHC

o  Tevatron program will end 2011

o  ATLAS and CMS already have 

comparable sized samples with 
50 pb-1


o  Much higher pT jets already!


Weizmann/UofT 
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MI/UE Corrections


  Looked at how to make MI 
correction in a variety of 
ways

o  Looked at mass corrections 

event-by-event

o  But statistical fluctuations 

large, event-to-event

o  Chose to develop a 

parametrized correction


  Note that:


Weizmann/UofT 
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  Expect MI correction to scale 
with R4:

o  Exactly what we see when 

comparing R=0.4 and R=0.7


  PYTHIA UE agrees well with 
data – same UE mass 
correction


  Use that to  scale corrections 
for R=1.0

o  Method doesn’t work with 

larger cone because of overlap
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Internal Jet Energy Scale


  Overall jet energy scale 
known to 3%

o  The relative energy scale 

between rings known to 
10-20%, depending on ring


o  Use this to constrain how far 
energy scale can shift


  Do first for mjet ~ 60 GeV/c2 – 
use average jet profile

o  Extract from that a limit on 

how much “Ring 1” energy 
scale can be off - ± 6%


o  Then do the same for mjet ~ 
120 GeV/c2


Weizmann/UofT 

  Resulting systematic 
uncertainty is 9.6 GeV/c2


o  Conservative estimate – used a 
very broad energy profile


  No localized substructure 
assumed


  Take this as systematic 
uncertainty

o  Could constrain it better using 

single particle response


o  Note that fixed cone size is an 
advantage here
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Reconstruction of Top


  Leading jet in ttbar events 
has clear top mass peak

o  All events between 70 and 210 

GeV/c2 for R=1.0


o  See evidence of W peak

  B quark jet presumably nearby in 

those cases

o  Clear that higher mass cut gives 

greater QCD rejection

  But also start to lose efficiency


o  SMET cut effectively identifies 
semi-leptonic decays (8%)


  B tagging not used

o  Can estimate mis-tags using 

data -> ~0.05%/jet

o  But large uncertainty in tagging 

efficiency in high pT jets

Weizmann/UofT 
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Background Calculations


  Background 
calculations used 
“ABCD” technique




  1+1


  SL


Weizmann/UofT 


