Portable Resistive Plate Chambers for Muography in confined environments

R.M.I.D. Gamage¹ S. Basnet¹ E. Cortina Gil¹ P. Demin¹ A. Giammanco¹ R. Karnam¹ M. Moussawi¹ A. Salaman² M. Tytgat² A. Youssef³

¹Université Catholique de Louvain, Louvain-la-Neuve, Belgium

²Ghent University, Ghent, Belgium

³Lebanese University, Beirut, Lebanon

07/06/2022

Outline

Muon Radiography

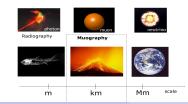
- Detectors in Muography
- Resistive Plate Chambers (RPC)
- RPC based detectors for confined environments
- 2 RPC Detectors at UCLouvain and UGent

3 Experimental Results

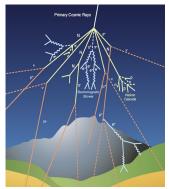
- RPC @ UCL (Prototype 1.L)
- RPC @ UGhent (Prototype 1.G)
- Joint Data taking of 1.L and 1.G

4 New Developments

- Towards Prototype 2.L
- Multiplexing


Summary

Muon Radiography


 Muon Tomography (Muography) is an imaging technique based on the absorption or scattering of the cosmic-ray mouns (μ).

Specialties of Muons

- No strong interaction.
- Produced from the collisions of cosmic rays with the upper atmosphere.
- Minimal energy loss due to ionization.
- Have a high penetration power.

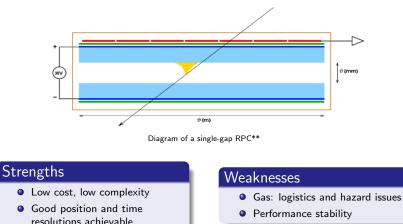
Visible Scales

Cosmic Muon cascade*.

(*) Source: CMS Knowledge Transfer, Cosmic rays

3/23

Detectors in Muography


• There are many different detectors/technologies used in Muography. Optimal choice mostly depends on the application.

Туре	Surface	Resolution	Construction	Readout	Cost
Plastic Scintillators					
square bars	$1-4m^2$	> 10 mrad	Simple	Simple	Low
Triangular bars	$1-2m^2$	<10 mrad	Simple	Medium	Medium
Scintillating Fibres	$1-2m^2$	0.1 mrad	Medium	Complex	High
Gaseous detectors					
Proportional tubes	1 -4m 2	10 mrad	Simple	Simple	Low
Multi-wire chambers	$>$ 4m 2	< 1 mrad	Medium	Simple	Medium
Drift Chambers	$>4m^2$	0.1 mrad	complex	Complex	High
Res. Plate Chambers	$>10 \mathrm{m}^2$	0.1 mrad	Simple	Medium	Low
Nuclear Emulsion	$>4m^2$	0.1 mrad	Simple	Complex	Low

• Resistive plate chambers (RPC) are typically chosen when large surfaces must be instrumented. However, in our project we are exploring the feasibility of Mini-RPCs for portable detectors.

Resistive plate Chambers (RPC)

The active component of a RPC is the gas mixture contained in the thin gap between two parallel plates of high resistivity. And High voltage is applied to parallel plates while operating.

(**) from A. Giammanco, S. Andringa, E. Cortina, M. Tytgat, DOI: 10.1002/9781119722748.ch18

Ishan Darshana (CP3, UCLouvain)

RPC based detectors for confined environments

Challenges that drive our detector design choices

Optimal point of observation may be located in confined environments. This implies:

- Limited room available → small size RPCs
- Potentially no power available → low power consumption, to be able to operate on batteries
- Safety: toxic or flammable gas, anoxia → sealed detectors

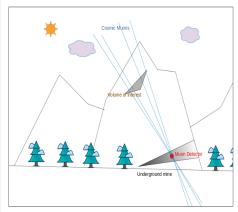
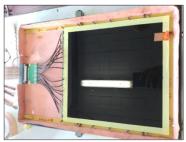


Illustration of Muography for a mining survey

RPC Detectors at UCLouvain and UGent

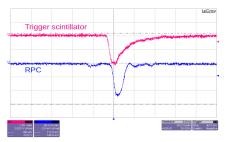
We are developing two sets of RPCs with slightly different characteristics, cross-validating them towards a future co-developed prototype for Muography applications.

Property	UGent (Prototype 1.G)	UCLouvain (Prototype 1.L)	
Size	$30{ imes}30$ cm 2	$16{ imes}16$ cm 2	
Gas Flow	Continuous	Sealed	
Gas Mixture	95.2% Freon, 0.3% SF ₆	95.2% Freon, 0.3% SF_6	
	4.5% isobutane	4.5% isobutane	
Readout	1.5cm width Cu strip	1cm width Cu strip	
Semi-resistive	Using hand sprayer	Seriagraphy method	
coating	(\sim 650 K Ω/\Box)	(\sim 4 M Ω/\Box)	
DAQ	NIM + CEAN integrated	Custom made	
Portability	Not yet	Portable	


Table : Properties of two RPC's detectors

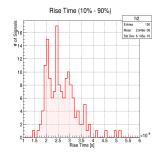
Prototype 1.G

Prototype 1.L

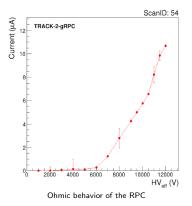

RPC inside its casing @ Prototype 1.G

RPC inside its casing @ Prototype 1.L

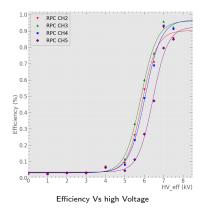
Experimental Results of Protype 1.L


The signal from one strip of the RPC and the rise time of the RPC signal from Muoscope is shown below.

Signal from 1 Channel(strip) of the RPC

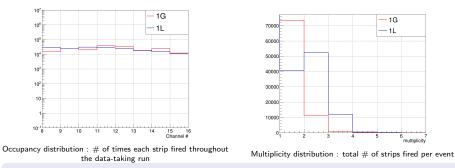

The signal:

- Amplitude $\simeq -160 mV$
- Rise time $\simeq 3ns$



- Rise time of the signal is in the order of 2ns.
- High rise times are due to double signals

Experimental Results of Protype 1.G


- This plot shows the current drawn by the RPC while it working in different HVs.
- For the avalanche mode it behaves linearly so the working voltage is between 6kV and 8 kV

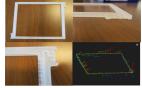
- This plot shows the the efficiency of 4 strips triggered with in the RPC
- The working point(high voltage) of the Detector can be estimated by this plot

Joint Data taking of 1.L and 1.G

• The occupancy and multiplicity of the last 8 strips¹ at our fist estimate of working point of HV = 7 kV and threshold = 90 DAQ units.

- Both these distributions are normalized to the 1.L active area
- The occupancy distributions of the two prototypes 1.L and 1.G are in general agreement
- A difference in the multiplicity distribution could be related to the difference in the resistivity of the glass plates between the two prototypes (1.G resistivity was less than 1.L).
- Coincidence events between the two RPCs will be closely examined to further fine-tune the working points for both chambers

Ishan Darshana (CP3, UCLouvain)


¹Muoscope 1.G had some hardware-related issue with the first 4-5 strips so only last 8 strips were taken into consideration for producing these results

Towards Prototype 2.L

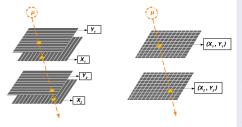
In the meantime we are working on the next prototype (2.L)

Readout board with coaxial cable connected to strip

3D Printed frame for new RPC

- The current readout is with copper track after the strips.
- In this board, coaxial cables are connected directly to the strip.
- The tests are already started with new readout.

- In 1.L, the whole Aluminum chamber is filled with gas.
- in 2.L,Gas is only filled between the glass plates
- We expect uniform distribution of gas between 2 plates


CMS RPC chip replaced by MAROC chip

- Old CMS electronics is replaced by MAROC intergrated board.
- Currently testing with MAROC evaluation board

Ishan Darshana (CP3, UCLouvain)

Multiplexing

- Our next steps aim at eventually performing high resolution (spatial:**O(mm)**; timing:**O(ns)**) muography, requiring an increased number of sensitive units
- In addition, we are considering switching the sensitive units from strips to pixels

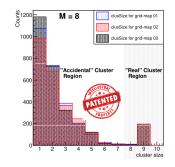
A illustrative setup with 4 layers of strips (left) and one with 2 layers of pixels (right) providing the same x, y information at the same two positions in z.

Pros and Cons

Pros: Need half the number of layers (n)

- Weight of the setup is roughly reduced to the half
- Higher efficiency (εⁿ < ε^{n/2}, where ε is single-RPC efficiency), and less material

Cons: Cost and power consumption


- With pixels, both cost and power consumption (few mW/channel) of electronics scale quadratically instead of linearly with N, the number of units in X and Y
- Number of electronic channels is 4 \times N with strips and 2 \times N^2 with pixels

With our current resolution, opting for the pixel options $(2\times16^2=512 \text{ readout channels})$ would be roughly 10 times pricey both in terms of cost and power consumption compared to the strip option $(4\times16=64 \text{ channels})$

Multiplexing

- The cost of electronics is the main counter-argument against the pixels option (= too many pixels).
- An appropriate solution, is reading out several units with just one electronic channel, i.e 2D multiplexing.
- De-multiplexing introduces ambiguities, but thanks to the low cosmic rate they are manageable.
- Standard multiplexing approaches are thought for 1D, we are developing a 2D-specific algorithm[4].

- The readout matrix of pixels (64×64) are divided into sub-grids, based on multiplexing factor, M, (i.e., # of pixels to be connected to a single readout channel)
- The pixels labels that satisfy a set of rules [4] are randomly generated in each sub-grid
- A simulation using an arbitrary expected signal size 3×3 pixels, a simulation was performed

Cluster size distribution for M=8 comparing three different grid-maps. Clear separation between "real" and "accidental" cluster regions when noise is not taken into account

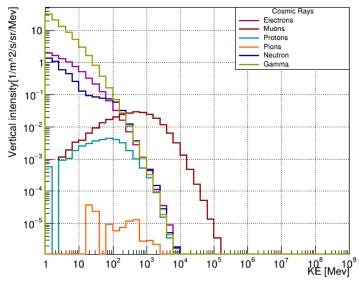
Ishan Darshana (CP3, UCLouvain)

i-DUST 2022

14 / 23

- A collaboration established between the muography teams in Louvain-la-Neuve and Ghent ("RPCBel") to explore the feasibility of portable RPCs for muography applications
- Two prototypes built with slightly different characteristics, to gain construction experience and compare the performances
- Current detector performances are encouraging
- Planning towards the next steps: exploring the move from strips to pixels, which will imply an explosion of channels and the need for a dedicated multiplexing scheme

References

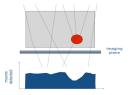

- Resistive Plate Chambers in Muography / A. Giammanco, S. Andringa, E. Cortina and M. Tytgat, DOI: 10.1002/9781119722748.ch18, in "Muography: Exploring Earth's Subsurface with Elementary Particles" (Wiley's Geophysical Monograph Series, ISSN: 0065-8448)
- A portable muon telescope based on small and gas-tight Resistive Plate Chambers / S. Wuyckens, A. Giammanco, P. Demin, E. Cortina, arXiv:1806.06602 [physics.ins-det], Phil. Trans. R. Soc. A 377 (2018) 20180139
- A portable muon telescope for multidisciplinary applications / R.M.I.D. Gamage, S. Basnet, E. Cortina Gil, P. Demin, A. Giammanco, R. Karnam, M. Moussawi, M. Tytgat, arXiv:2109.14489 [physics.ins-det], JINST 17 (2022) C01051
- Radiographic imaging based on detection of ionizing particles / Eduardo Cortina Gil, Andrea Giammanco, Samip Basnet, Sophie Wuyckens. Application number: EP21201857.6, submitted in the European Union on Oct. 11, 2021

Acknowledgement : We gratefully acknowledge the work performed by Sophie Wuyckens between 2017 and 2019, which was crucial for the kick-off of this RD project. This work was partially supported by the EU Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No. 822185, and by the Fonds de la Recherche Scientifique - FNRS under Grants No. T.0099.19 and J.0070.21. Samip Basnet and Raveendra Babu Karnam would like to acknowledge additional research grants from FNRS FRIA and UCLouvain Special Research Funds, respectively.

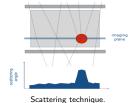
Thank you!

Backup Slides

Secondary Cosmic ray flux

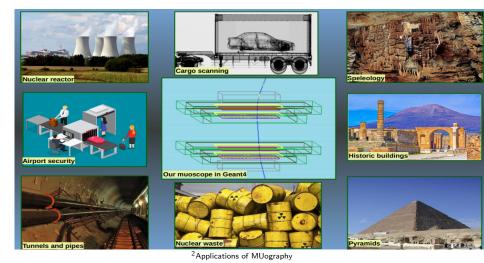

Scattering Vs Absorption Muography

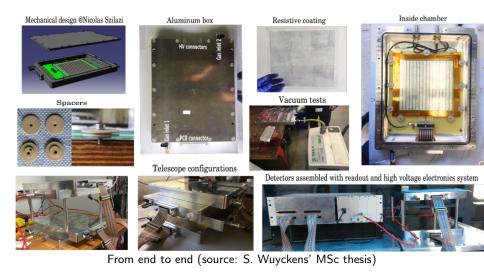
Scattering Muography

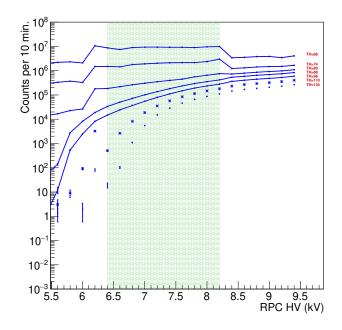

- Scattering position and angular shift.
- Smaller Masses and shorter exposure times.
- At least two detectors are needed
- Applications: security, nuclear reactor and waste monitoring, etc.

Absorption Muography

- Muon flux measured as a function of the direction.
- Need Large Masses and Long exposure times.
- Only one detector needed.
- Applications: underground measurements, geology, archaeology, vulcanology, etc.




i-DUST 2022


Use cases of Muography

2

Experimental setup from end to end

07/06/2022 23/23