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Plan of talk

1. Introduction to TDEM/TEM technique

2. Multi-loop SQUID sensors and laboratory characterization

3. Experiments within the DAE campus

4. Field experiment outside campus

5. Challenges yet to be overcome
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Static shift due to near-surface resistivity 

close to receiver cause false interpretation of 

conductivity-depth.

Transmission of current difficult in resistive 
terrains and measurements are also highly 

affected by lateral variations 

Exploration of conductive targets
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Primary magnetic field

Transmitter loop

SQUID

Secondary magnetic 

field

Eddy currents

Transient electromagnetic geophysical exploration
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Example of data processing in the TDEM technique

Raw data 

with 8 

stacks

Averaging 

of 

transients

Inversion 

and 

averaging 

Final 

decay
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Processed magnetic field decay plots-linear and logarithmic scales
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SQUID sensor
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Multi-loop SQUID sensor with APF (Magnicon, Germany)
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Circuit diagram showing FLL operation in 

SQUID with APF scheme.

ADVANTAGES

➢ higher effective area 

➢ enhanced flux-to-voltage transfer coefficient (∂V/∂Φ)Ib

➢ higher slew rate

Superconducting Quantum Interference Device is a flux-to-voltage transducer.

Typical open-loop output of the 

conventional SQUID (dashed) and the 

multi-loop SQUID with APF (solid)
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Characterization of the sensor in Magnetic shielded room

3 SQUIDs mounted on 

FRP in 3 orthogonal 

directions

SQUID probe

Cryostat with the 

probe inserted
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V

SQUID magnetometer from 

Magnicon
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➢Inverse effective area : 3nT/Φ0

➢ Slew rate: 3 mT/s or 10 6 Φ0/s at Rf = 10 kΩ

➢ Spectral density of the field noise in the white noise regime : 25 fT/√Hz 

V-T curve V-Φ curve
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Central loop TDEM experimental setup

10

Connector box
Battery for 

FLL

SMARTem24 

Transmitter 

controller

I

t

Synchronization 

(crystal or GPS)

Batteries

t
HF

L
L

Zonge

Transmitter(ZT-30)

Data Acquisition 

system

(SMARTem24)

08-06-2022



Two sites where TDEM sounding were performed

Tumallapalle

DAE campus
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Strength of the 50 Hz ~ 1.05 0 ~3.15 nT

Powerline noise of 50 Hz in time domain DAE campus 
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Predicted high-frequency noise 0.03 0 ~ 90 pT

High frequency background noise

Strength of the 50 Hz ~ 1.05 0 ~3.15 nT
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Loop size
(m2)

Resistance 
(Ω)

No. of 12V 
batteries used 

(series)

Current
(A)

Central 
Magnetic field 

(nT)

Magnetic 
moment(Am2)

100 X 100 0.6 2 25 283 2.5 X 105

Experiments with SQUID at Kalpakkam, Tamil Nadu 

411470 E, 

1391846 N

411470 E, 

1391746 N

411570 E, 

1391846 N

411570 E, 

1391846 N

204520E, 

1391796N
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Loop size (m2) Resistance (Ω) Current (A) Central Magnetic field (nT) Magnetic moment(Am2)

400 X 400 2.4 27 81 4.32 X 106

Experiments with SQUID at Tumalapalle, Andhra Pradesh, INDIA
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204320E, 

1588375N

204320E, 

1587975N

204720E, 

1588375N

204720E, 

1587975N

204520E, 

1588175N

Location of Transmitter controller 

and batteries

Centre of loop where SQUID was placed and data 

was recorded using SMARTem24
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Stratigraphy of site 2
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Magnetic field as recorded by the SQUID sensor
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Magnetic field as recorded by the SQUID sensor
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Experiments with SQUID semi-buried
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204320E, 

1588375N

204320E, 

1587975N

204720E, 

1588375N

204720E, 

1587975N

Location of Transmitter controller 

and batteries

204520E, 

1588175N

Centre of loop where SQUID was buried and data 

was recorded using SMARTem24
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Magnetic field as recorded by the SQUID sensor
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Strength of the 50 Hz ~ 75 mV ~ 0.4 0 ~1.2 nT (@ 175 mV = 1 0 = 3 nT ) Predicted high-frequency noise 0.0028 0 ~ 8.4 pT

High-frequency noise
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Decays recorded using coil, fluxgate and SQUID

Induction coil Fluxgate

SQUID
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P1

P2

A forward model for the TDEM results

Layered plate model showing 

top  and bottom layers 

Plate
Depth of center of 
plate from surface 

(m)
Thickness (m) Conductivity (S/m)

P1 0 0 14
P2 300 35 0.175

08-06-2022
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Challenges yet to be overcome!
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Conductive layer

• Why the negative part in decay?

• Why is it dependent on the base frequency?

• Why is it dependent on the size of transmitter loop (magnetic moment of loop)?
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Thank you
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Resistivity Table
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20𝐼𝑎
2

𝜋 𝑟

1

𝑧2 + 𝑎2Bz =

Magnetic field along the central axis of square loop carrying current I:

Martin Misakian, J. Res. Natl. Inst. Stand. Technol. 105, 557 (2000)
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𝒅 = 2.8 × 10−3 ൗ𝑀 η𝐵

Τ1 3
𝒅 = 0.55 ൗ𝑀 𝝈η𝑉

Τ1 5

➢ Maximum depth of investigation, d, for a single layer

homogeneous half space geophysical model

➢ The signal amplitude at times when the second layer is

detected is given by the late-time asymptotic expression:

𝑩𝒛 =
𝐼𝑎2𝜎 ൗ3 2𝜇0

ൗ5 2

30 𝜋 𝒕 ൗ𝟑 𝟐
𝑽𝒛 =

𝐼𝑎2𝜎 ൗ3 2𝜇0
ൗ5 2

20 𝜋 𝒕 ൗ𝟓 𝟐

Spies, B.R. Depth of investigation in electromagnetic sounding methods. GEOPHYSICS 1989, 54, 872–888.

Why magnetic field sensor? Chapter 3

Vertical magnetic field 

response

Voltage response 

corresponding to Bz

Magnetic field sensor Voltage sensor

Parameters

I   = Current through the 
circular transmitter loop

A = Area of the transmitter 
loop

M = Magnetic moment = I A 
t   =  sampling time
ηB = system noise level of 

magnetic field sensor
ηV = system noise level of 

voltage sensor
σ = conductivity of the upper 

layer
μ = permeability of half-

space


