
Parallelizing Track Finding
on GPUs for the Phase-2
Geometry
TRES REID, PETER WITTICH, GAVIN NIENDOF [CORNELL]

PHIL IP CHANG, BALAJ I VENKAT SATHIA NARAYANAN, SLAVA KRUTELYOV, AVI YAGIL ,
YANXI GU, EMMANOUIL VOURLIOTIS [UCSD] , BEI WANG [PRINCETON]

4/13/2022 SEGMENT LINKING 1

Tracking at the HL-LHC
Tracking at HL-LHC is a challenge

◦ Track finding is the most time-consuming component of event reconstruction

◦ HL-LHC era luminosity levels will cause the average pileup per event to increase from an average of 40 to 140 (to 200).

◦ Track finding is a combinatorics problem.

◦ More collisions-> more hits-> more ways to connect hits -> time and computational expense of track finding grows non-
linearly.

4/13/2022 SEGMENT LINKING 2https://cds.cern.ch/record/1966040

https://espace.cern.ch/HiLumi/WP2/Wiki/HL-LHC%20Parameters.aspx

*Timeline is out of date

Moore’s Law: number of transistors doubles every 2 years

Single threaded CPU performance has plateaued
◦ Transistors get smaller but their power consumption hits a wall

◦ Power wall +cooling limitations -> clock speeds plateau (~2-4 GHz)

◦ Less improvement for single threaded performance

CPU price per performance
◦ Improvements have fallen off while computational

requirements have only increased

Solution: Parallelize computations and/or
offload work

Aren’t CPUs Getting Better?

4/13/2022 SEGMENT LINKING 3

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

https://indico.cern.ch/event/1055520/timetable/?view=default#20211011

Segment Linking
Algorithm
EXPLOITING THE NEW PHASE-2 GEOMETRY TO PARALLELIZE TRACK
FINDING

4/13/2022 SEGMENT LINKING 4

Mini-Doublets (MD)

4/13/2022 SEGMENT LINKING 5

Object building summary
◦ Make MD from hits

Line Segments (LS)

4/13/2022 SEGMENT LINKING 6

Object building summary
◦ Make MD from hits

◦ Make LS from MD

Triplets(T3) and
Quintuplets (T5)

4/13/2022 SEGMENT LINKING 7

Object building summary
◦ Make MD from hits

◦ Make LS from MD

◦ Make T3 from LS

◦ Make T5 from T3
◦ Clean T5

Pixel Triplets (pT3)
and Pixel Quintuplets (pT5)

4/13/2022 SEGMENT LINKING 8

Object building summary
◦ Make MD from hits

◦ Make LS from MD

◦ Make T3 from LS

◦ Make T5 from T3
◦ Clean T5

◦ Make pT5 from pLS+ T5
◦ Clean pT5

◦ Add pT5 to TC

◦ Mark used T5, T3, pLS

◦ Make pT3 from unused pLS+ T3
◦ Clean pT3

◦ Add pT3 to TC

Track Candidates (TC) and Extensions (TCE)

Track Candidates
◦ Order: pT5 > pT3 > T5 > pLS(4)
◦ Each step of adding objects to the TC collection has

a cross duplicate cleaning stage applied
◦ Hit matching criteria and dR criteria

After all track candidates are added, a track
candidate extension step is applied

◦ Extended by an additional layer by matching
produced TCs with an additional unused T3.

4/13/2022 SEGMENT LINKING 9

Object building summary
◦ Make MD from hits
◦ Make LS from MD
◦ Make T3 from LS
◦ Make T5 from T3

◦ Clean T5

◦ Make pT5 from pLS+ T5
◦ Clean pT5

◦ Add pT5 to TC

◦ Mark used T5, T3, pLS

◦ Make pT3 from unused pLS+ T3
◦ Clean pT3

◦ Add pT3 to TC

◦ Clean T5 again and add to TC
◦ Add unused pLS (4 hits only) to TC
◦ Extend TCs

GPU Implementation
GPU: NVIDIA TESLA V100- 32GB

4/13/2022 SEGMENT LINKING 10

Why GPUs
CPU

64 cores

Low latency

Good for serial processing
◦ ~2TFlops (Intel Xeon)

Familiar programming languages

GPU

100-1000s for cores

High throughput

Good for parallel processing
◦ 15 TFlops (Tesla V100)

High latency (Device-host transfers)

Frees CPU for other tasks

Requires additional programming languages
for GPU tasks (CUDA)

4/13/2022 SEGMENT LINKING 11

GPUs are useful when data transfers are not a problem, when high throughput is necessary, and when
calculations are independent of each other and can be done in parallel.

Advantages of Using a GPU
Data is preloaded
◦ Expect hit unpacking to be done on GPUs already

◦ Pixel tracking would also be done on GPUs by Patatrack

◦ Little to no additional transfer cost to the GPU (usually the main drawback of GPUs)

Each step in then algorithm has its own kernel launch linking two objects together
◦ 100-1000s of objects at any given stage:

◦ 1-100 thousand possible combinations (even with regional restrictions).

◦ Reduce redundancy by
◦ Utilizing premade module maps and eta-phi regions

◦ Skipping components already marked as duplicates or used in early
stages of the algorithm

◦ Building tracks in an outward direction only

◦ Each pair is independent of all other pairs

This is a throughput intensive task

4/13/2022 SEGMENT LINKING 12

Kernels

Almost always launch 80 blocks with 1024 threads per block
◦ Dimensions of the block are split in a way that is roughly tuned for each kernel

◦ Each thread dimension iterates through possible inner-outer pair of objects
◦ Ie) for pT5 creation: threadId.x might correspond to T5 and threadIdx.y to a pLS

◦ Each thread calculates angles and chi square values from linear and circular fits
◦ Calculated quantiles that fail required criteria are not saved

◦ Each pair is independent of any other pair
◦ No attempt to avoid reusing hits or objects already found by this kernel

◦ Duplicate removal kernels remove redundant tracks

4/13/2022 SEGMENT LINKING 13

Large number of combinations and independence of any two pairs
This is a highly parallelizable algorithm that is suitable for the GPU.
GPU: Nvidia Tesla V100-32GB

GPU Resources and Limitations
Memory

◦ Objects stored as struct of arrays
◦ Size based on number of objects (99.99% of maximum)

◦ Uses 1.2-1.5 GB per event
◦ Order of magnitude reduction from 6 months ago

◦ GPU has 16- 32 GB of memory: can run multiple streams without issues

Registers
◦ Almost always launch 80 blocks with 1024 threads per block
◦ 80 streaming multiprocessors (SM) -> 1 block per SM
◦ 65536 threads per SM(block) / 1024 threads per block-> limit 64 active registers per

thread
◦ --maxregcount 64 flag
◦ Most Kernels use more than 128 live registers per thread

◦ -> register spilling: the largest source of derogated performance due to stalling from constant L2 cache
memory fetching.

4/13/2022 SEGMENT LINKING 14

GPU: Nvidia Tesla V100-32GB

Multi-Streaming
Individual steps in the algorithm must run serially
◦ Kernel must finish before next one can start

◦ A free SM is waiting for work-> unused GPU resource

Multistreaming: processes events in parallel
◦ Cannot run entire kernels in parallel

◦ Not enough registers to do this (each SM is already maxed out by any kernel)

◦ Can pipeline kernels from other events on another stream
◦ Free SMs can switch streams and start working there (see backup)

◦ Throughput improves

4/13/2022 SEGMENT LINKING 15

Results and Next Steps

Performance
◦ Physics validation from TTBar PU200

sample over 200 events (see backup)
◦ 90% efficiency
◦ 20(30)% fake rate in the barrel (transition) region

◦ Driven by pT3 alone
◦ Can be retuned, improved using patatrack

pixels and reduced with final fit
◦ 1-2% duplicate rate
◦ Consistent with current CKF algorithm with

exception of the fake rate (4x higher).

◦ Timing: 52 ms per event
◦ Tested with 200 events from Ttbar PU200 sample

over 8 streams on a Tesla V100
◦ Order magnitude reductions from 1 year ago
◦ Compare to target 32 ms/ per event for 64 core

CPU CKF

◦ Memory: 1-1.5 GB per event

Next steps
◦ Update to new CMSSW geometry

◦ Make consistent plots with patatrack

◦ Run the CMSSW/Patatrack final fit from our
results

◦ Dynamic memory allocation for each event
◦ Reduce number of Mallocs and frees in a total run

◦ Reduce the number of live registers
◦ Coalesce memory accesses
◦ Run calculations with half precision.

4/13/2022 SEGMENT LINKING 16

Backup

4/13/2022 SEGMENT LINKING 17

Storing Created Objects
CUDA does not support standard library vectors

◦ All arrays must by allocated explicitly using CudaMalloc or
CudaMallocManaged (only for debugging- slow not
supported by CMSSW)

◦ CMS caching allocator
◦ More memory

◦ Not freed between events-> faster

Objects stored as struct of arrays
◦ Size based on number of objects (99.99% of maximum)

Uses 1.2-1.5 GB per event
◦ Order of magnitude reduction from 6 months ago

◦ GPU has 16- 32 GB of memory

4/13/2022 SEGMENT LINKING 18

Memory usage # Objects size [MB]
cache Size
[MB]

Setup cost 371 371

modules 26592 21.3 21.3

ranges 2.0 2.4

hits ~250000-300000 12.0 12.6

md 89 64.3 88.2

segment 537 233.0 305.8

triplet 1170 326.8 419.6

quintuplet 513 172.3 274.9

pixelQuintuplet 15000 1.5 1.8

pixelTriplet 5000 0.4 0.6

TrackCandidates 5000 0.5 0.9

TrackExtensions 30*TC 1.3 2.3

Total 1206.3 1501.2

Timing

4/13/2022 SEGMENT LINKING 19

Rows: different number of concurrent streams (s= number)
Columns: time [ms] to allocate memory, do cpu processes, launch kernels to create and clean objects. Add
objects to memory. Times increase for multistreaming as a kernel can be interrupted by work done on other
streams
Loop time: effectively the throughput. Time to run over all events / number of event. Includes overhead
Event, short and effective times are all obsolete (please ignore)

Best time

Physics Performance (PU200)

4/13/2022 SEGMENT LINKING 20

90% efficiency for a TT-bar PU200 sample over 200 events.
Corresponds to a 20-30% fake rate and a low 1-2% duplicate rate
Fake rate 4x higher than CKF. Driven primarily by pT3s only.

TC distribution
pT5: ~50%
pT3: ~17%
T5 : ~12%
pLS: ~21%

Physics Performance (PU200)

4/13/2022 SEGMENT LINKING 21

Physics Performance (Muon Gun)

4/13/2022 SEGMENT LINKING 22

Physics Performance (Muon Gun)

4/13/2022 SEGMENT LINKING 23

4/13/2022 SEGMENT LINKING 24

8 streams

4/13/2022 SEGMENT LINKING 25

