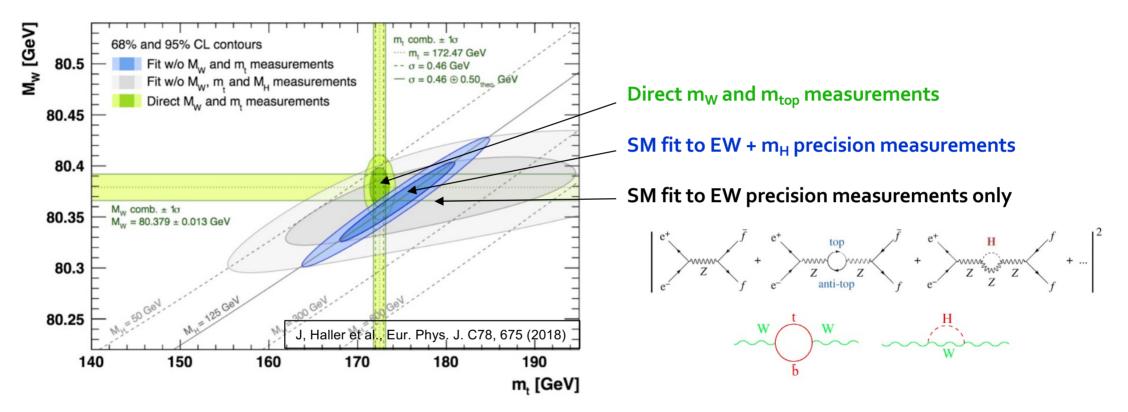
Precision targets at the Z pole

The mission

The talk will review the physics potential of future lepton (e+e-) colliders at the Z pole, highlighting in particular the electroweak measurements that rely heavily on theory inputs, such as precision calculations. Primary examples are Z-pole measurements of EW parameters, as well as EW precision observables.

- In addition: this is the opening presentation of the workshop
 - Start with basic introduction
 - Well known by most of you, but may be useful anyway to set the scene
 - → Motivation
 - → Present landscape
 - → Experimental and theoretical tasks
 - → ...

Motivation


- What do we need precision measurements (and related precision calculations) for?
 - With the Higgs boson discovery, the Standard Model was completed
 - The predictivity of the underlying theory was demonstrated (at the 10⁻³ level)
 - → For example, LEP and SLC predicted the top quark and the Higgs boson masses
 - ... and the top quark (Tevatron) and the Higgs boson (LHC) were found at the right masses !
 - Precision measurements must be matched with SM predictions with the same accuracy
 - To make optimal use of the experimental data (and money!)

(or better)

- To provide sensitivity to "new-physics" phenomena such as
 - → The origin of dark matter
 - → The origin of the baryon asymmetry of the universe
 - → The origin of the neutrino masses (and whoever comes with it, e.g., heavy neutral leptons)
- Allowing the validity of a future theory (that would explain these new phenomena) to be tested
 - → Of course, the accuracy of the future theory predictions must also match the measurement precision
- The precision expected at future e⁺e⁻ colliders will reject a multitude of new-physics models
 - Whether the precision measurements agree or deviate from the Standard Model predictions
 - → And will provide a clear vision of what to look for , at high energy and/or feeble couplings

The current landscape

Without the recent CDF m_w measurement

• Precision measurements at the Z pole start to look like the poor relation in this plot!

- One of the missions of future e⁺e⁻ colliders is to very substantially improve on this front
 - Probably for the last time the collider must therefore be chosen wisely

The current landscape

• W mass in numbers (after top and Higgs observation) and related remarks

Fit of EWPO at the Z pole + m_H within the SM (and nothing else)

Direct measurement

 $m_{\rm W} = 80.379 \pm 0.012 ~{\rm GeV}$

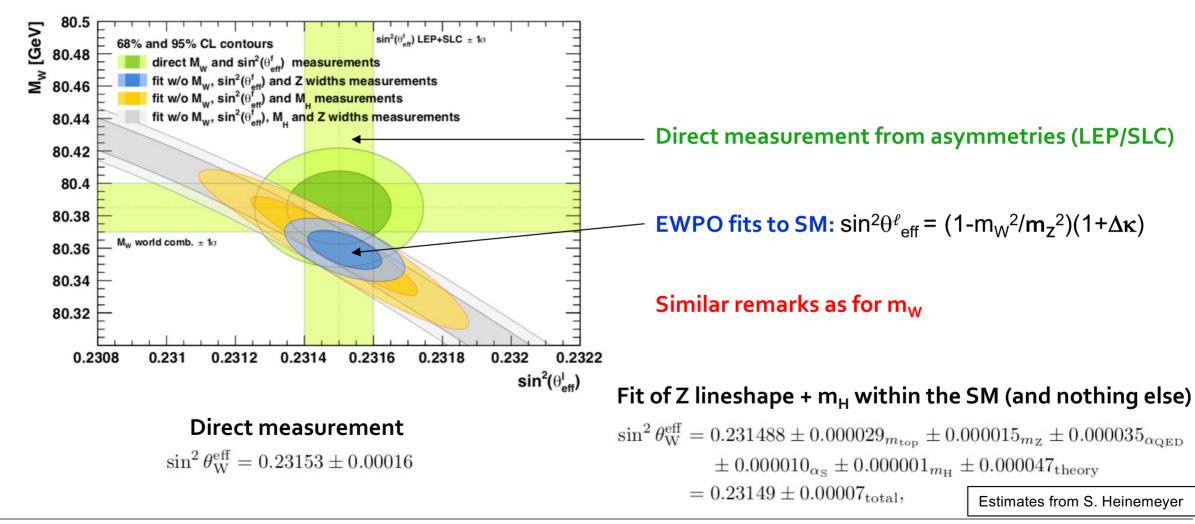
 $m_{\rm W} = 80.3584 \pm 0.0055_{m_{\rm top}} \pm 0.0025_{m_{\rm Z}} \pm 0.0018_{\alpha_{\rm QED}} \\ \pm 0.0020_{\alpha_{\rm S}} \pm 0.0001_{m_{\rm H}} \pm 0.0040_{\rm theory} \text{ GeV}$

 $= 80.358 \pm 0.008_{\text{total}}$ GeV,

Estimates from S. Heinemeyer

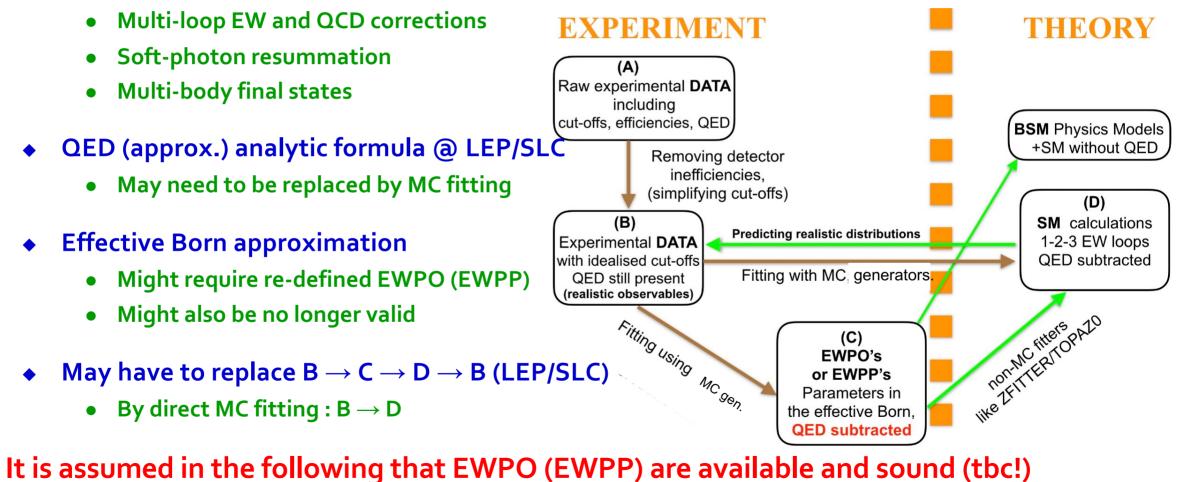
- The theory accuracy (8 MeV) is at the same level as the measurement precision (12 MeV)
 - Note: The CDF precision on m_w reached 9 MeV
- The precision of the W mass direct measurement will improve to less than 0.5 MeV

P. Azzurri G. Wilson


- EWPO measurements will have to improve accordingly at future e⁺e⁻ colliders
- The theory accuracy is made of two components
 - Parametric uncertainties, which can be improved by better measurements of these parameters
 - \rightarrow m_Z, m_{top}, $\alpha_{QED}(m_Z)$, $\alpha_S(m_Z)$, m_H: ancillary measurements to be addressed by future e⁺e⁻ colliders as well

Z + WW + top required!

Intrinsic uncertainties, which can be improved by higher-order calculations

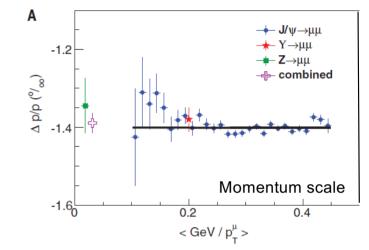

The current landscape

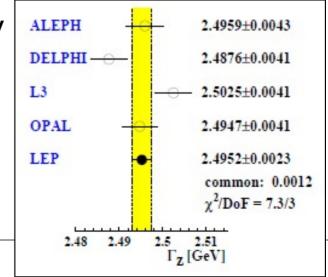
• A (maybe) more useful presentation: the W mass and the weak mixing angle $\sin^2\theta_{eff}^{\ell}$

- **At LEP/SLC, theory and experiment communicated by way of (pseudo)observables**
 - Defined from exp'tal measurements from minimally model-dependent prescriptions
 - Experimental measurements
 - → Centre-of-mass energy, centre-of-mass energy spread
 - → Integrated luminosity, cross sections, angular distributions
 - Pseudo-observables
 - → Z mass, Z width, peak cross section (Z lineshape)
 - → Z partial widths or branching fractions
 - → Polarisation or forward-backward cross-section asymmetries
 - Assumptions (model dependence)
 - → QED is correct (ISR, FSR) ; Weak interaction is v-a ; Effective Born approximation.
 - → Z decays into SM fermion pairs (other decays were searched for exclusively)
- This scheme was well adapted to the situation (and the luminosity) at the time
 - What are the masses of the top quark and the Higgs boson?
 - Is there evidence of new physics in loops?

- □ This may be no longer possible at future e⁺e⁻ colliders (10³-10⁵ larger luminosity)
 - Sophisticated MC event generators will have to be developed, with


https://arxiv.org/abs/1903.09895


- Tasks for theory
 - Identify observables/parameters that contain sensitivity to new phenomena
 - Via loops in γ , Z, W propagators (flavour universal), e.g., S, T, U @LEP/SLC
 - Via boxes and vertices (flavour dependent), e.g., $\delta_{\rm b}$ @ LEP/SLC
 - Via direct long distance propagator effects (universality violation): e.g., new Z'
 - Via mixing with known particles, e.g., Z'/Z mixing, v/N mixing, ...
 - Develop high-precision SM procedures to extract these parameters from measurements
 - Precise (maybe not universal?) QED/QCD Monte Carlo / radiator for ISR/FSR/IFI, ...
 - Perform high-precision calculations of these observables/parameters in the SM
 - Precise multi-loop calculations with, e.g., m_{Z} , G_{F} , $\alpha_{QED}(0)$ as basic inputs
 - → Also requires high-precision theory to extract ancillary quantities from experimental measurements $\alpha_{QED}(m_z)$, $\alpha_S(m_z)$, m_{top} , m_b , m_H , etc. to reduce parametric uncertainties
 - Develop sophisticated MC event generators, for direct tests of the theoretical prediction
 - Also needed to remove detector acceptance and selection inefficiencies


- **D** Tasks for experiment and collider
 - Maximize the luminosity produced by the collider at the Z pole, w/ clean exp'tal conditions
 - Tune the operation model (Luminosity, Energy, Polarisation) for optimal EWPO statistical precision
 - Design ways to accurately measure the centre-of-mass energy and its spread
 - Operate several detectors simultaneously to increase statistics
 - Design the detectors to match the systematic uncertainties with the statistical precision
 - Often requires ancillary measurements to be performed and subtle tricks to be developed
- Past experience proves that "statistics is the limit" (and that this limit is reached)
 - Experimental systematic uncertainties are often of statistical nature
 - The analysis of real data provides the needed additional motivation boost for hard work
 - Parametric uncertainties are often of statistical nature
 - If the parameters can be measured independently
 - The plan must be to match intrinsic theoretical uncertainties to the statistical precision
 - Nobody wants to be in the way of a discovery by being the dominant source of uncertainty

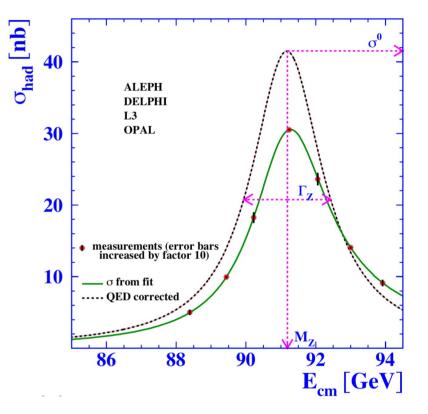
Statistics is the limit

- Recent CDF measurement with full Run2 stat : m_w = 80433.5 ± 6.4 (stat.) ± 6.9 (syst.) MeV
 - Systematic uncertainty similar to statistical precision !
 - Required 10 years of work and motivation
 - Relies on the precise measurements of J/ ψ , Υ , Z masses
 - All measured in e⁺e⁻ colliders (using resonant depolarisation)
 - Measured value inconsistent with previous measurements ...
 - Raises questions that will require more work
 - → Or just wait for FCC-ee that will measure m_W 40 times better
- **Z width measurement at LEP:** Γ_z = 2495.2 ± 1.8 (stat.) ± 1.2 (syst.) MeV
 - Original systematic uncertainty estimate was 20 MeV (1986)
 - Requires hard work and ingenuity from LEP energy WG for 5 years
 - → Until the systematic error was smaller than the statistical precision √s calibration with resonant depolarization (not during physics runs, e⁻ only) Systematic uncertainties due to tides, rain, train effects in extrapolation

Operation models at the Z pole

• Two generic configurations

- In the core programme of FCC-ee with two interaction points (4 years) : TeraZ
 - 150 ab⁻¹ at and around the Z pole up to 5×10¹² Z produced, 2×10⁵ times LEP statistics
- To be multiplied by 1.7 with 4 interaction points
- → Instantaneous luminosity ~4×10³⁶cm⁻²s⁻¹
- Scan of the Z resonance with 3 energy points 87.69 GeV, 91.21 GeV, 93.85 GeV
 - → Beam energies corresponding to half-integer spin tunes: precise calibration with resonant depolarization
- Transverse polarization for ~250 e⁺ and e⁻ non-colliding bunches (out of ~10,000)
 - → Continuous in-situ beam energy calibration for electrons and positrons, much reduced systematic errors
- Not in the core programme of ILC layout still in the work : GigaZ
 - About 0.1 ab⁻¹ at and around the Z pole a few 10⁹ Z produced, about 10⁴ times SLC statistics
 - ➔ Instantaneous luminosity ~2×10³³cm⁻²s⁻¹
 - Scan of the resonance with 7 energy points, typically 91.2 GeV, ±1.05 GeV, ±2.1 GeV, ±3.15 GeV
 - Longitudinal polarization: 80% for electrons, (possibly) 30% for positrons
 - → Gives access to A_{LR}, the observable most sensitive to the effective weak mixing angle, sin²θ^ℓ_{eff} Partially compensates for the smaller luminosity (for this parameter)


Scan of the Z lineshape: m_Z , Γ_Z , σ°_{had}

Statistical precision sets the scene

	mz	Γ _z	σ_{had}
FCC-ee	4 keV	4 keV	< 10 ⁻⁶
ILC	120 keV	120 keV	< 10 ⁻⁴

Experimentally

- m_z requires absolute determination of \sqrt{s}
- Γ_z requires relative (pt-to-pt) determination of \sqrt{s}
 - Also: absolute determination of \sqrt{s} spectrum (spread)
- σ_{had} requires absolute determination of luminosity
- Theoretically
 - High-precision QED prodecures to go from the exp'tal green curve to the pink curve
 - High-precision SM calculations to go from the pink curve to the Z parameters
 - With the statistical precision as a target

Absolute determination of √s at FCC-ee

- **Continuous resonant depolarization to determine the beam energies**
 - Transverse polarization (with wigglers)
 - Spin precession frequency $v_0 = E_{beam}/0.4406486$
 - $v_0 = 103.5$ at the Z peak (called "spin tune")
 - Kicker with frequency v provokes sharp depolarization
 - Simulation with CDR FCC-ee layout

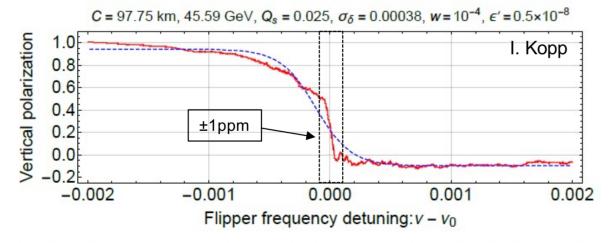
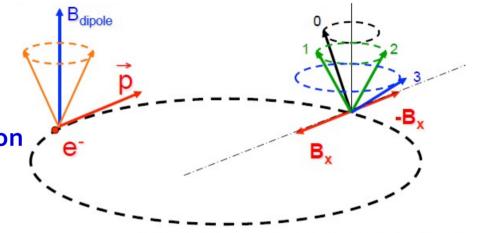



Figure 39. Simulation of a frequency sweep with the depolarizer on the Z pole showing a very sharp depolarization at the exact spin tune value.

260 seconds sweep of the kicker frequency

- Reach ppm precision or better on \sqrt{s}
 - Realistic assumption: < 100 keV</p>
 - Ultimate reach: 10 keV or better ?

• Crossing angle α : $\sqrt{s} = 2 E_+E_- \cos \alpha/2$

- α (30 mrad) can be measured in situ
 - With $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ events

Precision Calculations for future e⁺e⁻ Colliders

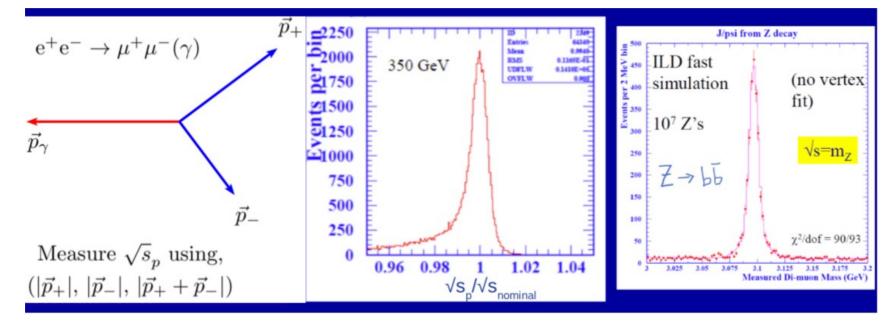
7 June 2022

13

Absolute determination of √s at FCC-ee

Measured polarization (simulation)

- More recent work presented at the FCC Week 2022 in Paris (I. Koop)
 - Expected polarization = $f(v-v_0)$


45GeV, ν s=0.075, $\sigma\delta$ =0.00038, w=1.5*10^-4, ε '=2*10^-8 45GeV, ν s=0.075, $\sigma\delta$ =0.00038, w=1.5*10^-4, ε '=2*10^-8 a ta dalamin'ny faritr'i Andre Andre Jan dia dia mandra dia kaominina dia kaominina dia kaominina dia kaominina Polarization from Polarimeter 0.5 ±1ppm -0.5AAM Average Compton-polarimeter rate 1000 events/turn $-\frac{1}{0.002}$ -0.0010 0.001 $-\frac{2}{0.002}$ 0.002 -0.0010.001 0.002 0 Depolarizer Detuning Depolarizer Detuning

- Precision of 0.1 ppm (0.00001) on $v-v_0$ does not seem out of reach
 - → Would corresponds to about 10 keV on m_Z

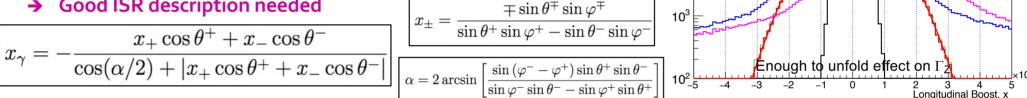
Verticall Polarization/P initial

Absolute determination of \sqrt{s} at ILC

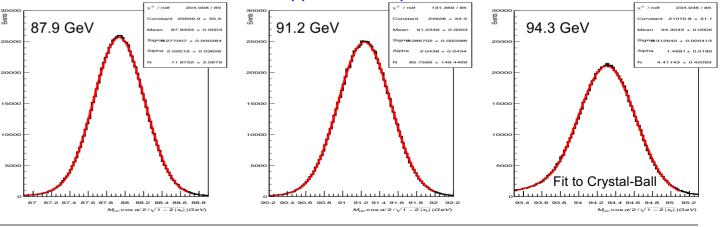
- □ Use "calibrated" dimuon events $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$
 - Use $E_+ + E_- + p_{miss}$ as an estimator for \sqrt{s} requires excellent momentum resolution

- Tie detector momentum scale to known masses (a la CDF): J/ ψ , K⁰, Λ known to ~2 ppm
 - Expect ~ppm statistical uncertainty on p-scale with 1.2M J/ $\psi \rightarrow \mu^+\mu^-$ events (full statistics)
- Ultimate (systematic) target for \sqrt{s} determination at the Z peak : 200 keV
 - Requires <u>complete systematic study</u> to demonstrate the feasibility of the method

G. Wilson


\sqrt{s} spread and point-to-point determination at FCC-ee

In situ measurement with the same dimuon events $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$


Energy spread = relative longitudinal boost $x_v = p_z \frac{\text{miss}}{\sqrt{s}}$

- Full spectrum obtained from μ directions and E,p conservation
 - → Method also provides absolute directions wrt the beams
 - Requires ~0.1 mrad angular resolution or less

- Use ISR-corrected dimuon mass as an estimator for \sqrt{s} : $M_{\mu\mu}/\sqrt{1-2x_{\gamma}}$ (similar to ILC)
- Target for pt-to-pt uncertainty: < 10 keV
 - \rightarrow Would translate to ~5 keV error on Γ_7
 - \rightarrow Present estimate 40 keV (25 keV on Γ_7)
- Systematic uncertainty: ISR description
 - → Shift of the peak by ~30 MeV [*]
 - → Multi-photons, angular distribution, ...
- Complete case study required

≚ 105

 10^{4}

[*] It is therefore not clear that this method can be used for an absolute determination of \sqrt{s}

https://arxiv.org/abs/1909.12245

One million dimuon events

0.1% precision

every 5 minutes

Spread (no BS)

 $\sigma_{0.1} = 0.1 \text{ mrad}$

Spread (BS)

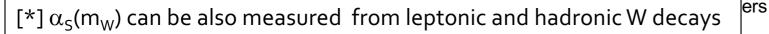
With ISR Asymmetry = ± 0.19

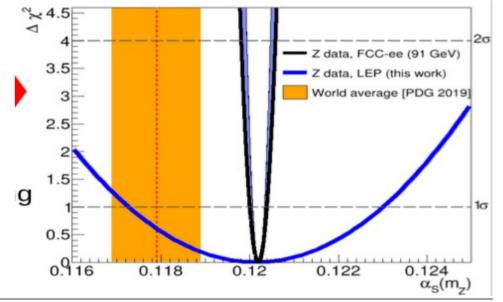
Absolute luminosity determination

- Measured with low angle Bhabha scattering $e^+e^- \rightarrow e^+e^-$
 - Statistical uncertainty (10⁻⁶ at FCC-ee, 3×10⁻⁵ at ILC) seems impossible to reach
 - Theoretical uncertainty at LEP: 0.061%, recently reduced to 0.037%
 - 0.061% deemed adequate for ILC no additional work required 🙂
 - Achievable target for FCC-ee is 0.01% (10⁻⁴) actual calculation needed
 - Measuring the Bhabha rate at the 10⁻⁴ level is experimentally challenging
 - Construction of luminometer inner radius at the μm level
- The point-to-point luminosity uncertainty is at least one order of magnitude smaller
 - σ^{o}_{had} is the only observable affected by this 10⁻⁴ limitation
 - And therefore, the number of light neutrino species N_v [*]
- Alternative absolute luminosity measurement with large angle $e^+e^- \rightarrow \gamma\gamma$ events
 - Statistical uncertainty of 2×10^{-5} at FCC-ee Feasibility study synergistic with R_{ℓ} (next slide)
 - Potential theory uncertainty: 10⁻⁵ NNLO calculation required

[*] N_v can be also measured above the Z pole with the ratio $\sigma(\nu\nu\gamma)/\sigma(\mu\mu\gamma)$

https://arxiv.org/abs/1812.01004


https://arxiv.org/abs/1912.02067


https://arxiv.org/abs/2107.12837

$$N_{\nu} \left(\frac{\Gamma_{\nu\nu}}{\Gamma_{\ell\ell}}\right)_{\rm SM} = \left(\frac{12\pi}{m_{\rm Z}^2} \frac{R_{\ell}^0}{\sigma_{\rm had}^0}\right)^{\frac{1}{2}} - R_{\ell}^0 - 3 - \delta_{\tau}$$

Measurement of R_{\ell}= $\Gamma_{had}/\Gamma_{\ell}$ and $\alpha_s(m_z)$ determination

- Relative measurement independent of luminosity determination
 - At FCC-ee, relative statistical precision of 3×10^{-6} for each of R_e , R_μ and R_τ
 - Sensitive to new physics (test of lepton universality and quark-lepton universality)
 - In the SM, leads to a determination of $\alpha_{\text{S}}(\text{m}_{\text{Z}})$ through Γ_{had}
 - At LEP, R_{ℓ} = 20.767 ± 0.025 yielded $\alpha_{s}(m_{z})$ = 0.1196 ± 0.0028 (exp.) ± 0.0009 (th.)
 - Main experimental systematic uncertainty came for lepton acceptance ($\cos\theta_{cut} < 0.95$, $\varepsilon \sim 90\%$)
 - At FCC-ee, the lepton acceptance must be better controlled
 - Acceptance down to 100 mrad (cosθ_{cut} < 0.995)?
 - Clean design of the low angle detector fiducial
 - → Target precision of 0.001 for R_{ℓ}
 - Calls for a reduction of theory error by a factor > 4
 - Computing missing α_s^5 , α^3 , $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms
 - → $\alpha_{s}(m_{Z}) = 0.11960 \pm 0.00014$ (exp.) ± 0.00022 (th.) [*]
 - Level of details in the dilepton generator
 - To improve accordingly

18

Measurement of $R_{b(c,s)} = \Gamma_{b(c,s)} / \Gamma_{had}$

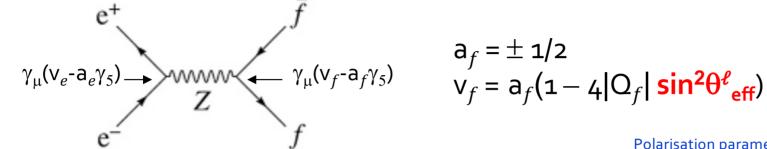
- Largest expected improvement from FCC-ee with respect to LEP (> 2000)
 - Factor 500 in statistical precision (+ no R_s measurement at LEP)
 - Factor 5 in beam pipe radius (10 mm for FCC-ee, 15 mm for ILC)
 - Much developments in flavour tagging algorithms from LHC
 - Relative stat. precision on R_b of 1.5×10⁻⁶ with 7×10¹¹ Z \rightarrow bb events !
 - R_b sensitive to new physics via a specific top/W vertex correction
- Largest improvement of (theoretical) uncertainties needed
 - Gluon radiation, gluon splitting, decay models, b,c fragmentation ...
 - Huge available statistics to study such effects: define strategies
 - → Improve the QCD calculations and the MC generators accordingly

LEP uncertainties	
-------------------	--

Source	$R_{\rm b}^0$	$R_{\rm c}^0$
	$[10^{-3}]$	$[10^{-3}]$
statistics	0.44	2.4
internal systematics	0.28	1.2
QCD effects	0.18	0
$B(D \rightarrow neut.)$	0.14	0.3
D decay multiplicity	0.13	0.6
B decay multiplicity	0.11	0.1
$B(\mathrm{D^+} \to \mathrm{K^-}\pi^+\pi^+)$	0.09	0.2
$B(D_s \rightarrow \phi \pi^+)$	0.02	0.5
$B(\Lambda_c \rightarrow p \ K^- \pi^+)$	0.05	0.5
D lifetimes	0.07	0.6
B decays	0	0
decay models	0	0.1
non incl. mixing	0	0.1
gluon splitting	0.23	0.9
c fragmentation	0.11	0.3
light quarks	0.07	0.1
beam polarisation	0	0
total correlated	0.42	1.5
total error	0.66	3.0

https://arxiv.org/abs/hep-ex/0509008

Summary: Theory inputs for Z lineshape observables


Numbers are given here for FCC-ee (best prospects)

Observables	Present value	FCC-ee stat.	FCC-ee current syst.	FCC-ee ultimate syst.	Theory input (not exhaustive)
m _z (keV)	91187500 ± 2100	4	100	10 ?	Lineshape QED unfolding Relation to measured quantities
$\Gamma_{\sf Z}$ (keV)	2495500 ± 2300 [*]	4	25	5?	Lineshape QED unfolding Relation to measured quantities
σ^{0}_{had} (pb)	41480.2 ± 32.5 [*]	0.04	4	o.8	Bhabha cross section to 0.01% $e^+e^- \rightarrow \gamma\gamma$ cross section to 0.002%
$N_{\nu}(\times 10^3)$ from σ_{had}	2996.3 ± 7.4	0.007	1	0.2	Lineshape QED unfolding $(\Gamma_{ m vv}/\Gamma_{\ell\ell})_{ m SM}$
$R_{\ell}(imes 10^3)$	20766.6 ± 24.7	0.04	1	0.2 ?	Lepton angular distribution (QED ISR/FSR/IFI, EW corrections)
$\alpha_{s}(m_{Z})$ (×10 ⁴) from R _{ℓ}	1196 ± 30	0.1	1.5	0.4?	Higher order QCD corrections for $\Gamma_{\rm had}$
R _b (×10 ⁶)	216290 ± 660	0.3	?	< 60 ?	QCD (gluon radiation, gluon splitting, fragmentation, decays,)

- And also sophisticated and state of the art MC generators (signal and backgrounds)
 - Plus, maybe, redefined EW Precision Parameters (EWPP) and extraction procedures?

Asymmetries and $\sin^2\theta_{eff}^{\ell}$

Parity-violating (L \neq R) weak couplings at the Z pole

Asymmetry parameter

$$A_f = \frac{2a_f v_f}{v_f^2 + a_f^2}$$

Polarisation parameter

Longitudinally polarized incoming beams $P = \frac{P_{e^-} - P_{e^+}}{(1 - P_{e^-} - P_{e^+})}$

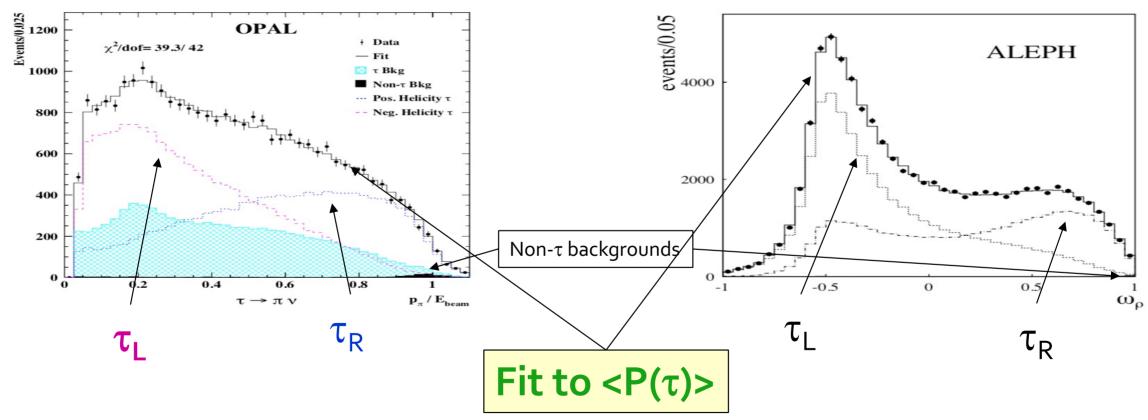
$$A_{LR} = \frac{\sigma_{tot}(P) - \sigma_{tot}(-P)}{\sigma_{tot}(P) + \sigma_{tot}(-P)} = PA_e$$

$$\sigma_{B}^{olf} = \frac{\sigma_{Ff}(P) - \sigma_{Ff}(-P) - \left[\sigma_{Bf}(P) - \sigma_{Bf}(-P)\right]}{\sigma_{totf}(P) + \sigma_{totf}(-P)} = \frac{3}{4}PA_{f}$$

Longitudinally unpolarized beams produce longitudinally polarized fermions (Z couplings)

• Longitudinal polarization of the τ 's obtained from the decay particle spectrum (π , ρ , etc.)

$$\langle P_{\tau} \rangle = \frac{\sigma_{R\tau} - \sigma_{L\tau}}{\sigma_{R\tau} + \sigma_{L\tau}} = -A_{\tau}$$

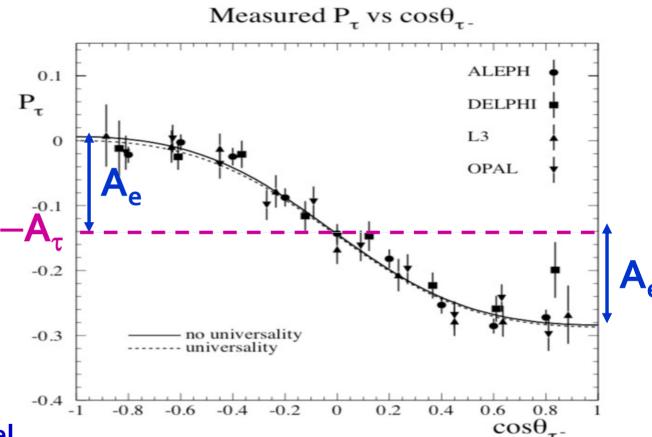

$$A_{FB}^{pol\tau} = \frac{\sigma_{RF\tau} - \sigma_{LF\tau} - [\sigma_{RB\tau} - \sigma_{LB\tau}]}{\sigma_{R\tau} + \sigma_{L\tau}} = -\frac{3}{4}A_e$$

$$A_{FB}^{f} = \frac{\sigma_{Ff} - \sigma_{Bf}}{\sigma_{Ff} + \sigma_{Bf}} = \frac{3}{4}A_{e} A_{f}$$

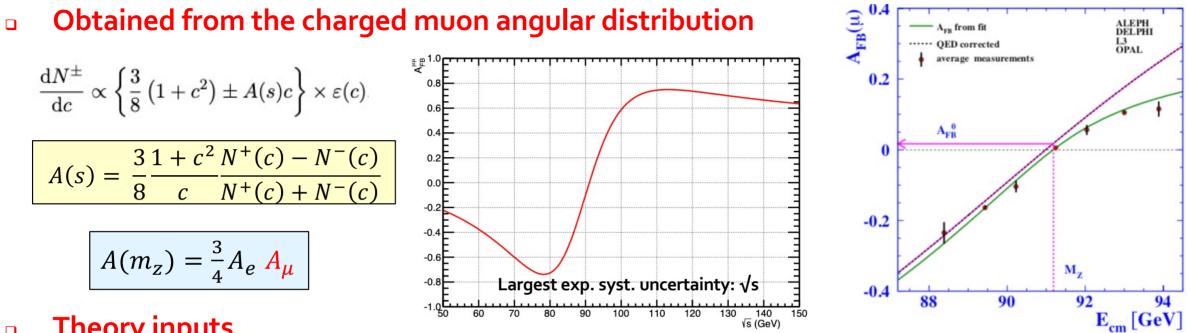
τ Longitudinal Polarisation: A_e and A_{\tau}

- Longitudinal polarisation measurement (all decay channels are used)
 - $\tau \rightarrow \pi v_{\tau}$: pion energy

 $\tau \rightarrow \rho \nu_{\tau}$: optimal observable ω_{ρ}


• Important: perform this fit in each bin of the τ polar angle, $\cos\theta_{\tau}$

τ Longitudinal Polarisation: A_e and A_{\tau}


• Angular distribution of P_{τ}

$$P(\cos\theta) = -\frac{\mathcal{A}_{\tau}(1+\cos^{2}\theta) + 2\mathcal{A}_{e}\cos\theta}{(1+\cos^{2}\theta) + 2\mathcal{A}_{e}\mathcal{A}_{\tau}\cos\theta}$$

- Average $< P_{\tau} > gives A_{\tau}$
- P_{τ} FB Asymmetry $A_{FB}^{pol\tau}$ gives A_{e}
- Very high FCC-ee statistics !
 - Use best channel(s) only (πv_{τ} , ρv_{τ})
- Theory inputs
 - Above formula at improved Born level
 - Higher order calculations needed also for optimal observable definition
 - Non- τ ($\gamma\gamma$) backgrounds will need a refined prediction and MC generators
 - FCC-ee control samples might help too (also for τ decay modelling and branching fractions)

Muon Forward-Backward asymmetry: A_μ

Theory inputs

- High-precision QED prodecures to go from the exp'tal green curve to the pink curve
 - Accurate ISR, IFI, FSR Monte Carlo generators are also needed
 - Initial State radiation higher orders (several photons, emission angular distribution, etc.) →
 - → Initial-Final State interference adds a pure QED asymmetry which needs to be simulated/predicted
- High-precision SM calculations to go from the pink curve to the SM parameters
 - E.g., higher-order calculations for A_{FB}(s)

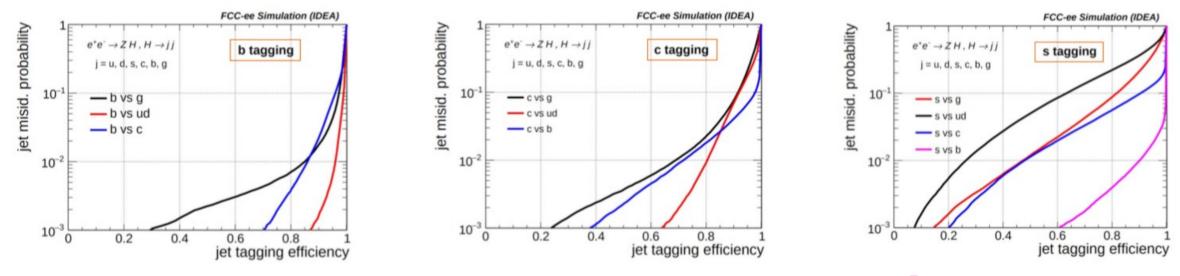
Left-Right Asymmetry: A_e

- **Obtained from the total cross sections measured in four beam helicity configurations**
 - To reduce P dependence, a.k.a. "Blondel scheme"

$$A_{\rm LR} = \sqrt{\frac{(\sigma_{++} + \sigma_{-+} - \sigma_{+-} - \sigma_{--})(-\sigma_{++} + \sigma_{-+} - \sigma_{+-} + \sigma_{--})}{(\sigma_{++} + \sigma_{-+} + \sigma_{+-} + \sigma_{--})(-\sigma_{++} + \sigma_{-+} + \sigma_{+-} - \sigma_{--})}}}$$

	(-,+)	(+,-)	(-,-)	(+,+)	sum
luminosity $[fb^{-1}]$	40	40	10	10	
$\sigma(P_{e^-}, P_{e^+}) \text{ [nb]}$	83.5	63.7	50.0	40.6	
Z events $[10^9]$	2.4	1.8	0.36	0.29	4.9
hadronic Z events $[10^9]$	1.7	1.3	0.25	0.21	3.4

$L (fb^{-1})$	$N_Z^{\rm had}$	$ P(e^{-}) $ (%)	$ P(e^{-}) $ (%)	ΔA_{LR} (stat.)	ΔA_{LR} (syst).
100	$3.3 imes 10^9$	80	30	$4.3 imes 10^{-5}$	$1.3 imes 10^{-5}$
100	4.2×10^9	80	60	$2.4 imes 10^{-5}$	$1.3 imes 10^{-5}$
250	$8.4 imes 10^9$	80	30	$2.7 imes 10^{-5}$	$1.3 imes 10^{-5}$
250	$1.1 imes 10^{10}$	80	60	$1.5 imes 10^{-5}$	$1.3 imes 10^{-5}$


Assumes 500 keV precision on \sqrt{s}

 $\operatorname{sgn}(P(e^{-}), P(e^{+})) =$

- Bottom line: A_{LR} precision of 10⁻⁴ is a very realistic assumption with GigaZ
- Theory inputs
 - Almost none, besides high-precision SM calculations to go from A_{LR} to SM parameters

Other fermion asymmetries: A_b, A_c, A_s

- From forward-backward asymmetries (polarized or not) of $e^+e^- \rightarrow b\bar{b}$, $c\bar{c}$, $s\bar{s}$
 - Rely on efficient and pure flavour tagging algorithm (as for R_b, R_c, R_s)
 - Example of performance with IDEA detector at FCC-ee (Latest update at FCC Week 2022)
 - → PID: cluster counting + TOF 30 ps. Displacement: Beam pipe 10mm, VDet 3 layers

→ Can tag Z → ss with 40% efficiency, with 4% contamination from Z → $u\bar{u}$ + dd

Open the way to several additional EW measurements in the strange sector

- Use double tagging technique to remove dependence on the tagging efficiency
 - Except with correlations between hemispheres (primary vertex, gluon radiation/splitting, bkgds)

Other fermion asymmetries: Theory inputs

anti-b

gluon

b-tagged jo

b-tagged jet

QCD

- Dominant systematic uncertainties (from LEP experience)
 - Polarisation measurement for polarised asymmetries
 - QCD effects for all measurements (100% correlated)
 - New developments in arXiv:2010.08604 (J. Alcaraz)

QCD corrections and uncertainties can be reduced significantly using acollinearity (ξ) cut, which rejects events with (hard) gluon radiation. Assume a factor 5 for now.

Full systematic study required QCD higher-order corrections welcome

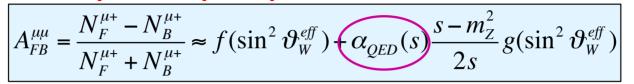
- Exclusive decays can also be used
 - To improve the b, c, s purity (or calibrate other hemisphere efficiency)

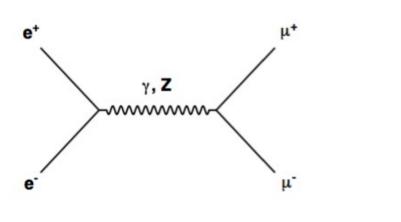
ries	Source	$A_{\rm FB}^{0, b}$	$A_{\rm FB}^{0,\rm c}$	\mathcal{A}_{b}	\mathcal{A}_{c}	
.IN		$[10^{-3}]$	$[10^{-3}]$	$[10^{-2}]$	$[10^{-2}]$	
d)	statistics	1.5	3.0	1.5	2.2	
_	internal systematics	0.6	1.4	1.2	1.5	
	QCD effects	0.4	0.1	0.3	0.2	
z) _	$B(D \rightarrow neut.)$	0	0	0	0	
Z)	D decay multiplicity	0	0.2	0	0	
	B decay multiplicity	0	0.2	0	0	
	$B(\mathrm{D^+} \to \mathrm{K^-}\pi^+\pi^+)$	0	0.1	0	0	
	$B(D_s \rightarrow \phi \pi^+)$	0	0.1	0	0	
	$B(\Lambda_{\rm c} \rightarrow p \ {\rm K}^- \pi^+)$	0	0.1	0	0	
	D lifetimes	0	0.2	0	0	
	B decays	0.1	0.4	0	0.1	
	decay models	0.1	0.5	0.1	0.1	
A start and a start	non incl. mixing	0.1	0.4	0	0	
TIA	gluon splitting	0.1	0.2	0.1	0.1	
	c fragmentation	0.1	0.1	0.1	0.1	
	light quarks	0	0	0	0	
C	beam polarisation	0	0	0.5	0.3	
D	total correlated	0.4	0.9	0.6	0.4	
ion	total error	1.6	3.5	2.0	2.7	

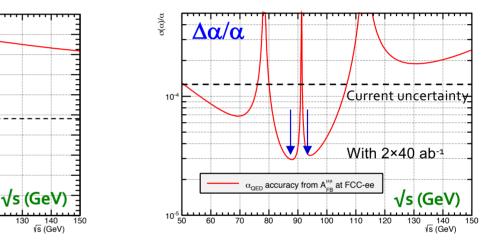
https://arxiv.org/abs/hep-ex/0509008

Summary: Theory inputs for asymmetries

Observables	Present value (×10 ⁴)	TeraZ / GigaZ stat.	TeraZ / GigaZ current syst.	Theory input (not exhaustive)
A_e from P_{τ} (FCC-ee)		0.07	0.20	CM relation to measured quantities
A _e from A _{LR} (ILC)	1514 ± 19	0.15	0.80	SM relation to measured quantities
A_{μ} from A_{FB} (FCC-ee)		0.23	0.22	
A_{μ} from A_{FB}^{pol} (ILC)	1456 ± 91	0.30	0.80	Accurate QED (ISR, IFI, FSR)
A_{τ} from P_{τ} (FCC-ee)		0.05	2.00	
A_{τ} from A_{FB} (FCC-ee)	1449 ± 40	0.23	1.30	Prediction for non-τ backgrounds
A_{τ} from A_{FB}^{pol} (ILC)		0.30	0.80	
A _b from A _{FB} (FCC-ee)	9000 L 100	0.24	2.10	
A _b from A _{FB} ^{pol} (ILC)	8990 ± 130	0.90	5.00	QCD calculations
A _c from A _{FB} (FCC-ee)		2.00	1.50	
A _c from A _{FB} ^{pol} (ILC)	65400 ± 210	2.00	3.70	


- And also sophisticated and state of the art MC generators (signal and backgrounds)
 - Plus, maybe, redefined EW Precision Parameters (EWPP) and extraction procedures ?


Electromagnetic coupling constant (FCC-ee)


Muon forward-backward asymmetry off-peak measurement

https://arxiv.org/abs/1512.05544

From γ -Z interference:

- Statistical optimum is a compromise
 - The number of events (be as close as m_z as possible)
 - The absolute asymmetry (be as close as 78 and 115 GeV as possible)

Α_{FB}(μμ)

70

80

• The ability to measure the beam energy (half-integer spin tune)

0.2

-0.2

-0.4 -0.6

-0.8

→ Two optimal centre-of-mass energies : 87.69 GeV and 94.71 GeV (or 93.83 GeV)

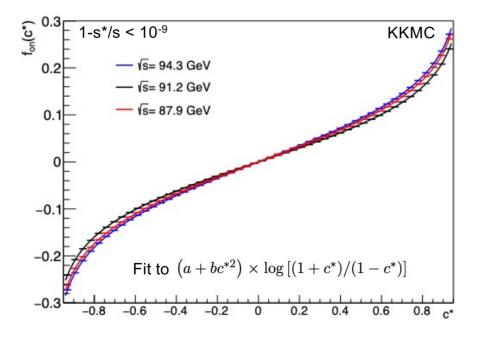
90

100

110

120

Used primarily for $\Gamma_{\rm Z}$ measurement


Electromagnetic coupling constant (FCC-ee)

 $\alpha_{\text{QED}}(m_z^2)$ obtained from the difference of the two asymmetries

https://arxiv.org/abs/1512.05544

- Lots of parametric and theoretical uncertainties cancel in the difference
 - Perfect cancellation for A_{FB}⁰, m_Z, ISR, FSR...
 - Only approximate cancellation for IFI asymmetry

$$\frac{\mathrm{d}N^{\pm}}{\mathrm{d}s^*\mathrm{d}c^*}(s,s^*,c^*) \propto \left\{\frac{3}{8}\left(1+c^{*2}\right) \pm A(s^*)c^*\right\} \times \left[1 \pm f(s,s^*,c^*)\right] \times \varepsilon(c^*),$$

Type	Source	Uncertainty		
	$E_{\rm beam}$ calibration	$1 imes 10^{-5}$		
	$E_{\rm beam}$ spread	$< 10^{-5}$		
Experimental	Acceptance and efficiency	negl.		
	Charge inversion	negl.		
	Backgrounds	negl.		
	$m_{ m Z}$ and $\Gamma_{ m Z}$	$1 imes 10^{-6}$		
Parametric	$\sin^2 heta_{ m W}$	$5 imes 10^{-6}$		
	$G_{ m F}$	$5 imes 10^{-7}$		
Total	Systematics	$1.2 imes 10^{-5}$		
	Statistics	$3 imes 10^{-5}$		
	QED (ISR, FSR, IFI)	$< 10^{-6}$		
Theoretical	QED (IFI)	few 10^{-5}		
	Missing EW higher orders	few 10^{-4}		
	New physics in the running	0.0		

Statistics limited !

Projected accuracies at FCC-ee

From a complete set of EWPO measurements at LEP + SLC (reminder)

EWPO Fit to the SM (and nothing else)

 $\sin^2 \theta_{\rm W}^{\rm eff} = 0.231488 \pm 0.000029_{m_{\rm top}} \pm 0.000015_{m_{\rm Z}} \pm 0.000035_{\alpha_{\rm QED}} \\ \pm 0.000010_{\alpha_{\rm S}} \pm 0.000001_{m_{\rm H}} \pm 0.000047_{\rm theory}$

 $= 0.23149 \pm 0.00007_{\text{total}},$

EWPO Fit to the SM (and nothing else)

Direct measurement

Direct measurement

 $\sin^2 \theta_{\rm W}^{\rm eff} = 0.23153 \pm 0.00016$

 $m_{\rm W} = 80.379 \pm 0.012 ~{\rm GeV}$

$$m_{\rm W} = 80.3584 \pm 0.0055_{m_{\rm top}} \pm 0.0025_{m_{\rm Z}} \pm 0.0018_{\alpha_{\rm QED}}$$
$$\pm 0.0020_{\alpha_{\rm S}} \pm 0.0001_{m_{\rm H}} \pm 0.0040_{\rm theory} \text{ GeV}$$
$$= 80.358 \pm 0.008_{\rm total} \text{ GeV},$$

Projected accuracies at FCC-ee

From a complete set of EWPO measurements at FCC-ee (projections)

EWPO Fit to the SM (and nothing else)

 $\begin{aligned} \sin^2 \theta_{\rm W}^{\rm eff} &= 0.231488 \pm 0.000001_{m_{top}} \pm 0.000001_{m_Z} \pm 0.000009_{\alpha_{QED}} \\ &\pm 0.000001_{\alpha_S} \pm 0.000000_{m_H} \pm 0.000047_{\rm theory} \end{aligned}$

 $sin^2 θ_W^{eff} = 0.23153 \pm 0.000002$ ≈ A_ℓ/16 ΔA_{EB}^{μμ} / A_{EB}^{μμ}

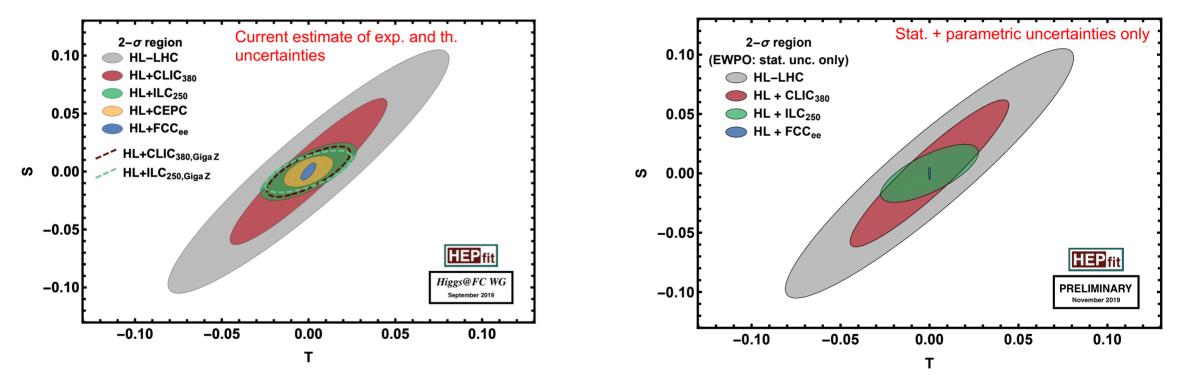
(w/ lepton universality)

(ILC projection: $\approx \frac{\Delta A_{LR}}{8} = \pm 0.000010$)

Direct measurement

 $m_{
m W} = 80.379 \pm 0.0003 \,{
m GeV}$

EWPO Fit to the SM (and nothing else)


 $m_{\rm W} = 80.3584 \pm 0.0001_{m_{top}} \pm 0.0001_{m_Z} \pm 0.0005_{\alpha_{QED}} \\ \pm 0.0002_{\alpha_S} \pm 0.0000_{m_H} \pm 0.0040_{\rm theory} \text{ GeV}$

- Additional improvement for $\alpha_{QED}(m_Z^2)$ would be welcome (factor 2 to 4)
- A factor 10 to 20 improvement is required for intrinsic theoretical uncertainties

Estimates from S. Heinemeyer

Statistics is the limit

- Challenge is to match systematic uncertainty with the statistical precision
 - Precision = discovery potential
 - Example: New physics in W and Z propagators, parameterized here with S and T variables

→ At FCC-ee, a lot of potential to exploit (e.g., with a good detector design)

→ Theory work is critical

Conclusions (1)

- **EWPO** measurements at the Z pole have a considerable physics potential
 - Combined with W, top, and Higgs measurements, they probe the BSM origins of the SM
 - As a EFT of an underlying UV theory it originates from
- Statistics is the name of the game and polarisation is the cornerstone of the program
 - At FCC-ee, resonant depolarisation allow for EWPO improvements by factors 10 to 2000
 - e.g., W mass to ±250 keV, Z mass and width to ±4 keV, $\sin^2\theta_W^{eff}$ to 2×10⁻⁶, α_{QED} to 3×10⁻⁵ etc.
 - At ILC, beam polarisation partially compensates for the 1000 times smaller statistics
 - For some of the EWPO's, e.g. , $sin^2\theta_W^{eff}$ to 1×10⁻⁵
 - → (Note: It was checked that there is nothing that FCC-ee can do better with beam polarisation)
- **Today, systematic uncertainties are the limiting factor in many of the measurements**
 - The challenge arise from matching these uncertainties to the statistical precision
 - Optimized detector design, new analysis strategies, new control samples, detailed studies
 - Theory developments

Conclusions (2)

- History has shown that exp. systematic uncertainties are usually statistics limited
 - FCC-ee statistical precision is the target
 - Experimenters will do it!
- **FCC-ee statistics allows control of parametric uncertainties to the desired level**
 - e.g., direct determination of $\alpha_{QED}(m_Z^2)$
 - [Additional factor 2 improvement would still be welcome]
- **The physis case of FCC-ee will therefore be made significantly stronger**
 - With robust estimate of theoretical uncertainties
 - With a strategy towards matching them to the FCC-ee statistical precision
 - With theoretical work to explore sensitivity for specific new physics
 - In order to optimize strategies in an informed way
- Today it may look like a brick wall
 - But it may be a mine of gold in our quest for the BSM origins of the laws of our Universe