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Shape variables and QCD

Shape variables in e+e− annihilation are the simplest contest
where we can study perturbative QCD.

For example, thrust:

T = max
~t

∑
|~pi · ~t|∑
|~pi |

equals 1 for two narrow back-to-back jets, and 2/3 < T < 1 for
three narrow jet.
Thus in the region 2/3 < T < 1 the thrust distribution is
proportional to αS , and can be used for its determination.
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On the other hand, the thrust distribution is sensitive to
non-perturbative hadronization effects.

For example, the emission of a soft hadron with momentum
500 MeV, perpendicular to the thrust direction, affects the thrust
by an amount 0.5/91 ≈ 0.005 on the Z peak. This shift in T can
affect the thrust distribution by an amount of the order of 5%.

In practice non-perturbative corrections can reach the 10% level,
and can affect at the same level the extracted value of αS .
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αs determinations (PDG)

Determination of αS from the first
seven rows of the jets & shapes
cathegory (highlighted in green) use
Monte Carlo model to correct for
non-perturbative effects.

The following three lines (Ab-
bate, Gehrmann, Hoang) are based
upon analytic modeling of non-
perturbative effects.
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Status

I The use of Monte Carlo modeling for hadronization
corrections is not totally satisfying, since it lacks a sound
theoretical basis.

I Analytic models seem to favour a too low value of αS as
compared to the precise lattice determination.

I No bridge between MC and analytic models

I It is disturbing that we do not fully understand the role of
non-perturbative effects at least in the simplest context where
they can be studied.

I Understanding non-perturbative effects can have important
consequences also for precision physics at hadron colliders,
where linear power corrections can play an important role.
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Recent progress

There have been recently new findings regarding the structure of linear
power corrections in collider observables:

I In ref. Eur.Phys.J.C 81 (2021), (Luisoni, Monni, Salam) it was
shown that linear power corrections to the C parameter in the 3-jet
symmetric limit are about 1/2 of those in the two jet limit.

I In ref. JHEP 01 (2022) 093, (Caola, Ferrario-Ravasio, Limatola,
Melnikov, P.N.) it was demonstrated that linear power corrections
are absent in sufficiently inclusive observables, in a variety of
processes, in a model theory (large nf QCD) that shares some
properties with the full theory. These findings confirmed previous
results obtained at the numerical level JHEP 06 (2021) 018,
(Ferrario-Ravasio,Limatola,P.N.).

I The same findings opened the possibility to compute linear power
corrections to shape variables in the 3-jet configuration
arXiv:2204.02247, (Caola,Ferrario-Ravasio,Limatola,Melnikov,
Ozcelik,P.N.)
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The results of Luisoni, Monni, Salam are based upon the so called
“dispersive approach”, where one assumes that the strong coupling
at low energy can be given by an effective coupling

The results of Caola et al. and Ferrario-Ravasio et al. are obtained
from the study if IR renormalons.

The two approaches bear some relation among each other.
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ABC of I.R. Renormalons

All-orders contributions to QCD amplitudes of the form∫ m

0

dkp αS(k2) =

∫ m

0

dkp 1

b0 log(k2/Λ2)

=

∫ m

0

dkp αS(m2)

1 + b0αS(m2) log k2

m2

= αS(m2)
∞∑
n=0

(2b0αS(m2))n
∫ m

0

dkp logn m

k︸ ︷︷ ︸
pnn!

.

Asymptotic expansion.

I Minimal term at nmin ≈ 1
2pb0αS (m2)

.

I Size of minimal term: mpαS(m2)
√

2πnmine
−nmin ≈ Λp.

I Typical scale dominating at order αn+1
S : m exp(−np).
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ABC of I.R. Renormalons

I Renormalon arise due to all radiative corrections that build up
the running of αs .

I When αs ≈ 1 perturbation theory breaks down. This happens
when k ≈ Λ. The volume of this region is∫ Λ

0
dkp ≈ Λp. (1)

This corresponds to the size of the minimal term in the
asymptotic expansion. For shape variables p = 1.

I The running of αs in QCD is not only due to fermionic bubble
insertion in the gluon propagator. However:
In the limit of large nf these are the dominant corrections.

I The resummation of the bubble graphs leads to some sort of
effective coupling, and from here the relation to the dispersive
approach.
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Non perturbative corrections are seen to arise from the emission of
a very soft gluon (gluer).

I The calculability of the non-perturbative correction in the
two-parton case is based upon the fact that all shape variables
have a well defined value for two-partons final states

I The calculability of the non-perturbative correction to the C
parameter in the three-jet symmetric limit (Luisoni et al.) is
based upon the fact that the C parameter acquires a
well-defined value near the 3-partons symmetric limit, up to
quadratic effects in the deviation from the 3-partons
symmetric configuration.

I The calculability of the non-perturbative correction in the
generic case is based upon the findings of Caola et al., that in
suitable recoil schemes recoil effects cannot generate linear
power corrections
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Non-perturbative corrections are usually parametrized as a shift in
the perturbative cumulant distribution:

δnp(s) = Σ(s + hζ(s))− Σ(s) ≈ dσ

ds
hζ(s), Σ(s) =

∫
dσ(Φ)θ(s − s(Φ))

and h ≈ Λ/Q is the shift in the two jet limit.
Notice the consistency with Luisoni et al.: for the C parameter at
the symmetric limit (i.e. c = 0.75) the non-perturbative shift is
about one half of the two-jet limit shift.
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Implications

I There is a clear indication that the non-perturbative
correction in the two jet limit cannot be safely extrapolated in
the region where αS is fitted.

I There is a hint that the small values of αS found in fits using
analytic models may be due to this assumption

I It is likely that this is not the whole story, and more needs to
be understood before these findings can be safely used.
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Mass corrections

I Shape variables are defined for massless partons, and the
analytic models refer to the “massless” definition.

I Final state hadrons are massive; so the definition of the shape
variables must be extended to massive objects, in such a way
that the factorization of non-perturbative corrections is not
spoiled.

I This problem has been extensively studied in JHEP 05 (2001)
061, (Salam, Wicke). One scheme that should satisfy this
requirement is the so called “Decay scheme”, where massive
hadrons are decayed isotropically into a pair of fictitious
massless particles before the shape variable is computed.
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In the following I will illustrate preliminary results (Zanderighi,P.N.,
in preparation) obtained by fitting ALEPH data.
The non-perturbative shift for C and t are available from
arXiv:2204.02247, Caola et al..
In Zanderighi,P.N. we also computed it for the y3 in the Durham
scheme, the Heavy jet mass M2

h and the heavy-light mass
difference M2

h −M2
l .

I Theoretical errors were estimated with a 3-point scale
variation µR/Q = 0.25, 0.5, 1, and added in quadrature to the
systematic experimental error.

I Diagonal terms of the covariant matrix was computed by
summing in quadrature the systematic and statistical error.
The off-diagonal terms were computed as
Eij = min(δσ2

syst,i , δσ
2
syst,j) (the so called minimal-overlap

model).
I We adopted the decay scheme to account for hadron masses,

and computed the associated bin migration matrix using
Pythia8. Using Herwig7 we obtain compatible results with a
slightly worse χ2.
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PRELIMINARY RESULTS

Simultaneous fit to C , t and y3:
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The minimum χ2 is 46, with χ2/ndeg = 0.84.
The central value is at αs(MZ ) = 0.1188, α0 = 0.935.
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We found it impossible to obtain a good fit of the heavy-jet mass,
and of the jet mass differences. The following figures display their
distributions compared to data, using the same optimal parameter
obtained from the fit to C , t and y3
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I We obtain a good simultaneous fit to C , t and y3, yielding
values of αS compatible with the world average.

I The heavy jet mass and jet mass difference cannot be fitted in
any reasonable way, even as individual distributions

I Notice that the non-perturbative correction for both the heavy
jet mass and the mass difference has the opposite sign than
for C and t. This is also the case for y3, that, however, has a
very small correction.
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Opportunity for future e+e− colliders

I estimate the following Z/γ∗ hadronic cross sections:

ECM σ (nb) Num. had. events

91.2 33.1 5.0× 1012

160 0.026 0.31× 109

240 0.009 0.45× 108

350 0.0039 0.58× 107

Even at the highest energy the number of events is not distant
from what was collected at LEP1 (16× 106 events).
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Opportunity for future e+e− colliders

I We can expect a (hard to quantify) reduction of the
systematic error with respect to the LEP1 case.

I We can expect a negligible statistical error at the higher
energies.

24 / 26



Opportunity for future e+e− colliders

I Would an N3LO calculation useful?
An N3LO calculation would be by itself of great value. For
example, to see if the factorial growth associated to
renormalons becomes visible.
From a practical viewpoint, by looking at the theoretical
uncertainty and at the present experimental uncertainty, I
would say yes, provided enough is understood on power
corrections.

I Power corrections are large on the Z peak (of order 0.1%).
Perturbative uncertainties are of order 0.02%. At the highest
energy of 350 GeV, NP corrections should be a factor of 4
smaller, becoming of the order of higher order uncertainties.
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Opportunity for future e+e− colliders

I Something new has being recently understood on power
corrections. The theoretical consequences of these findings
have yet to be fully explored. Hopefully these finding will
bring in better agreement between power correction estimates
obtained with shower Monte Carlo and those obtained from
analytic methods generators.

I The impact of N3LO calculations for shape variables will
strongly depend upon the development of our understanding
of NP effects.

I This understanding can also be tested now, by using preserved
LEP data.

I Depending upon these developments, the availability of high
statistics data at higher energies may allow for a high
precision determination of αS at high energy, to be contrasted
with the low energy determination of the Lattice approach.
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