PROSPECTS FOR PRECISION

Run:event 4093: 1000 Date 930527 Time 20716Ctrk(N= 39 Sump= 73.3) Ecal (N= 25 SumE= 32.6) Hcal (N=22 SurE
beam 45.658 Evis 99.9 Emiss -8.6 Vtx ( -0.07, 0.06, -0.80) Muon(N= 0) Sec Vix(N= 3) Fdet(N=
1A = = N2, h = nn7a

= 22.6)

Bz=4.35(

ANDREA Y{fx el
BANFI _—

University of Sussex

FCC-EE WORKSHOP — CERN — 9 JUNE 2022

1



» Global three-jet observables
» Pathways to reducing hadronization
« Multi-jet studies

» Lund-plane observables

Not included in this talk, but still worth thinking about
» Mean values of jet observables
» High jet multiplicities (five or more)

- Heavy-gquark mass effects



THREE-JET
OBSERVABLES



o Jet observables constitute an important
means of determination of the strong
coupling

Increase in precision of PT QCD calculations
resulted in massive decrease in theory
uncertainties

Two-jet rate (NNLL+NNLO)

ay(My) = 0.1188 + 0.0013\

Thrust and C-parameter ((N)NNLL+NNLO)

o5 (Mz) = 0113775057

as(Mz) = 0.1123 -

- (0.0015

- Can we push this accuracy even further?
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o For any final-state observable, a function of all final-state hadron momenta,
we study its rate X (v), the fraction of events where the observable’s value is

less than a threshold v

> Non-global observables are those whose rate does not restrict emissions in
a selected phase-space region

non-global

M} M;

ot B

> Non-global observables are most common in hadron collisions, where
particles are detected away from the beam region
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o Global three-jet observables vanish with two final-state particles, and they
are different from zero with an extra emission = directly sensitive to o

fixed order
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Three-jet production in ete™ annihilation has been known at NNLO for a long
time

. First-ever NNLO calculation of eTe~ — 3 jets with the method of antennae

[Gehrmann-De Ridder Gehrmann Glover Heinrich 0711.4711]
[Weinzierl 0807.3241]

> More recent calculations using a fully local subtraction scheme
(COLORFUINNLO) [Del Duca Duhr Kardos Somogyi Szor Trocsanyi Tulipant 1606.03453]

Fixed-order calculations are fully exclusive in all final-state particles, so they
can be applied equally to global and non-global observables



o Event-shape distributions and jet rates measure emissions directly, so all-

order resummations should track infinitely many gluon splittings. This leads
to the onset of non-linear dynamics

Qa(zg‘: ‘g == )Q@ﬁ*

o At NLL, there are observables for which one can integrate inclusively over

secondary splittings. Such observables are called rIRC safe
[Banfi Salam Zanderighi hep-ph/0407286]

o For rIRC safe observables, the difference from the inclusive approximation
IS at most NNLL [AB EI-Menoufi Monni 1807.11487]
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Most three-jet global event shapes and jet resolution parameters are rIRC
safe. Their distributions can be resummed at very high logarithmic accuracy

o Some observables (e.g. thrust, broadening) enjoy factorisation theorems in

SCET — NNNLL resummation [Becher Schwartz 0803.0342]
[Becher Bell 1210.0580]
[Hoang Kolodubrez Mateu Stewart 1501.04111]

o General semi-numerical NNLL resummation of event shapes and jet rates

in ete” annihilation with the ARES method [AB Monni McAslan Zanderighi 1412.2126]
[AB Monni McAslan Zanderighi 1607.03111]
[AB EI-Menoufi Monni 1807.11487]

[Arpino AB EI-Menoufi 1912.09341]

o General NNLL resummation of factorisable observables in SCET with the
semi-numerical program SoftServe [Bell Rahn Talbert 2004.08396]

How does such an amazing precision reflect in the determination of the strong
coupling?
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HADRONIZATION EFFECTS

o At the energies probed so far, perturbative prediction do not agree
straightaway with data

I I
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o At the energies probed so far, perturbative prediction for event-shape
distributions do not agree straightaway with data
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. Central hadrons with momenta ~1GeV give rise to a 1/Q suppressed shift of
perturbative distributions of jet observables (~10% at LEP energies)

[Dokshitzer Webber hep-ph/9704298]
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o At the energies probed so far, perturbative prediction do not agree
straightaway with data
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. Central hadrons with momenta ~1GeV give rise to a 1/Q suppressed shift of
perturbative distributions of jet observables (~10% at LEP energies)
[Dokshitzer Webber hep-ph/9704298]
. How can we generally estimate the size of the shift and even more
suppressed hadronization corrections?
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o Most analyses determine hadronization corrections using Monte Carlo
event generators, as the ratio between hadron- and parton-level results

[Dissertori et al 0906.3436]
as(Mz) = 0.1224 £ 0.0009(stat) + 0.0009(exp) £ 0.0012(had) £ 0.0035(theo)

7
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o Most analyses determine hadronization corrections using Monte Carlo

event generators, as the ratio between hadron- and parton-level results
[Dissertori et al 0906.3436]

as(Mz) = 0.1224 £ 0.0009(stat) £ 0.0009(exp) + 0.0012(had) + 0.0035(theo)
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o Most analyses determine hadronization corrections using Monte Carlo

event generators, as the ratio between hadron- and parton-level results
[Dissertori et al 0906.3436]

as(Mz) = 0.1224 £ 0.0009(stat) £ 0.0009(exp) + 0.0012(had) + 0.0035(theo)
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« Monte-Carlo determinations of hadronization corrections have been
combined with a NNLL resummation only for the two-jet rate

[Verbytskyi et al 1902.08158]

as(Mz) = 0.1188 4+ 0.0009(stat) £ 0.0009(exp) =+ 0.0010(had) 4= 0.0006(theo)
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Perturbative QCD uncertainty
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Discarded hadronization model, not an issue in
previous determinations due to larger PT uncertainty
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o With NNLL resummations available, hadronization is the main source of
uncertainty = try to gain analytical understanding of hadronization corrections
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Leading 1/Q hadronization corrections can be theoretically modelled in terms
of the emission of a single extra-soft gluon = simultaneous fit of as and NP
parameter for different event shapes

Universal (?) NP Observable dependent but

parameter calculable hadrons
: <kt>NP N .
hift = extra-soft \c
S Q e gluon \o
d ‘\
(cy)pT = /dn2—¢ (hy (0, @)) 7>/

Average over PT configurations
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- Leading 1/Q hadronization corrections can be theoretically modelled in terms
of the emission of a single extra-soft gluon = simultaneous fit of as and NP
parameter for different event shapes

Universal (?) NP Observable dependent but

parameter calculable S L S e S B
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o Most accurate determinations of «s with event shapes arise from
simultaneous fits of 1/Q hadronization corrections

Thrust (NNLL+NNLO) C-parameter (NNNLL+NNLO)
[Gehrmann Luisoni Monni 1210.6945] [Hoang Kolodubrez Mateu Stewart 1501.04111]
G V= QI3 T as(Mz) = 0.1123 + 0.0015
= o hif 0, =0.421 £ GeV
ap(2GeV) = 0.5247 5 gis ~ shift ~ Q) =0.421 £ 0.063 Ge
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Both fits assume that the shift in the fit range is the same as in the two-jet
region, where 1-T an C are very small =is this justified?
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o The 1/Q shift depends on the observable’s value in the fit range = extra 3-
4% uncertainty in the determination of o [Luisoni Monni Salam 2012.00622]

o Itis possible to calculate analytically the deviation ((v)of the shift from the

two-jet limit {(0) = 1 (see talk by P. Nason)
[Caola Ferrario-Ravasio Limatola Melnikov Nason Ozcelik 2204.02247]
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o New frontier for precision: calculation of the 1/Q shift in the three-jet region

for all event shapes
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o The calculation of the shift in the three-jet region can be applied equally to
the wide-jet broadening

extra-soft

= = JJ/ gluon

extra-soft
gluon

o For the total jet broadening, one needs to account for the displacement of
one of the hard partons from the thrust axis due to multiple soft-collinear

emissions [Dokshitzer Marchesini Salam hep-ph/9812487]

o For a generic event shape, even in the two-jet region, one needs to
compute the shift in the presence of multiple soft-collinear emissions
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o In the two-jet region, the shift can be computed by considering a single
extra-soft gluon accompanied by an arbitrary number of soft and collinear
gluons: these can be simulated with a Monte-Carlo procedure

[AB EI-Menoufi Wood 22xx.yyyyy]
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o Beyond NLL accuracy, new perturbative configurations have to be
considered =-not clear whether 1/Q corrections correspond to a global shift

o Open question: If NNLL+1/Q programme is successful, what is the

theoretical uncertainty associated to higher power corrections?
24



PATHWAYS TO
SQUEEZING
HADRONIZATION




HADRONIZATION AT FUTURE COLLIDERS

» At future lepton colliders, hadronization corrections to two-jet observables
will be way smaller than at LEP1 =1 jet ~ 1 parton

[

|
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NLO+NLL+(1GeV)/Q
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| | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3
1T
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» At future lepton colliders, hadronization corrections to two-jet observables
will be way smaller than at LEP1 =1 jet ~ 1 parton

f

T T T T T T
NLO+NLL —— _ 1T+
NLO+NLL+(1GeV)/Q

Q) = 350 GeV

o 'do/dT
had. uncerts. [%]

\

| [Dissertori et al 0906.3436]
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| l ! | l | 1 | 1 ]
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1T Q [GeV]

Two-fold advantage for fits of the strong coupling

o Monte-Carlo hadronization corrections would have a reduced impact in the
error on as = perturbative uncertainties (less than %) dominant

> Negligible impact of subleading hadronization corrections = more reliable

determination of NP parameter(s) of leading 1/Q corrections
27



> The two-jet rate shows smaller hadronization corrections than event-shape
distributions = can we understand why?
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- Without any perturbative emissions, hadronization corrections are 1/Q?

o In Durham algorithm, in the two-jet region, the presence of extra PT

radiation might cause an extra-soft gluon to be clustered with PT soft-
collinear gluons

had n computable with MC procedure
adrons min

,, shift = (ko) (cy{)pT

Q
extra-soft ° Y« e e
gluon . <Cy3>PT el tiQJet 0 dn
r 1. & 7 .
.“ » tJJet \/7
0 & A RIALY3 Tlmin 7~ In ( )
0 A . Q \ \/73

suppressed in the two-jet limit

. In the Cambridge algorithm, no clusterings between widely separated
objects are allowed = implication for 1/Q hadronization corrections?

29



SOFT DROP

o Groomers (MMDT, soft drop) are designed to clean jets from softer
constituents [Larkoski Marzani Soyez Thaler 1402.0007]

grooming

pass
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SOFT-DROP THRUST

o Grooming procedures can be applied to jet observables in order to eliminate

soft large-angle hadrons

o Example: soft-drop thrust, computed on hadrons that survive a soft-drop

2.0

procedure

(%)Hadron/(%)Parton’ (€+€_ _>qq_|_X)

1.5¢
1.0

0.5+

5=
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[Baron Marzani Theeuwes 1803.04719]
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SOFT-DROP THRUST

o Determination of a;using soft-drop thrust distribution at NLL+NLO and

pseudo-data generated by SHERPA
[Marzani Reichelt Schumann Soyez Theeuwes 1906.1504]
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o At this accuracy, PT uncertainties still dominate = NNLL resummation?




SOFT-DROP THRUST. ACCURACY

o The soft-drop distribution shows more features with respect to plain thrust
[Marzani Reichelt Schumann Soyez Theeuwes 1906.1504]
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| s NLO+NLL
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_ L1E f
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s m - Tl N e L
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&%) 7 0.8 E‘;i [ | | [ ‘ [ 1] 1 ‘ |I| [ ‘ 11 ‘ 111 ‘ [ 1 l | | I I ‘E NNLO
cut
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| I 7sD |
NNNLL resummation Non-global resummation
[Kardos Larkoski Trocsanyi 2002.00942, 2002.05730] [Benkendorfer Larkoski 2108.02779]

o Non-global resummations have been recently pushed to NNLL
[AB Dreyer Monni 2104.06416, 2111.02413]
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MULTI-JET STUDIES



FOURJET EVENT SHAPES

> Near-to-planar four-jet event shapes (e.g. D-parameter) could be used to

probe hadronization effects in gluon jets
[AB Dokshitzer Marchesini Zanderighi hep/ph 0104162]

event plane
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> Near-to-planar four-jet event shapes (e.g. D-parameter) could be used to

probe hadronization effects in gluon jets
[AB Dokshitzer Marchesini Zanderighi hep/ph 0104162]

[Chen Mout Zhu 2104.00009]

o Starting at NNLL accuracy, we can probe spin-correlation effects in collinear
gluon splitting [Arpino AB El-Menoufi 1912.09341]
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Hadronization corrections in three-jet events are very large at LEP (twice as

arge as in two-jet events due to radiating gluon) = fits of leading
nadronisation corrections problematic [AB 0706.2722]

Q=91.2GeV g (My)=0.12  0y(2GeV) = 0.514 Q=500GeV 0g(My) =0.12
10

oo(2GeV) = 0.514
10 |

Resummed

Resummed
Resummed + 1/Q ——

Resummed + 1/Q —— |
ALEPH —— |

1/o do/dD
1/6 do/dD

0.1

D D

Hadronization effects in three-jet observables at future e™e~ colliders are as

arge as those for two-jet event shapes at LEP = new tests of leading
nadronization corrections?

Reaching the same accuracy as three-jet observables require a 1— 4
NNLO calculation (within reach given recent progress in 2— 3 calculations)

[Czakon Mitov Poncelet 2106.05331]
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> No significant reduction of theory uncertainties moving from NLL to NNLL
due to third jet being mostly soft = increase Ycut? [Arpino AB El-Menoufi 1912.09341]
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. Sending y.ut — 0 corresponds to studying four-jet event shapes in the two-
jet limit. D-parameter known at (almost) NLL=NNLL? [Larkoski Procita 1810.06563]
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o Competitive determination of as using ALEPH LEP1 data for the three-jet rate
compared to NNLO [Dissertori Gehrmann Gehrmann Glover Heinrich Stenzel ‘09]
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o EXxperimental uncertainties
dominated by systematics

statistical

In(y,,)

o Resummation needed for Iny..; < —4.5: same problem as resumming four-jet
event shapes in the two-jet limit

Y
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L UND-PLANE
OBSERVABLES




THE LUND PLANE

o The Lund plane is a very useful way to represent emissions in QCD
[Andersson Gustafson Lonnblad Pettersson Z. Phys. C43 (1989) 625]

primary emissions A 1, o

hard scattering

= 1
n~ln-

hard collinear

¢ soft collinear >

soft large angle
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THE LUND-PLANE DENSITY

o Primary emissions in the Lund plane can be defined in an IRC safe way by
reclustering a jet with the C/A algorithm and following the harder branch

1 dnemsn S 2053 C’F

primary Lund-plane density p(n, k) = TR T
jets t ; s
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o Itis possible also to compute the Lund-plane subjet multiplicity in terms of
successive refinements of double-logarithmic accuracy

[Medves Soto-Ontoso Soyez 2205.02861]
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[Dasgupta Dreyer Salam Soyez 1411.5182]
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Pushing the uncertainty in the detemination of the strong coupling below
percent level involves challenges of various kind

o Computational: matching of hadronization corrections in two- and three-jet
regions

o Conceptual: resummation of four-jet observables in the two-jet limit

o Technical: precision calculations for Lund-plane and jet-substructure
observable

Programme of physics that could be performed in the next few years
o Global fit of three-jet event shapes at NNLL+NNLO+1/Q
o NNLL+NNLO calculation of three-jet rate and soft-drop thrust

o« NNLL+NNLO calculations for Lund-plane observables (and what about
hadronization?)
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Thank you for your attention!
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> In the three-jet region, the shift for By, and T, becomes negative for values
of a, in line with the world average
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- Matching the shift to the three-jet region will most likely have a huge impact
on simultaneous fits of as; and NP parameter oy
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> Non-global logarithms (NGLs) arise whenever measurements are restricted
to limited regions of phase space, e.g. single-jet mass distribution

o They originate when softest emission in a correlated cascade of soft gluons
enters the measurement region [Dasgupta Salam hep-ph/0104277]

o Non-global logarithms are due to soft emissions at large angles, hence
leading logarithms are single logarithms o L"

o Non-global observables are not rIRC safe: at LL accuracy, and in the large-

N. limit, their NGLs are resummed via the non-linear BMS equation
[AB Marchesini Smye hep-ph/0206076]

48



o Itis possible to write a NL evolution equation for non-global logarithms and

solved it numerically via a MC procedure  [AB Dreyer Monni 2104.06416 , 2111.02413]
[see also Becher Rau Xu 2112.02108]
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