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European Strategy for Particle Physics
2020 Update - Future Colliders

“An electron-positron Higgs factory  
is the highest-priority next collider.”
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There are several proposed Higgs factories 
Each have their advantages

Circular e+e- Colliders 
• FCCee, CEPC 
• length 250 GeV: ~100km 
• high luminosity & power efficiency at low 

energies 
• multiple interaction regions 
• very clean: little beamstrahlung etc

Linear Colliders 
• ILC, CLIC 
• length 250 GeV: ~10…20 km 
• high luminosity & power efficiency at high 

energies 
• spin-polarised beam(s)
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• very clean: little beamstrahlung etc

Linear Colliders 
• ILC, CLIC 
• length 250 GeV: ~10…20 km 
• high luminosity & power efficiency at high 

energies 
• spin-polarised beam(s)

Long-term vision: re-use of tunnel for pp 
collider 
• to measure eg Higgs self-coupling, top Yukawa 

incl CP properties, search for new particles 
• to explore uncharted territory at highest 

energies  
• driving HTSC magnet R&D

Long-term vision: energy extendability 
• to measure eg top axial-vector couplings,  

Higgs self-coupling, top Yukawa incl CP 
properties, search for new particles  

• by increasing length  
• or by replacing accelerating structures with 

advanced technologies
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Higgs production in e+e-
Focus on single Higgs production

• ~250 GeV:  
 e+e- → ZH  
=> total cross section, coupling to Z 

• ~350 GeV  and above: 
e+e- → vvH  
=> total width, coupling to W 

• decay modes: total number of Higgses 
produced, regardless of production 
mode / ECM 

• >= 500 GeV : 
e+e- → ttH, ZHH, vvHH 
=> not covered today…
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Experimental Simulation Studies

• will not comment on differences between various detector 
concepts today 

• however: will show results corresponding to current 
“experimental gold standard” for e+e- projections: 

• Whizard (LO ME) + Pythia 6 (PS & LEP-tuned hadronisation) MC 
• including beam energy spectrum & ISR 
• full, Geant4-based simulation of the detectors 
• gauged against test beam performance of prototypes 
• inclusion of machine and full SM background 
• in some cases full sim analyses are extrapolated to other center-

of-mass energies 
• sophistication of reconstruction and analyses, coverage of 

channels etc: limited by person power, not (yet) by ideas!

4 m

2 m

1 m

Precision requires realistic level of detail
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Overview of Experimental Projections

• σxBR projections from full simulation are usually given for a reference value of 
integrated luminosity which corresponds to the actually used MC statistics 

• e+e- colliders measure σxBR at various energy stages - and some for different 
settings of the beam polarisation 

• all these are then directly thrown into global (SMEFT) fits 
=> the pure experimental precision is often not seen directly from the σxBR  inputs 
=> take coupling precision from SMEFT fit as reference here 
• Sneakpreview into the still preliminary Snowmass SMEFT fit: 

• a lot of effort went into making inputs as comparable as possible 
• extrapolating missing channels from other colliders 
• common set of (experimental) systematics  
• common HL-LHC and low-E experiment input  

• particularly suitable for our purpose today: currently, neither intrinsic theory nor 
parametric uncertainties are included => “pure experimental target”

and how they are presented

HL-LHC 3 ab�1 ATLAS + CMS
Prod. ggH VBF WH ZH ttH
� - - - - -

� ⇥BRbb 19.1 - 8.3 4.6 10.2
� ⇥BRcc - - - - -
� ⇥BRgg - - - - -
� ⇥BRZZ 2.5 9.5 32.1 58.3 15.2
� ⇥BRWW 2.5 5.5 9.9 12.8 6.6
� ⇥BR⌧⌧ 4.5 3.9 - - 10.2
� ⇥BR�� 2.5 7.9 9.9 13.2 5.9
� ⇥BR�Z 24.4 51.2 - - -
� ⇥BRµµ 11.1 30.7 - - -
� ⇥BRinv. - 2.5 - - -

�mH 30 MeV - - - -

Table 5: Projected uncertainties of Higgs observables at HL-LHC for the leading five pro-
duction channels and various decay modes: numbers by default in %.

FCCee240 5ab�1 CEPC240 20ab�1

Prod. ZH ⌫⌫H ZH ⌫⌫H
� 0.5(0.537) - 0.26 -

� ⇥BRbb 0.3(0.380) 3.1(2.78) 0.14 1.59
� ⇥BRcc 2.2(2.08) - 2.02 -
� ⇥BRgg 1.9(1.75) - 0.81 -
� ⇥BRZZ 4.4(4.49) - 4.17 -
� ⇥BRWW 1.2(1.16) - 0.53 -
� ⇥BR⌧⌧ 0.9(0.822) - 0.42 -
� ⇥BR�� 9(8.47) - 3.02 -
� ⇥BR�Z (17⇤) - 8.5 -
� ⇥BRµµ 19(17.9) - 6.36 -
� ⇥BRinv. 0.3(0.226) - 0.07 -

Table 6: Projected uncertainties of Higgs observables at FCCee240 and CEPC240 in the
two leading production channels and various decay modes: numbers by default in %. The
numbers in brackets are extrapolated from the projections at ILC250.

• Discussion of key findings (e.g. advantage of energy reach vs. precision, impact of733

missing observables, impact of theory assumptions, ...)734

The preliminary results of each global fit are shown in Fig. 7 for electroweak and Higgs735

e↵ective couplings in Fit-1, Fig. 11-13 for 4-fermion operators in Fit-2, and Fig. 8-10 for top-736

quark operators in Fit-3. [the global fit whitepaper is not yet completed.] Exact definition737

of each parameter or Wilson coe�cient shown in the plots can be found in [101]. Following738

are a few brief observations from the preliminary results. [to be continued]739

25

Example of  inputs to Snowmass fit  
(in brackets extrapolation to FCC lumi  

from ILC full sim)

in %



THE key: the total ZH cross-section 
measurement via the recoil technique
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THE speciality of e+e- Collider
Absolute normalisation of Higgs couplings & total decay width

• knowledge of initial-state 4-momentum enables 
reconstruction of Higgs 4-momentum without 
measuring its decay products 

• need:  
• precise prediction of exact initial state from 

accelerator conditions, incl. beam energy 
spectrum, ISR 

• precise measurement of Z momenta, plus 
modeling of FSR, bremsstrahlung / hadronisation 
etc 

• a truely Higgs-decay-mode independent event 
selection 

• easiest case: Z-> µ+µ- 

250 fb-1
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From plot to cross section…
…potential systematics

• extract number of signal events:  
• best possible prediction of shape of recoil peak  
• modelling of ISR, beamstrahlung etc crucial 
• recognized as major theory work-item, c.f. ECFA 

1st Topical Meeting on Event Generators and talk 
by Stefano yesterday 

• from Nevt to σtot:  
• knowledge of efficiency, backgrounds, luminosity  

=> mostly “experimental problems”? 
• lumi measurement: low-angle Bhabha 

scattering predictions 
• efficiency, backgrounds: MC generators incl. 

hadronisation etc… 

250 fb-1

https://indico.cern.ch/event/1078675/
https://indico.cern.ch/event/1078675/
https://indico.cern.ch/event/1078675/
https://indico.cern.ch/event/1078675/
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Current projections
relative precisions on σtot

• ILC:  
• full detector simulation, full backgrounds [Phys.Rev.D 94 (2016) 11, 113002]  
• 250fb-1 (= statistics of full sim MC) : 2%, for P(e-,e+) = (-80%,+30%) and (+80%,-30%) 
• full luminosity: 1% for P(e-,e+) = (-80%,+30%) and (+80%,-30%), each  

(2 independent measurements!) 
• FCCee:  

• Delphes + extrapolations, limited backgrounds [Eur. Phys. J. Special Topics 228 (2019) 261] 
•  5 ab-1, P(e-,e+) = (0%,0%):  0.5% 

• interesting study of Snowmass EF04, as mentioned previously:  
• scale ILC to FCCee conditions => 0.54% [EF04 report in prep.] 
• effect of realistic detector / backgrounds etc on “easy & clean” final states ~ 10% 

(note: for mutli-jet final-states, differences of 100% and larger have been observed in the past)

https://inspirehep.net/literature/1452553
https://doi.org/10.1140/epjst/e2019-900045-4
https://inspirehep.net/literature/1452553
https://doi.org/10.1140/epjst/e2019-900045-4
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From cross section to coupling
…current state-of-the-art

• tree-level (SM)EFT fits 
• g(HZZ) coupling depends on > 1 operators (eg cWW and cH): 

• cH is determined by 𝜎(ZH) 
•  cWW can be determined either by 

• the polarisation asymmetry of 𝜎(ZH)   i.e. ALR(ZH) 
• or by angular distributions 

• naive extraction from single measurement of σtot (ZH) not sufficient
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=> 2 polarised measurements with 1%  
and 1 unpolarised measurement with 0.5%  

give same coupling precision 
— any difference in theory needs???
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What about intrinsic theory uncertainties?
…not yet the end of the story
• ILC (LCC) SMEFT fit included 0.1% theory uncertainty [arXiv:

1903.01629]: 
• assumes full 2-loop ew for all relevant processes 
• considered achievable with today’s technology 
• and a lot of work! 

• similar conclusion has been drawn for FCCee [arXiv:1906.05379]

https://inspirehep.net/literature/1723778
https://inspirehep.net/literature/1723778
https://arxiv.org/abs/1906.05379
https://inspirehep.net/literature/1723778
https://inspirehep.net/literature/1723778
https://arxiv.org/abs/1906.05379
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Finally: note that all this is within SM only 
— but we aim to find deviation from SM 

=> same level of precision needed in 
(then favoured) BSM models!

https://inspirehep.net/literature/1723778
https://inspirehep.net/literature/1723778
https://arxiv.org/abs/1906.05379
https://inspirehep.net/literature/1723778
https://inspirehep.net/literature/1723778
https://arxiv.org/abs/1906.05379
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Higgs decay to jets 
…the experimental situation
• use all visible decay modes of Z and vvH 
• H->jets and Z->jets play important role 
=> QCD, non-perturbative effects, 
hadronisation, b-/c-fragmentation, … 
• Example from ILD IDR: 

• σxBR(bb) to ~0.4%  
from one channel & data set alone  

• σxBR(cc) shows lot of room for improvement 
by smarter flavour tag algorithm 

• experimental systematics: 
• b-tagging etc: assume 0.1% 
• comprising (b-/c-) jet modeling  

uncertainy

bb→H cc→H gg→H

decay mode

0

1

2

3

4

BR
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)
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preliminary Snowmass fit result: 
• recall: neither intrindic theory nor  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Figure 7: Precision reach on e↵ective couplings from a SMEFT global analysis of the Higgs
and EW measurements at various future colliders. The wide (narrow) bars correspond to
the results without (with) Higgs exotic decays. For the ILC scenarios, the (upper edge
of the) triangle mark shows the results that include a Giga-Z run. The subscripts in the
collider scenarios denote the corresponding integrated luminosity of the run. For the muon
collider, 3 separate scenarios are considered.
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Higgs decay to jets future estimates (on 𝜞 partial) from arXiv:1906.05379:
…in SMEFT fit decay intrinsic para. mq para. αs para. MH FCC-ee prec. on g2HXX

H → bb̄ ∼ 0.2% 0.6% < 0.1% – ∼ 0.8%
H → cc̄ ∼ 0.2% ∼ 1% < 0.1% – ∼ 1.4%

H → τ+τ− < 0.1% – – – ∼ 1.1%
H → µ+µ− < 0.1% – – – ∼ 12%
H → gg ∼ 1% 0.5% (0.3%) – ∼ 1.6%

H → γγ < 1% – – – ∼ 3.0%
H → Zγ ∼ 1% – – ∼ 0.1%

H → WW ! 0.3% – – ∼ 0.1% ∼ 0.4%
H → ZZ ! 0.3%† – – ∼ 0.1% ∼ 0.3%

Γtot ∼ 0.3% ∼ 0.4% < 0.1% < 0.1% ∼ 1%
† From e+e− → HZ production

Table 5: Projected intrinsic and parametric uncertainties for the partial and total Higgs-
boson decay width predictions (see text). The last column shows the target of FCC-ee
precisions on the respective coupling squared.

less than 0.1%. Similarly, the complete NLO corrections to H → Zγ can be carried out
with existing methods, resulting in an estimated precision of about 1% (see above for our
estimate on the Dalitz decays).

More theoretical work is needed for H → WW,ZZ, gg, which are currently limited
by QCD uncertainties. For H → WW,ZZ, the required QCD corrections are essentially
identical to those for e+e− → WW , and as explained on page 10 it is straightforward to
improve them to a practically negligible level. Further significant progress would require the
calculation of two-loop electroweak corrections, which for a 1 → 4 process is beyond reach
for the forseeable future.

Note, however, that the HZZ coupling will be mostly constrained by the measurement of
the e+e− → HZ production process at FCC-ee with

√
s = 240 GeV, rather than the decay

H → ZZ∗. As discussed in section 4.3.1, it may be assumed that full two-loop corrections
(for on-shell Z and H bosons) will eventually be carried out for this process, leading to a
remaining intrinsic uncertainty of less than 0.3%.

For H → gg, the NNLO QCD corrections [65] and N3LO QCD corrections in the large-
mt limit [58] are currently available. The leading uncertainty stems from the missing N4LO
corrections in the large-mt limit. These require the calculation of massless four-loop QCD
diagrams, which may be within reach [54, 66]. If these contributions become available,
together with three-loop corrections involving bottom loops, the intrinsic uncertainty for
H → gg is expected to be reduced to the level of about 1%.

Also shown in Tab. 5 are the projected parametric uncertainties, assuming FCC-ee pre-
cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
δMH ∼ 10 MeV [67], and δmb ∼ 13 MeV and δmc ∼ 7 MeV [19].

The corresponding uncertainties (intrinsic, parametric from quark masses, αs and MH)
for the total width are shown in the last line of Tab. 5. They are obtained by adding the
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cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
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Figure 7: Precision reach on e↵ective couplings from a SMEFT global analysis of the Higgs
and EW measurements at various future colliders. The wide (narrow) bars correspond to
the results without (with) Higgs exotic decays. For the ILC scenarios, the (upper edge
of the) triangle mark shows the results that include a Giga-Z run. The subscripts in the
collider scenarios denote the corresponding integrated luminosity of the run. For the muon
collider, 3 separate scenarios are considered.
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Figure 7: Precision reach on e↵ective couplings from a SMEFT global analysis of the Higgs
and EW measurements at various future colliders. The wide (narrow) bars correspond to
the results without (with) Higgs exotic decays. For the ILC scenarios, the (upper edge
of the) triangle mark shows the results that include a Giga-Z run. The subscripts in the
collider scenarios denote the corresponding integrated luminosity of the run. For the muon
collider, 3 separate scenarios are considered.
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Higgs decay to jets future estimates (on 𝜞 partial) from arXiv:1906.05379:
…in SMEFT fit decay intrinsic para. mq para. αs para. MH FCC-ee prec. on g2HXX

H → bb̄ ∼ 0.2% 0.6% < 0.1% – ∼ 0.8%
H → cc̄ ∼ 0.2% ∼ 1% < 0.1% – ∼ 1.4%

H → τ+τ− < 0.1% – – – ∼ 1.1%
H → µ+µ− < 0.1% – – – ∼ 12%
H → gg ∼ 1% 0.5% (0.3%) – ∼ 1.6%

H → γγ < 1% – – – ∼ 3.0%
H → Zγ ∼ 1% – – ∼ 0.1%

H → WW ! 0.3% – – ∼ 0.1% ∼ 0.4%
H → ZZ ! 0.3%† – – ∼ 0.1% ∼ 0.3%

Γtot ∼ 0.3% ∼ 0.4% < 0.1% < 0.1% ∼ 1%
† From e+e− → HZ production

Table 5: Projected intrinsic and parametric uncertainties for the partial and total Higgs-
boson decay width predictions (see text). The last column shows the target of FCC-ee
precisions on the respective coupling squared.

less than 0.1%. Similarly, the complete NLO corrections to H → Zγ can be carried out
with existing methods, resulting in an estimated precision of about 1% (see above for our
estimate on the Dalitz decays).

More theoretical work is needed for H → WW,ZZ, gg, which are currently limited
by QCD uncertainties. For H → WW,ZZ, the required QCD corrections are essentially
identical to those for e+e− → WW , and as explained on page 10 it is straightforward to
improve them to a practically negligible level. Further significant progress would require the
calculation of two-loop electroweak corrections, which for a 1 → 4 process is beyond reach
for the forseeable future.

Note, however, that the HZZ coupling will be mostly constrained by the measurement of
the e+e− → HZ production process at FCC-ee with

√
s = 240 GeV, rather than the decay

H → ZZ∗. As discussed in section 4.3.1, it may be assumed that full two-loop corrections
(for on-shell Z and H bosons) will eventually be carried out for this process, leading to a
remaining intrinsic uncertainty of less than 0.3%.

For H → gg, the NNLO QCD corrections [65] and N3LO QCD corrections in the large-
mt limit [58] are currently available. The leading uncertainty stems from the missing N4LO
corrections in the large-mt limit. These require the calculation of massless four-loop QCD
diagrams, which may be within reach [54, 66]. If these contributions become available,
together with three-loop corrections involving bottom loops, the intrinsic uncertainty for
H → gg is expected to be reduced to the level of about 1%.

Also shown in Tab. 5 are the projected parametric uncertainties, assuming FCC-ee pre-
cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
δMH ∼ 10 MeV [67], and δmb ∼ 13 MeV and δmc ∼ 7 MeV [19].

The corresponding uncertainties (intrinsic, parametric from quark masses, αs and MH)
for the total width are shown in the last line of Tab. 5. They are obtained by adding the
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the e+e− → HZ production process at FCC-ee with
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H → ZZ∗. As discussed in section 4.3.1, it may be assumed that full two-loop corrections
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mt limit [58] are currently available. The leading uncertainty stems from the missing N4LO
corrections in the large-mt limit. These require the calculation of massless four-loop QCD
diagrams, which may be within reach [54, 66]. If these contributions become available,
together with three-loop corrections involving bottom loops, the intrinsic uncertainty for
H → gg is expected to be reduced to the level of about 1%.

Also shown in Tab. 5 are the projected parametric uncertainties, assuming FCC-ee pre-
cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
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Figure 7: Precision reach on e↵ective couplings from a SMEFT global analysis of the Higgs
and EW measurements at various future colliders. The wide (narrow) bars correspond to
the results without (with) Higgs exotic decays. For the ILC scenarios, the (upper edge
of the) triangle mark shows the results that include a Giga-Z run. The subscripts in the
collider scenarios denote the corresponding integrated luminosity of the run. For the muon
collider, 3 separate scenarios are considered.
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Figure 7: Precision reach on e↵ective couplings from a SMEFT global analysis of the Higgs
and EW measurements at various future colliders. The wide (narrow) bars correspond to
the results without (with) Higgs exotic decays. For the ILC scenarios, the (upper edge
of the) triangle mark shows the results that include a Giga-Z run. The subscripts in the
collider scenarios denote the corresponding integrated luminosity of the run. For the muon
collider, 3 separate scenarios are considered.

26

Higgs decay to jets future estimates (on 𝜞 partial) from arXiv:1906.05379:
…in SMEFT fit decay intrinsic para. mq para. αs para. MH FCC-ee prec. on g2HXX

H → bb̄ ∼ 0.2% 0.6% < 0.1% – ∼ 0.8%
H → cc̄ ∼ 0.2% ∼ 1% < 0.1% – ∼ 1.4%

H → τ+τ− < 0.1% – – – ∼ 1.1%
H → µ+µ− < 0.1% – – – ∼ 12%
H → gg ∼ 1% 0.5% (0.3%) – ∼ 1.6%

H → γγ < 1% – – – ∼ 3.0%
H → Zγ ∼ 1% – – ∼ 0.1%

H → WW ! 0.3% – – ∼ 0.1% ∼ 0.4%
H → ZZ ! 0.3%† – – ∼ 0.1% ∼ 0.3%

Γtot ∼ 0.3% ∼ 0.4% < 0.1% < 0.1% ∼ 1%
† From e+e− → HZ production

Table 5: Projected intrinsic and parametric uncertainties for the partial and total Higgs-
boson decay width predictions (see text). The last column shows the target of FCC-ee
precisions on the respective coupling squared.

less than 0.1%. Similarly, the complete NLO corrections to H → Zγ can be carried out
with existing methods, resulting in an estimated precision of about 1% (see above for our
estimate on the Dalitz decays).

More theoretical work is needed for H → WW,ZZ, gg, which are currently limited
by QCD uncertainties. For H → WW,ZZ, the required QCD corrections are essentially
identical to those for e+e− → WW , and as explained on page 10 it is straightforward to
improve them to a practically negligible level. Further significant progress would require the
calculation of two-loop electroweak corrections, which for a 1 → 4 process is beyond reach
for the forseeable future.

Note, however, that the HZZ coupling will be mostly constrained by the measurement of
the e+e− → HZ production process at FCC-ee with

√
s = 240 GeV, rather than the decay

H → ZZ∗. As discussed in section 4.3.1, it may be assumed that full two-loop corrections
(for on-shell Z and H bosons) will eventually be carried out for this process, leading to a
remaining intrinsic uncertainty of less than 0.3%.

For H → gg, the NNLO QCD corrections [65] and N3LO QCD corrections in the large-
mt limit [58] are currently available. The leading uncertainty stems from the missing N4LO
corrections in the large-mt limit. These require the calculation of massless four-loop QCD
diagrams, which may be within reach [54, 66]. If these contributions become available,
together with three-loop corrections involving bottom loops, the intrinsic uncertainty for
H → gg is expected to be reduced to the level of about 1%.

Also shown in Tab. 5 are the projected parametric uncertainties, assuming FCC-ee pre-
cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
δMH ∼ 10 MeV [67], and δmb ∼ 13 MeV and δmc ∼ 7 MeV [19].

The corresponding uncertainties (intrinsic, parametric from quark masses, αs and MH)
for the total width are shown in the last line of Tab. 5. They are obtained by adding the

14

decay intrinsic para. mq para. αs para. MH FCC-ee prec. on g2HXX

H → bb̄ ∼ 0.2% 0.6% < 0.1% – ∼ 0.8%
H → cc̄ ∼ 0.2% ∼ 1% < 0.1% – ∼ 1.4%

H → τ+τ− < 0.1% – – – ∼ 1.1%
H → µ+µ− < 0.1% – – – ∼ 12%
H → gg ∼ 1% 0.5% (0.3%) – ∼ 1.6%

H → γγ < 1% – – – ∼ 3.0%
H → Zγ ∼ 1% – – ∼ 0.1%

H → WW ! 0.3% – – ∼ 0.1% ∼ 0.4%
H → ZZ ! 0.3%† – – ∼ 0.1% ∼ 0.3%

Γtot ∼ 0.3% ∼ 0.4% < 0.1% < 0.1% ∼ 1%
† From e+e− → HZ production

Table 5: Projected intrinsic and parametric uncertainties for the partial and total Higgs-
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precisions on the respective coupling squared.
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with existing methods, resulting in an estimated precision of about 1% (see above for our
estimate on the Dalitz decays).
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by QCD uncertainties. For H → WW,ZZ, the required QCD corrections are essentially
identical to those for e+e− → WW , and as explained on page 10 it is straightforward to
improve them to a practically negligible level. Further significant progress would require the
calculation of two-loop electroweak corrections, which for a 1 → 4 process is beyond reach
for the forseeable future.

Note, however, that the HZZ coupling will be mostly constrained by the measurement of
the e+e− → HZ production process at FCC-ee with

√
s = 240 GeV, rather than the decay

H → ZZ∗. As discussed in section 4.3.1, it may be assumed that full two-loop corrections
(for on-shell Z and H bosons) will eventually be carried out for this process, leading to a
remaining intrinsic uncertainty of less than 0.3%.

For H → gg, the NNLO QCD corrections [65] and N3LO QCD corrections in the large-
mt limit [58] are currently available. The leading uncertainty stems from the missing N4LO
corrections in the large-mt limit. These require the calculation of massless four-loop QCD
diagrams, which may be within reach [54, 66]. If these contributions become available,
together with three-loop corrections involving bottom loops, the intrinsic uncertainty for
H → gg is expected to be reduced to the level of about 1%.

Also shown in Tab. 5 are the projected parametric uncertainties, assuming FCC-ee pre-
cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
δMH ∼ 10 MeV [67], and δmb ∼ 13 MeV and δmc ∼ 7 MeV [19].

The corresponding uncertainties (intrinsic, parametric from quark masses, αs and MH)
for the total width are shown in the last line of Tab. 5. They are obtained by adding the
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preliminary Snowmass fit result: 
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Figure 7: Precision reach on e↵ective couplings from a SMEFT global analysis of the Higgs
and EW measurements at various future colliders. The wide (narrow) bars correspond to
the results without (with) Higgs exotic decays. For the ILC scenarios, the (upper edge
of the) triangle mark shows the results that include a Giga-Z run. The subscripts in the
collider scenarios denote the corresponding integrated luminosity of the run. For the muon
collider, 3 separate scenarios are considered.
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Higgs decay to jets future estimates (on 𝜞 partial) from arXiv:1906.05379:
…in SMEFT fit decay intrinsic para. mq para. αs para. MH FCC-ee prec. on g2HXX

H → bb̄ ∼ 0.2% 0.6% < 0.1% – ∼ 0.8%
H → cc̄ ∼ 0.2% ∼ 1% < 0.1% – ∼ 1.4%

H → τ+τ− < 0.1% – – – ∼ 1.1%
H → µ+µ− < 0.1% – – – ∼ 12%
H → gg ∼ 1% 0.5% (0.3%) – ∼ 1.6%

H → γγ < 1% – – – ∼ 3.0%
H → Zγ ∼ 1% – – ∼ 0.1%

H → WW ! 0.3% – – ∼ 0.1% ∼ 0.4%
H → ZZ ! 0.3%† – – ∼ 0.1% ∼ 0.3%

Γtot ∼ 0.3% ∼ 0.4% < 0.1% < 0.1% ∼ 1%
† From e+e− → HZ production

Table 5: Projected intrinsic and parametric uncertainties for the partial and total Higgs-
boson decay width predictions (see text). The last column shows the target of FCC-ee
precisions on the respective coupling squared.

less than 0.1%. Similarly, the complete NLO corrections to H → Zγ can be carried out
with existing methods, resulting in an estimated precision of about 1% (see above for our
estimate on the Dalitz decays).

More theoretical work is needed for H → WW,ZZ, gg, which are currently limited
by QCD uncertainties. For H → WW,ZZ, the required QCD corrections are essentially
identical to those for e+e− → WW , and as explained on page 10 it is straightforward to
improve them to a practically negligible level. Further significant progress would require the
calculation of two-loop electroweak corrections, which for a 1 → 4 process is beyond reach
for the forseeable future.

Note, however, that the HZZ coupling will be mostly constrained by the measurement of
the e+e− → HZ production process at FCC-ee with

√
s = 240 GeV, rather than the decay

H → ZZ∗. As discussed in section 4.3.1, it may be assumed that full two-loop corrections
(for on-shell Z and H bosons) will eventually be carried out for this process, leading to a
remaining intrinsic uncertainty of less than 0.3%.

For H → gg, the NNLO QCD corrections [65] and N3LO QCD corrections in the large-
mt limit [58] are currently available. The leading uncertainty stems from the missing N4LO
corrections in the large-mt limit. These require the calculation of massless four-loop QCD
diagrams, which may be within reach [54, 66]. If these contributions become available,
together with three-loop corrections involving bottom loops, the intrinsic uncertainty for
H → gg is expected to be reduced to the level of about 1%.

Also shown in Tab. 5 are the projected parametric uncertainties, assuming FCC-ee pre-
cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
δMH ∼ 10 MeV [67], and δmb ∼ 13 MeV and δmc ∼ 7 MeV [19].

The corresponding uncertainties (intrinsic, parametric from quark masses, αs and MH)
for the total width are shown in the last line of Tab. 5. They are obtained by adding the
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estimate on the Dalitz decays).

More theoretical work is needed for H → WW,ZZ, gg, which are currently limited
by QCD uncertainties. For H → WW,ZZ, the required QCD corrections are essentially
identical to those for e+e− → WW , and as explained on page 10 it is straightforward to
improve them to a practically negligible level. Further significant progress would require the
calculation of two-loop electroweak corrections, which for a 1 → 4 process is beyond reach
for the forseeable future.

Note, however, that the HZZ coupling will be mostly constrained by the measurement of
the e+e− → HZ production process at FCC-ee with

√
s = 240 GeV, rather than the decay

H → ZZ∗. As discussed in section 4.3.1, it may be assumed that full two-loop corrections
(for on-shell Z and H bosons) will eventually be carried out for this process, leading to a
remaining intrinsic uncertainty of less than 0.3%.

For H → gg, the NNLO QCD corrections [65] and N3LO QCD corrections in the large-
mt limit [58] are currently available. The leading uncertainty stems from the missing N4LO
corrections in the large-mt limit. These require the calculation of massless four-loop QCD
diagrams, which may be within reach [54, 66]. If these contributions become available,
together with three-loop corrections involving bottom loops, the intrinsic uncertainty for
H → gg is expected to be reduced to the level of about 1%.

Also shown in Tab. 5 are the projected parametric uncertainties, assuming FCC-ee pre-
cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
δMH ∼ 10 MeV [67], and δmb ∼ 13 MeV and δmc ∼ 7 MeV [19].

The corresponding uncertainties (intrinsic, parametric from quark masses, αs and MH)
for the total width are shown in the last line of Tab. 5. They are obtained by adding the
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WW fusion cross section
…precision energy dependent

• most important measurement: ee->ννH -> ννbb 
• use BR(H->bb) from ZH to obtain σ(ννH) 
•  b-specifc systematics, e.g. from m(b), b-tagging, etc “cancel” 
• analogously smaller contributions from all other decay modes in global fit 
• however: non-negligible interference in vvH with Z(->vv)H
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…precision energy dependent

• most important measurement: ee->ννH -> ννbb 
• use BR(H->bb) from ZH to obtain σ(ννH) 
•  b-specifc systematics, e.g. from m(b), b-tagging, etc “cancel” 
• analogously smaller contributions from all other decay modes in global fit 
• however: non-negligible interference in vvH with Z(->vv)H
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fusion change with polarisation & ECM 

 -> additional handle to reduce impact of systematics 
when using differential x-section in Mmiss ?
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HWW coupling
a challenge?
• interpretation of σ(ννH) requires  

2-loop ew - like for ZH  
• BUT: now for a 2 -> 3 process  

=> significantly more difficult than 2 -> 2 
• suggestion from arXiv:1906.05379:  

• partial result with closed light-fermion loops 
• and top-loops in large-mt approximation 

=> “below the 1%-level”
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Figure 7: Precision reach on e↵ective couplings from a SMEFT global analysis of the Higgs
and EW measurements at various future colliders. The wide (narrow) bars correspond to
the results without (with) Higgs exotic decays. For the ILC scenarios, the (upper edge
of the) triangle mark shows the results that include a Giga-Z run. The subscripts in the
collider scenarios denote the corresponding integrated luminosity of the run. For the muon
collider, 3 separate scenarios are considered.
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HWW coupling
a challenge?
• interpretation of σ(ννH) requires  

2-loop ew - like for ZH  
• BUT: now for a 2 -> 3 process  

=> significantly more difficult than 2 -> 2 
• suggestion from arXiv:1906.05379:  

• partial result with closed light-fermion loops 
• and top-loops in large-mt approximation 

=> “below the 1%-level”

Contrast with expected gHWW 
precisions ~ 0.35% 

=> “below 1%-level” good enough? 
What about differential distributions, 

e.g. dσ/dMmiss ?
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Figure 7: Precision reach on e↵ective couplings from a SMEFT global analysis of the Higgs
and EW measurements at various future colliders. The wide (narrow) bars correspond to
the results without (with) Higgs exotic decays. For the ILC scenarios, the (upper edge
of the) triangle mark shows the results that include a Giga-Z run. The subscripts in the
collider scenarios denote the corresponding integrated luminosity of the run. For the muon
collider, 3 separate scenarios are considered.
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HWW coupling
a challenge?
• interpretation of σ(ννH) requires  

2-loop ew - like for ZH  
• BUT: now for a 2 -> 3 process  

=> significantly more difficult than 2 -> 2 
• suggestion from arXiv:1906.05379:  

• partial result with closed light-fermion loops 
• and top-loops in large-mt approximation 

=> “below the 1%-level”

Contrast with expected gHWW 
precisions ~ 0.35% 

=> “below 1%-level” good enough? 
What about differential distributions, 

e.g. dσ/dMmiss ?
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Figure 7: Precision reach on e↵ective couplings from a SMEFT global analysis of the Higgs
and EW measurements at various future colliders. The wide (narrow) bars correspond to
the results without (with) Higgs exotic decays. For the ILC scenarios, the (upper edge
of the) triangle mark shows the results that include a Giga-Z run. The subscripts in the
collider scenarios denote the corresponding integrated luminosity of the run. For the muon
collider, 3 separate scenarios are considered.
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240 GeV/250 GeV: 
gHWW mostly from  
H->WW* decay? 

=> 350 GeV upwards,  
fusion important !

https://arxiv.org/abs/1906.05379
https://arxiv.org/abs/1906.05379
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Total width
 more relaxed requirements if invis. / BSM decays allowed

• if BSM/invis. decays allowed => 1.5…2%  
• arXiv:1906.05379 - ok?:  

• intrinsic theo: ~0.3% 
• parametric mb,c (13 MeV, 7 MeV): ~0.4%  
• parametric 𝛼s (0.0002) : ~0.1% 
• parametric mH (10 MeV) : ~0.1%
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Figure 7: Precision reach on e↵ective couplings from a SMEFT global analysis of the Higgs
and EW measurements at various future colliders. The wide (narrow) bars correspond to
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What we actually would like to see…
…is beyond the SM

• finger-printing BSM 
• SUSY ? 
• 2HDM ? 
• composite Higgs? 
• Higgs singlet ? 
• little Higgs ? 
• …
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=> need same level of theory 
precision for the BSM models 

favoured by first data! 
=> also: need BSM loop contribtions 
to quantify BSM constraints in case 

of no deviation from SM
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More thoughts about interpretation strategy
…and BSM

• what are the best observables to interface theory & experiment in the Higgs sector? 
• currently, most emphasis is on global SMEFT fit 
• a powerful tool, but combining a lot of measurements at a high abstraction level 
• don’t we want to do “good old” cross-section (x BR) vs ECM plots as individual observables 
• and compare to all kinds of predictions, including BSM, at that level?    
• Is the benchmark for theory requirements the coupling uncertainty from a SMEFT fit (which 

is what I mostly did here) - or should the benchmark rather be the individual cross-section 
(x BR) measurements? 

• what about differential cross-sections?  
• only looked sofar at in few cases, eg TGCs, CPV / anomalous Hττ and HVV couplings, 

vvH@ 350 GeV, vvHH@ 3 TeV  
•  a lot of uncharted territory here? 
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Conclusions
on experimental precisions & theory uncertainties
• experimental precision 

• approaching 0.1%-level in many cases 
• intrinsic theory 

• ZH σtot: “only” a lot of work? 
• vvH as 2 -> 3: partial 2-loop enough?  
• differential, eg in Mmiss ?? 

• non-Higgs, but essential for Higgs precision 
• ISR/FSR 
• beamstrahlung modeling 
• heavy quark fragmentation & hadronisation 
• low angle Bhabha for luminosity 

• AND don’t forget:  
Implementation in Monte-Carlo event generators! 
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Figure 7: Precision reach on e↵ective couplings from a SMEFT global analysis of the Higgs
and EW measurements at various future colliders. The wide (narrow) bars correspond to
the results without (with) Higgs exotic decays. For the ILC scenarios, the (upper edge
of the) triangle mark shows the results that include a Giga-Z run. The subscripts in the
collider scenarios denote the corresponding integrated luminosity of the run. For the muon
collider, 3 separate scenarios are considered.
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Conclusions
on experimental precisions & theory uncertainties
• experimental precision 

• approaching 0.1%-level in many cases 
• intrinsic theory 

• ZH σtot: “only” a lot of work? 
• vvH as 2 -> 3: partial 2-loop enough?  
• differential, eg in Mmiss ?? 

• non-Higgs, but essential for Higgs precision 
• ISR/FSR 
• beamstrahlung modeling 
• heavy quark fragmentation & hadronisation 
• low angle Bhabha for luminosity 

• AND don’t forget:  
Implementation in Monte-Carlo event generators! 
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Figure 7: Precision reach on e↵ective couplings from a SMEFT global analysis of the Higgs
and EW measurements at various future colliders. The wide (narrow) bars correspond to
the results without (with) Higgs exotic decays. For the ILC scenarios, the (upper edge
of the) triangle mark shows the results that include a Giga-Z run. The subscripts in the
collider scenarios denote the corresponding integrated luminosity of the run. For the muon
collider, 3 separate scenarios are considered.
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and the SM is only the beginning   
— need same level of precision in relevant 

BSM models!


