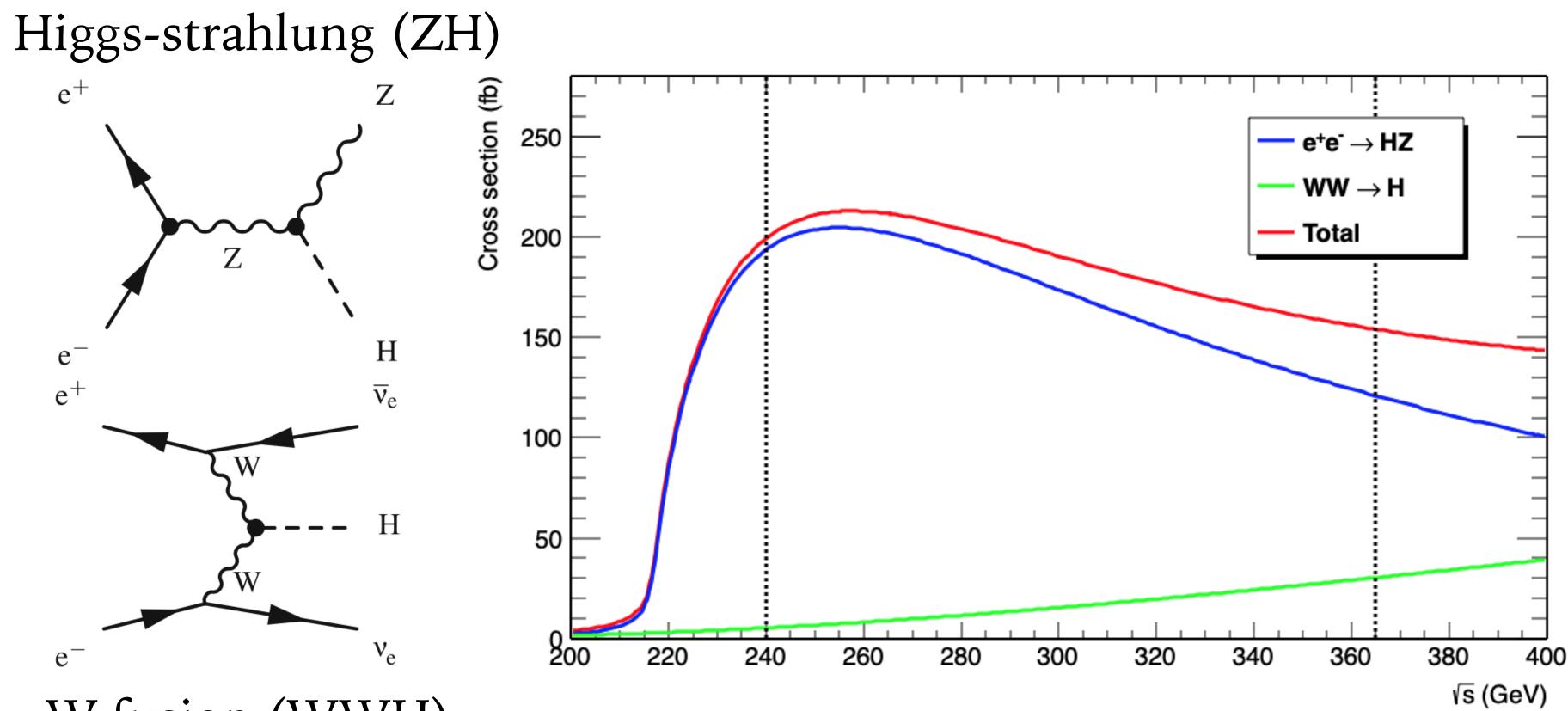
Higgs production and decay at e+ecolliders: theoretical status and challenges

Li Lin Yang Zhejiang University

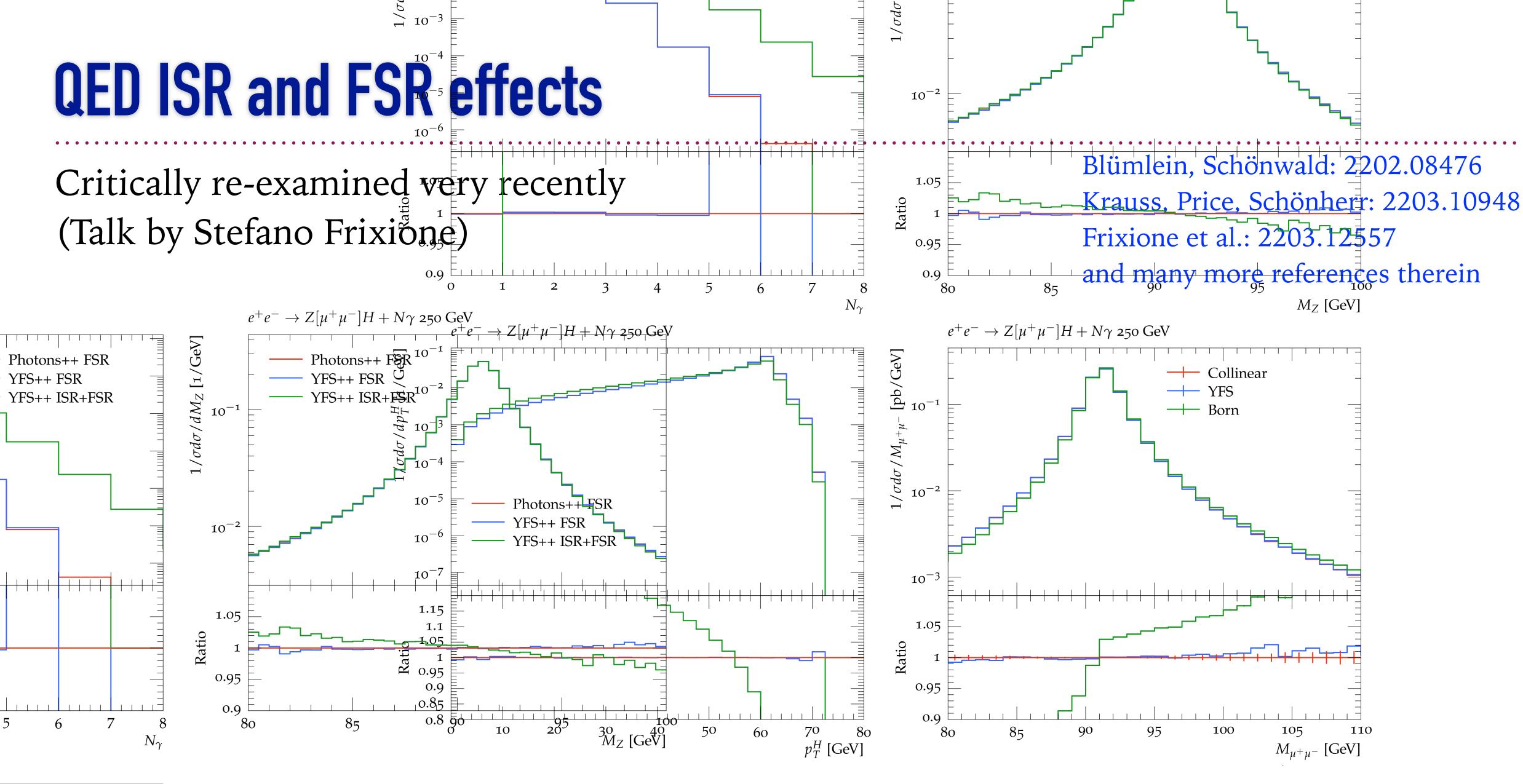
Higgs production at e+e- colliders

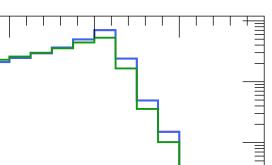


W-fusion (WWH)

NLO EW + QED radiations built in Monte Carlo event generators

Figure from 2106.15438





Figures from 2203.10948

Mixed QCD-EW corrections to ZH

Gong, Li, Xu, LLY, Zhao: 1609.03955 the $\alpha(m_Z)$ scheme.

\sqrt{s} (GeV)	$\sigma_{ m LO}~({ m fb})$	$\sigma_{\rm NLO}~({\rm fb})$	$\sigma_{\rm NNLO}~({\rm fb})$
240	252.0	228.6	231.5
250	252.0	227.9	230.8
300	190.0	170.7	172.9
350	135.6	122.5	124.2
500	60.12	54.03	54.42

Sun, Feng, Jia, Sang: 1609.03995

\sqrt{s}	Schemes	$\sigma_{ m LO}~({ m fb})$	$\sigma_{ m NLO}~(m fb)$	$\sigma_{ m NNLO}~(m fb)$
240	lpha(0)	223.14 ± 0.47	229.78 ± 0.77	$232.21^{+0.75+0.10}_{-0.75-0.21}$
	$\alpha(M_Z)$	252.03 ± 0.60	$228.36\substack{+0.82 \\ -0.81}$	$\begin{array}{c} 232.21\substack{+0.75+0.10\\-0.75-0.21}\\ 231.28\substack{+0.80+0.12\\-0.79-0.25}\end{array}$
	G_{μ}	239.64 ± 0.06	$232.46\substack{+0.07 \\ -0.07}$	$233.29\substack{+0.07+0.03\\-0.06-0.07}$

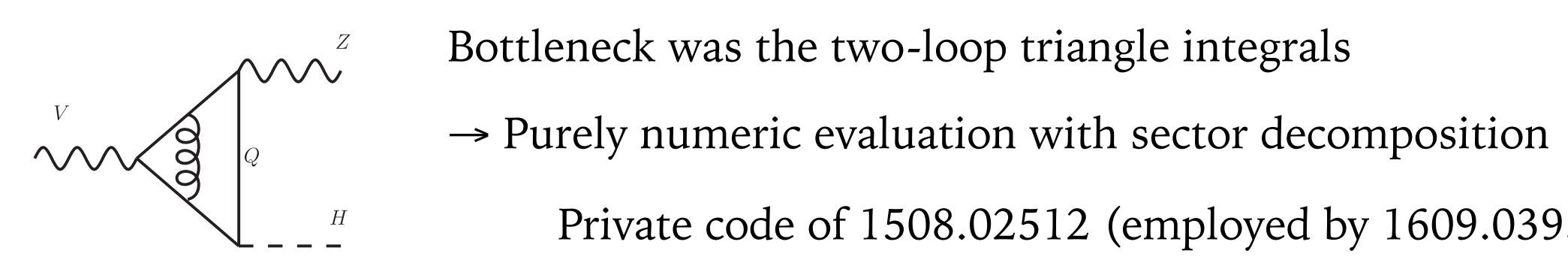
Corrections at the level of $\sim 1\%$: non-negligible compared to the ~0.3% experimental accuracy

Longitudinal

Residue dependence on renormalization schemes

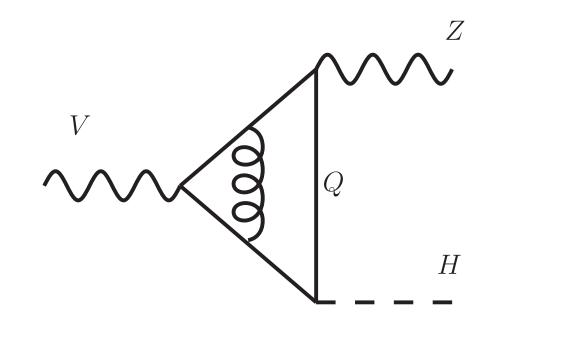
Unpolarized

Calculation methods back then



- - Private code of 1508.02512 (employed by 1609.03955)
 - FIESTA/CubPack (employed by 1609.03995)
 - Slow; bad convergence around or above $2m_O$ threshold

Calculation methods back then



→ Purely numeric evaluation with sector decomposition

Alternative method: $1/m_t$ expansion

Gong, Li, Xu, LLY, Zhao: 1609.03955

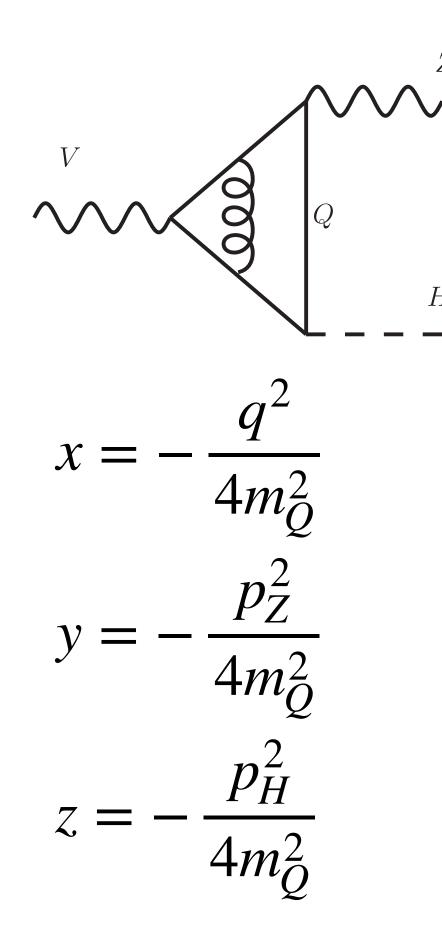
\sqrt{s} (GeV)	$\mathcal{O}(m_t^2)$	$\mathcal{O}(m_t^0)$	$\mathcal{O}(m_t^{-2})$	$\mathcal{O}(m_t^{-4})$
240	81.8%	16.2%	1.4%	0.4%
250	81.7%	16.1%	1.5%	0.5%
300	80.0%	15.2%	2.1%	1.1%
350	69.7%	12.6%	2.7%	2.1%
500	137%	18.6%	17.3%	31.1%

Bottleneck was the two-loop triangle integrals

- Private code of 1508.02512 (employed by 1609.03955)
- FIESTA/CubPack (employed by 1609.03995)
- Slow; bad convergence around or above $2m_Q$ threshold

- Good approximation for low energies: analytic expressions easy to implement in Monte-Carlo
- Not valid for high energies...

A new calculation for the HZV two-loop diagrams



$$\sqrt{x(x+1)}$$
 $\sqrt{y(y+1)}$ $\sqrt{z(z+1)}$ $\sqrt{x^2 + y^2 + z^2 - 2xy - 2yz - 2}$

- Constructed a canonical basis of master integrals

$$d\vec{f}(x, y, z; \epsilon) = \epsilon \, dA(x, y, z) \, \vec{f}(x, y, z; \epsilon)$$
$$= \epsilon \sum_{i} A_{i} \, d \log(\alpha_{i}) \, \vec{f}(x, y, z; \epsilon)$$

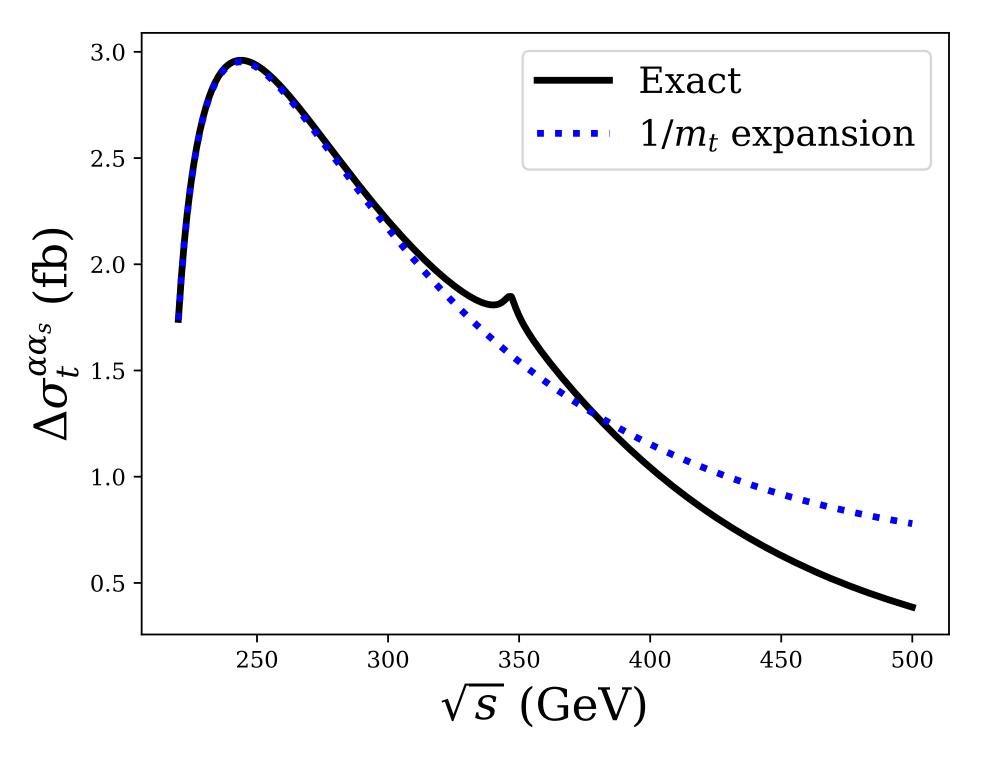
Alphabet contains 4 kinds of square roots

- Solutions up to weight-3 written in terms of GPLs
- Weight-4 parts expressed as one-fold integrals (not ideal, but usable)

Wang, Xu, LLY: 1905.

A new calculation for the HZV two-loop diagrams Wang, Xu, LLY: 1905.11

The new result works well for all kinematic configurations

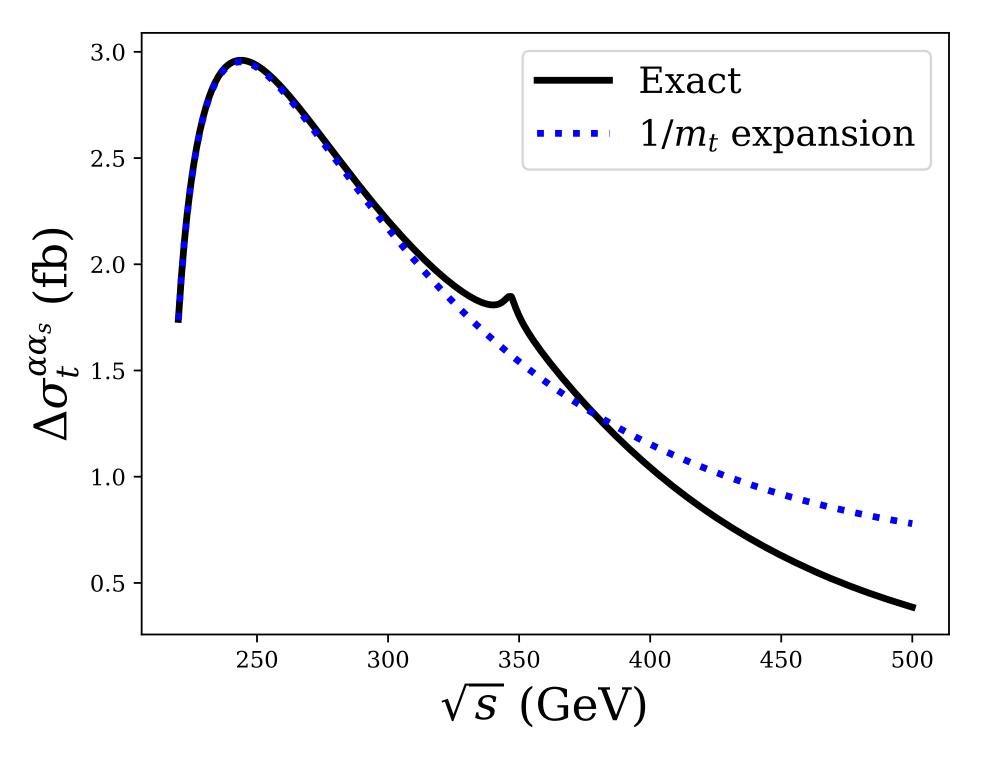


NNLO $\mathcal{O}(\alpha \alpha_s)$ corrections to ZH cross section

463

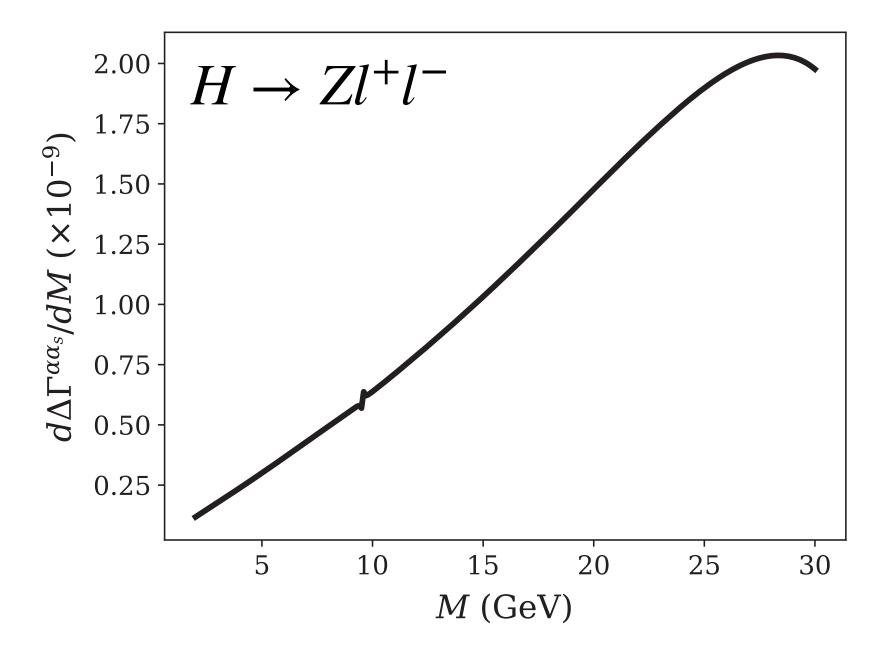
A new calculation for the HZV two-loop diagrams Wang, Xu, LLY: 1905.1

The new result works well for all kinematic configurations



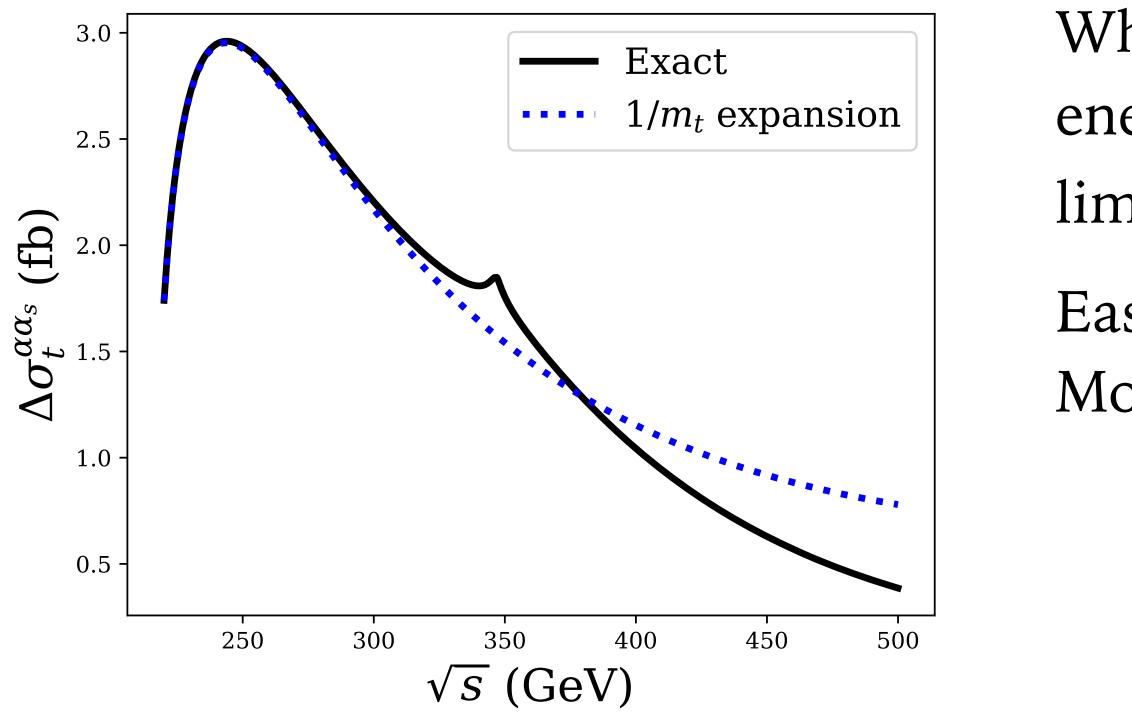
NNLO $\mathcal{O}(\alpha \alpha_s)$ corrections to ZH cross section

Also for bottom quark loops



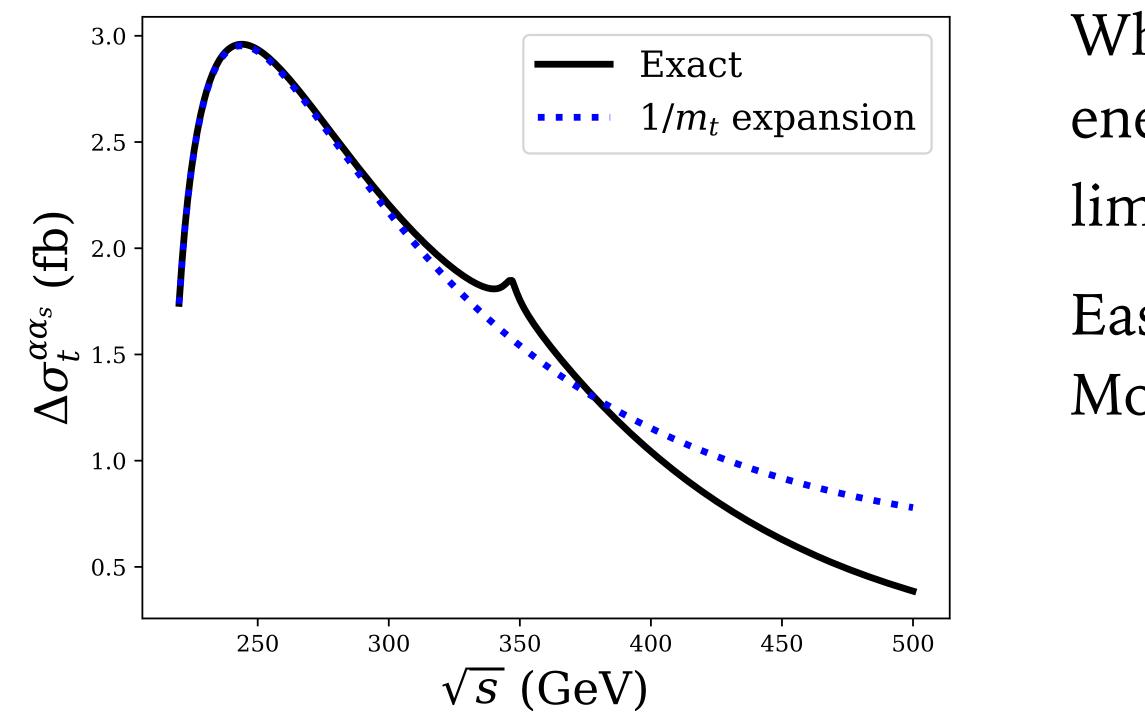
Bottom contribution to the M_{ll} distribution

A different expansion?



- While the $1/m_t$ expansion does not work at high energies, we have found that an expansion in the limit $m_H^2, m_Z^2 \ll s, m_t^2$ works pretty well!
- Easier (than the exact result) to implement in Monte Carlo (available but unpublished)

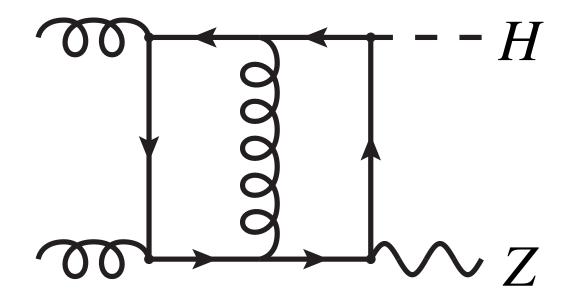
A different expansion?



Similar ideas have been successfully applied to $gg \rightarrow HH$ and $gg \rightarrow ZH$

While the $1/m_t$ expansion does not work at high energies, we have found that an expansion in the limit $m_H^2, m_Z^2 \ll s, m_t^2$ works pretty well!

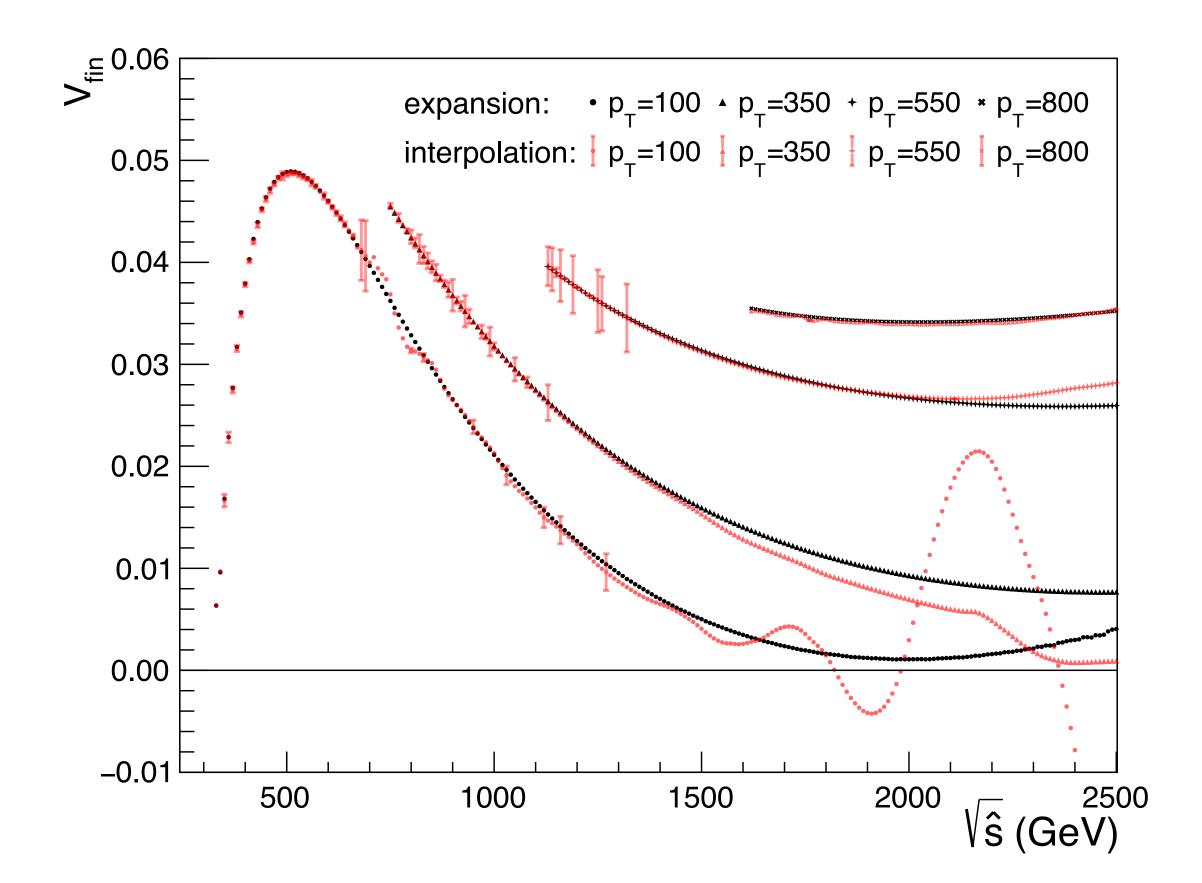
Easier (than the exact result) to implement in Monte Carlo (available but unpublished)



Xu, **LLY**: 1810.12002 Wang, Wang, Xu, Xu, LLY: 2010.15649 Wang, Xu, Xu, LLY: 2107.08206

Off-topic: $gg \rightarrow HH$ 7 GPGPU hours per phase space point with sector decomposition 200 *p*_T 400 0 0.04 $V_{\rm fin}$ 0.02 0.00 500 $\sqrt{\hat{s}}$ 1000 1500 200 **p**T 400 600 0 0.04 $V_{\rm fin}$ 0.02 0.00 500 $\sqrt{\hat{s}}$ 1000 10 CPU seconds per phase space point

with small-mass expansion



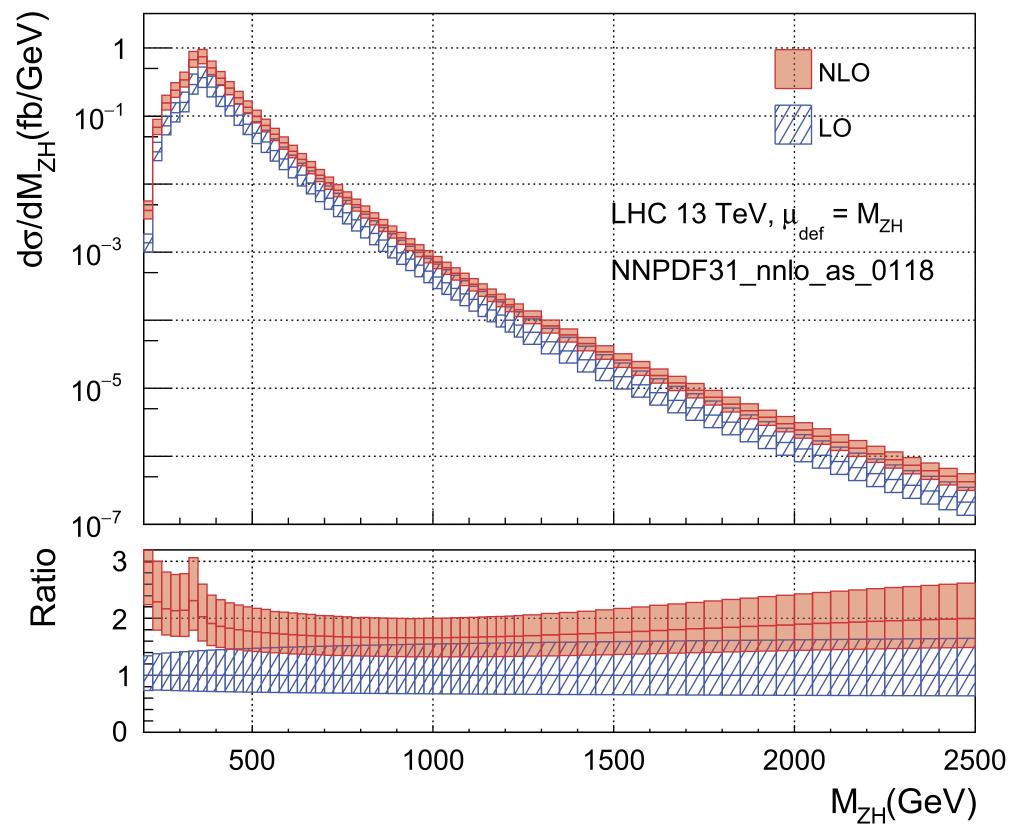
0.0

0.0

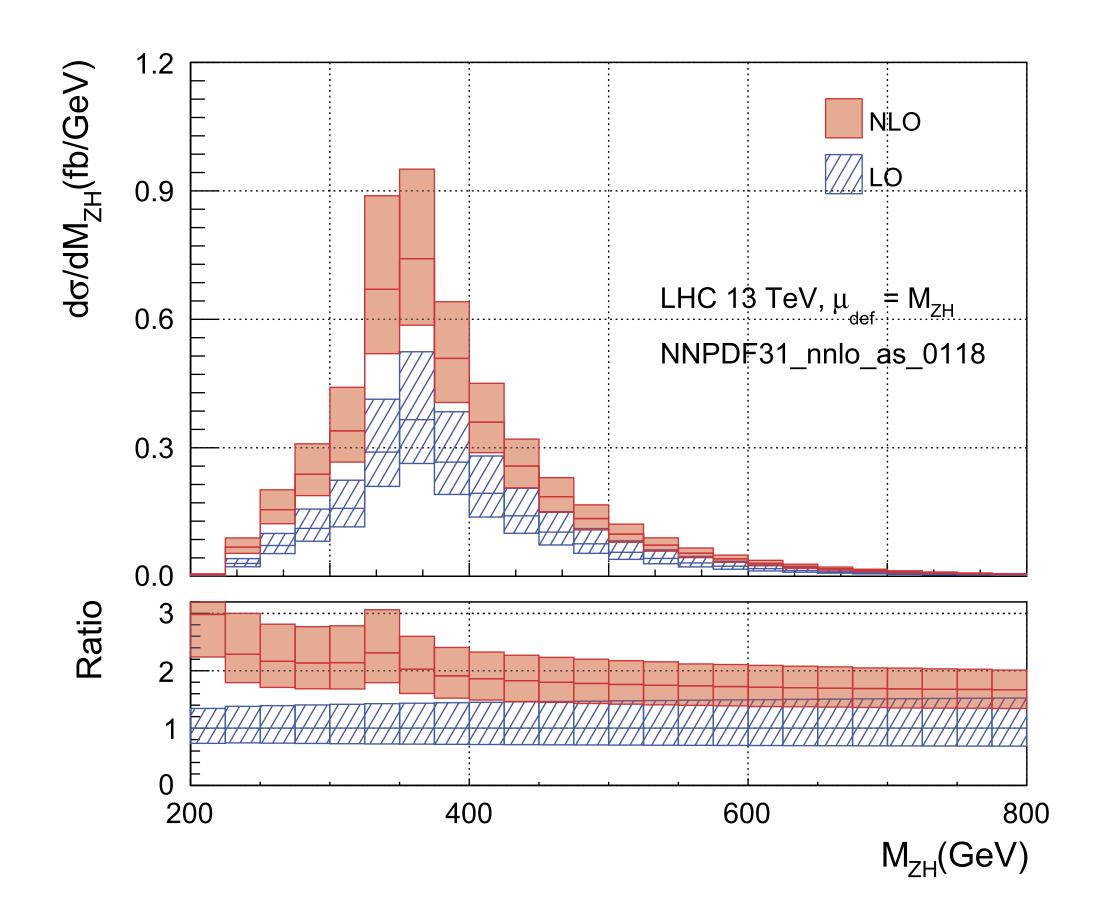
0.0

Off-topic: $gg \rightarrow ZH$

NLO predictions for both total and differential cross sections including top quark mass dependence



Wang, Xu, Xu, LLY: 2107.08206

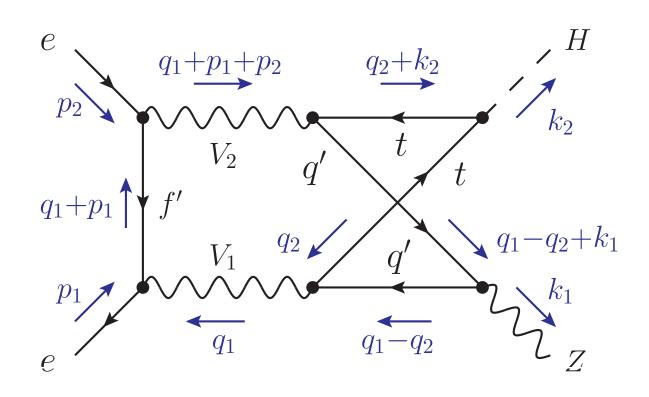


Towards two-loop EW corrections to ZH

A must to match the $\sim 0.3\%$ experimental accuracy

A rather challenging task: \sim 20000 diagrams, a lot of physical scales Li, Wang, Wu: 2012.12513

Evaluation of a class of double boxes with a top quark loop Song, Freitas: 2101.00308

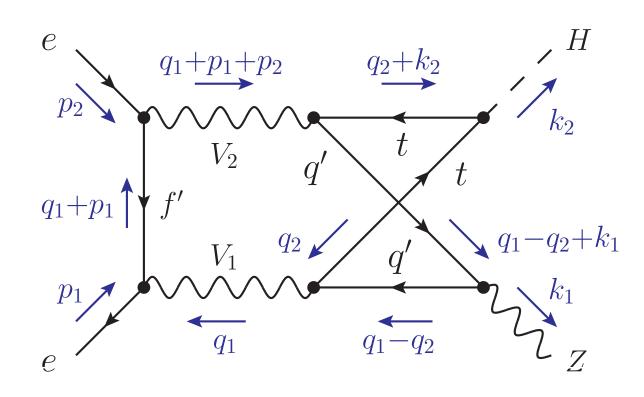


Towards two-loop EW corrections to ZH

A must to match the $\sim 0.3\%$ experimental accuracy

A rather challenging task: \sim 20000 diagrams, a lot of physical scales Li, Wang, Wu: 2012.12513

Evaluation of a class of double boxes with a top quark loop



- elliptic sectors
 - Numeric solutions (pySecDec, DiffExp, AMFlow, ...)

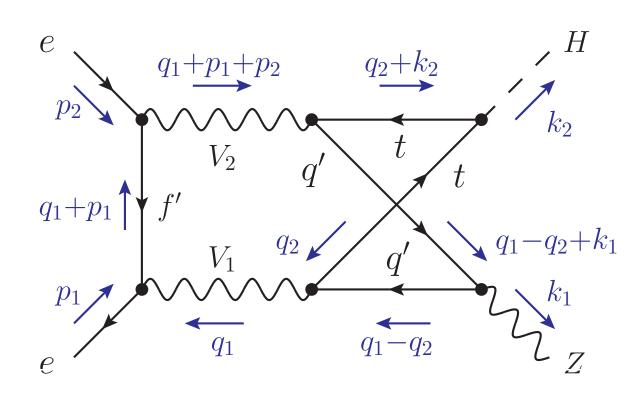
- Song, Freitas: 2101.00308
- Further development of computational techniques required!
- → Talks covering both analytic and numeric methods
- e.g.: Canonical differential equations in both GPL sectors and

Towards two-loop EW corrections to ZH

A must to match the $\sim 0.3\%$ experimental accuracy

A rather challenging task: \sim 20000 diagrams, a lot of physical scales Li, Wang, Wu: 2012.12513

Evaluation of a class of double boxes with a top quark loop



- → Talks covering both analytic and numeric methods
- e.g.: Canonical differential equations in both GPL sectors and elliptic sectors

Perhaps some kind of approximate result is good enough → Vague thought: asymptotic expansion in the limit $m_{\text{everything}}^2 \ll s, m_t^2$?

- Song, Freitas: 2101.00308
- Further development of computational techniques required!

- Numeric solutions (pySecDec, DiffExp, AMFlow, ...)

Construction of canonical bases

As an addition to existing methods (probably covered by Andreas von Manteuffel), we proposed a novel approach to construct canonical Feynman integrals

d-log integrals in the generalized loop-by-loop Baikov representation (a larger vector space than the space of Feynman integrals)

$$\int_{\mathscr{C}} \left[G(z) \right]^{\epsilon} \bigwedge_{j=1}^{n} d \log f_j(z)$$

Project into the space of Feynman integrals using intersection theory

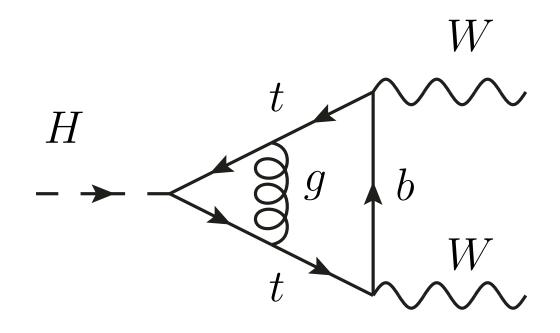
 $\langle \varphi | =$

Chen, Jiang, Xu, LLY: 2008.03045 Chen, Jiang, Ma, Xu, LLY: 2202.08127

 $\int \prod_{i=1}^{L} \frac{d^{a}k_{i}}{i\pi^{d/2}} \left[\frac{1}{z_{1}^{a_{1}} z_{2}^{a_{2}} \cdots z_{N}^{a_{N}}} \right]$

$$\sum_{i=1}^{\nu} c_i \left\langle e_i \right|$$

Mixed QCD-EW corrections to WWH



 $H \rightarrow W l \nu$

$\alpha(m_Z)$	LO	NLO EW	NNLO QCD-EW
$\Gamma (10^{-5} \text{ GeV})$	4.597	4.474	4.518

G_{μ}	LO	NLO EW	NNLO QCD-EW
$\Gamma (10^{-5} \text{ GeV})$	4.374	4.524	4.531

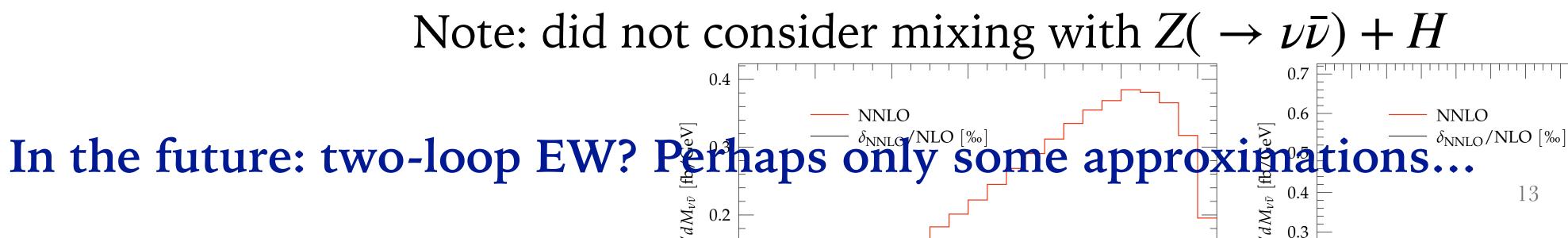
Di Vita, Mastrolia, Primo, Schubert: 1702.07331 Ma, Wang, Xu, LLY, Zhou: 2105.06316 Wang, LLY, Zhou: 2112.04122

The two-loop amplitude can be written in a fully-analytic form (involving a lot of weight-4 GPLs)

$e^+e^- \rightarrow \nu \bar{\nu} H$

$\sqrt{s} \; (\text{GeV})$	$\sigma_{\rm LO}~({\rm fb})$	$\delta\sigma_{\rm NNLO}$ (fb)
250	7.88	0.010
350	30.6	0.040
500	74.8	0.101

Rather small corrections



In all the above calculations one needs numeric evaluations of a large amount of GPLs

The algorithm has been well-known for many years

Gehrmann, Remiddi: hep-ph/0111255 Vollinga, Weinzierl: hep-ph/0410259 Ablinger, Blümlein, Schneider: 1302.0378

In all the above calculations one needs numeric evaluations of a large amount of GPLs

The algorithm has been well-known for many years

Program implementations:

GiNaC: works with arbitrary-precision numbers (slow), not optimized for double-precision floating point numbers Vollinga, Weinzierl: hep-ph/0410259

Gehrmann, Remiddi: hep-ph/0111255 Vollinga, Weinzierl: hep-ph/0410259 Ablinger, Blümlein, Schneider: 1302.0378

In all the above calculations one needs numeric evaluations of a large amount of GPLs

The algorithm has been well-known for many years

Program implementations:

GiNaC: works with arbitrary-precision numbers (slow), not optimized for double-precision floating point numbers Vollinga, Weinzierl: hep-ph/0410259

For Monte-Carlo, one may generate a large grid and interpolate from it, but for high precision applications, the grid has to be dense enough (slow to generate)

Gehrmann, Remiddi: hep-ph/0111255 Vollinga, Weinzierl: hep-ph/0410259 Ablinger, Blümlein, Schneider: 1302.0378

In all the above calculations one needs numeric evaluations of a large amount of GPLs

The algorithm has been well-known for many years

Program implementations:

GiNaC: works with arbitrary-precision numbers (slow), not optimized for double-precision floating point numbers Vollinga, Weinzierl: hep-ph/0410259

For Monte-Carlo, one may generate a large grid and interpolate from it, but for high precision applications, the grid has to be dense enough (slow to generate)

handyG: newer implementation using double-precision or quad-precision numbers, aimed for usage in Monte-Carlo Naterop, Signer, Ulrich: 1909.01656

Gehrmann, Remiddi: hep-ph/0111255 Vollinga, Weinzierl: hep-ph/0410259 Ablinger, Blümlein, Schneider: 1302.0378

The algorithm is recursive: one transforms the target GPL to a sum of so-called "convergent" GPLs, which can be evaluated by series expansion

A problem of **numerically** recursive implementations: to evaluate a single GPL, sometimes a transformed GPL needs to be computed for many many times!

- Greatly slows down the computation speed
- May lose accuracy due to repeated floating-point cancellations

The algorithm is recursive: one transforms the target GPL to a sum of so-called "convergent" GPLs, which can be evaluated by series expansion

A problem of **numerically** recursive implementations: to evaluate a single GPL, sometimes a transformed GPL needs to be computed for many many times!

- Greatly slows down the computation speed
- ► May lose accuracy due to repeated floating-point cancellations

The problem becomes much worse at higher weights: at three-loops one needs weight-6

We have encountered such situations in the calculation of $e^+e^- \rightarrow \nu \bar{\nu} H$: in general handyG can evaluate a weight-4 GPL in far less than a second, but sometimes it takes several seconds

e.g.: G(1.0025, 0.989, 0.45, 0.89 + 0.24i; 1)

FastGPL

A re-implementation of the algorithm: hybrid analytic/numeric

The reduction to convergent GPLs are (mostly) done in a Mathematica package (to be released)

```
<< reduceGPL
```

```
map[\{1, 0, 1, 1\}, 3]
{a,0,b,b}
There is no any artificial divergence!
{a,0,b,c}
There is artificial divergence when c=x!
 We need to rescale indices and argument of GPLs
complex<double> G4_a0bc_b(complex<double> a, complex<double> b, complex<double> c, int sa, int sb, int sc, double x) {
a=a/x;
b=b/x;
 c=c/x;
x=1.;
if(b==c)
 const vector<complex<double>> sy = {G({a, b}, {sa, sb}, x), G({a}, {sa}, x), G({0, a/b, 1}, 1), G({b}, {sb}, x)};
 complex < double > res = sy[1] * sy[2] - sy[2] * sy[3] + sy[0] * G(\{0, 1\}, 1) - sy[1] * G(\{0, 0, 1\}, 1) + sy[3] * G(\{0, a/b, x/b\}, 1) + G(\{0, a/b, x/b\},
          0, 1\}, 1) - G(\{0, a/b, x/b, 1\}, 1) + G(\{0, a/b\}, 1) * (-sy[0] + G(\{0, b\}, \{1, sb\}, x)) + G(\{a, 0, 0, b\}, \{sa, 1, 1, sb\}, x);
return res;
 else {
 const vector<complex<double>> sy = {Log(b, sb), G({a}, {sa}, x), G({c/b}, 1), G({a}, {a})
            c}, {sa, sc}, x), G({0, a}, {1, sa}, x), G({0, a/b, c/b}, 1), G({0, c/b, a/b}, 1), G({c/b, 0, a/b}, 1)};
 complex < double > res = sy[0] * (sy[2] * sy[4] - sy[5] - sy[6] - sy[7]) + sy[3] * G(\{0, c/b\}, 1) + 2.*G(\{0, 0, a/b, c/b\}, 1) + 2.*G(\{0, 0, c/b, a/b\}, 1) + 2.*G(\{0, 0, c/b\}, 1) + 2.
          1) + G(\{0, a/b, 0, c/b\}, 1) + G(\{0, a/b, c/b, x/b\}, 1) + 2.*G(\{0, c/b, 0, a/b\}, 1) + G(\{0, c/b, a/b, x/b\}, 1) + 2.*G(\{c/b, 0, 0, c/b\}, 1) + 2.*G(\{c/b, 0, c/b\}, 1) + 2.*G(\{c/b, 0, 0, c/b\}, 1) + 2.*G(\{c/b, 
            a/b, 1) + G({c/b, 0, a/b, x/b}, 1) + G({0, a/b}, 1)*(-sy[3] + G({0, c}, {1, sc}, x)) + sy[2]*(G({0, 0, a}, {1, 1, sa}, x) - G({a, a/b}, x)) + Sy[2]*(G({0, 0, a}, {1, 1, sa}, x))) + Sy[2]*(G({0, 0, a}, {1, 1, sa}, x)) + Sy[2]*(G({0, 0, a}, {1, 1, sa}, x))) + Sy[2]*(G({0, 0, a}, {1, 1, sa}, x)))
            0, c\}, \{sa, 1, sc\}, x)) + G(\{a, 0, 0, c\}, \{sa, 1, 1, sc\}, x) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) - sy[2]*sy[4] + sy[5] + sy[6] + sy[7])*Log(-x, 3) + (-(sy[0]*sy[1]*sy[2]) + (-(sy[0]*sy[2]*sy[2]) + sy[6] + s
               sb) + (sy[1]*sy[2]*pow(sy[0], 2.))/2. + sy[1]*(-sy[6] - sy[7] - G(\{0, 0, c/b\}, 1) + sy[2]*(-G(\{0, 0\}, \{1, 1\}, x) - 2.*Zeta(2)));
 if (c!=x) res += (-sy[5] + G(\{0, a/b, x/b\}, 1)) * G(\{c\}, \{sc\}, x);
 return res;
}
```

https://github.com/llyang/FastGPL

Generate numeric codes automatically

The FastGPL library (up to weight-4 welltested, up to weight-6 implemented)

Aiming at fast evaluations using double-precision numbers

Comparison of speed

	$t_{\rm f}$ (s)	$t_{\rm h}~({\rm s})$	$t_{ m h}/t_{ m f}$
$\label{eq:G} \begin{array}{ l l l l l l l l l l l l l l l l l l l$	0.006	2.2	~ 400
$\label{eq:G} \fbox{G}(0.998, 1.0545 + 0.127 \texttt{i}, 0.91 + 0.25 \texttt{i}, -0.226; \texttt{1})$	0.004	1.5	~ 400
$\label{eq:G} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.004	1.1	~ 300

Table 2: Average evaluation times of several GPLs which require many iterations.

		0	aBC	0al	bC	0ab	C	00a	B	00 <i>a</i>	b
t_{f}	f(ms)	(0.22	0.2	25	0.2	0	0.08	8	0.0	5
$t_{ m l}$	$_{n}$ (ms)		3.1	5.	8	4.5	,)	1.3		0.8	0
	$t_{ m h}/t_{ m f}$		~ 14	2	23	~ 2	3	~ 1	7	~ 1	.6
			ABC	CD	ab	CD	a	bcD	a	bcd	
	$t_{\rm f} \ ({\rm ms}$	5)	0.2	2	0	.47	().50	0	.42	
	$t_{\rm h} \ ({ m ms}$	5)	1.7	7	7	7.4		1.0	(9.1	
	$t_{ m h}/t_{ m f}$		~ 7	.5	\sim	16	\sim	- 22	\sim	22	

Table 3: Average evaluation times of a few categories of weight-4 GPLs.

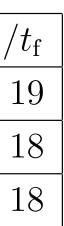
 $e^+e^- \rightarrow \nu \bar{\nu} H$

$\sqrt{s} \; (\text{GeV})$	$\sigma_{\rm LO}~({\rm fb})$	$\delta \sigma_{\rm NNLO} \ ({\rm fb})$	$t_{\rm f}$ (h)	$t_{\rm h}$ (h)	t_{h}
250	7.88	0.010	0.45	8.60	\sim
350	30.6	0.040	0.51	9.02	\sim
500	74.8	0.101	0.52	9.24	\sim

10000 sample phase-space points several thousand GPLs per point

FastGPL is faster in general, and is much faster for special cases

Preliminary tests show that the speed-boost is much larger at weight-6

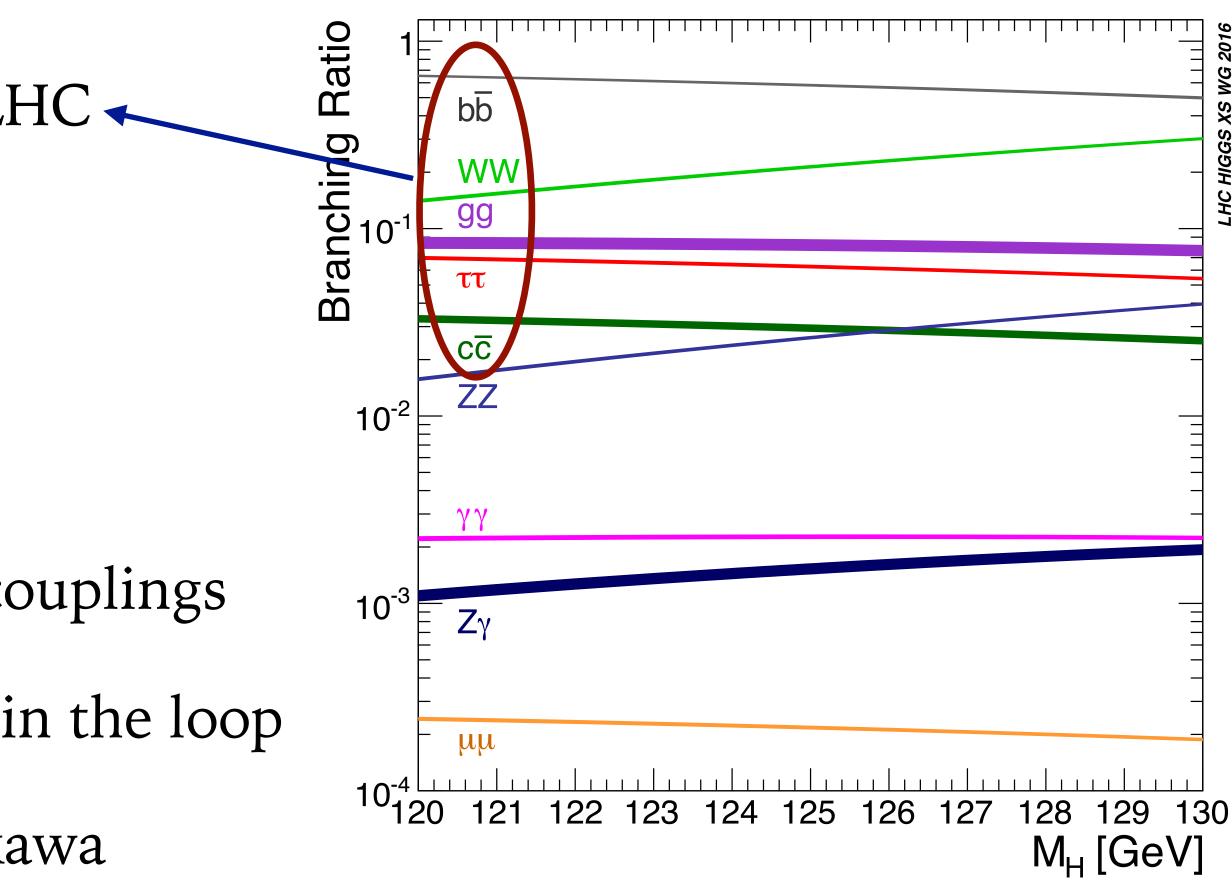


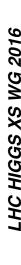
Higgs decay

Weakness of the LHC

The hadronic channels

- Important for HZZ and $Hb\bar{b}$ couplings $H \rightarrow b\bar{b}$
- $H \rightarrow gg$ Probes new particles running in the loop
- Unique window to charm Yukawa $H \rightarrow c\bar{c}$





Partial widths

$\succ H \rightarrow q\bar{q}$

- > $\mathcal{O}(\alpha_s^4)$ in the limit of massless quarks
- ► $\mathcal{O}(\alpha)$, $\mathcal{O}(\alpha\alpha_s)$ and partial $\mathcal{O}(\alpha^2)$

$\succ H \rightarrow gg$

- $\succ \mathcal{O}(\alpha_s^4) \text{ with infinite } m_t \qquad \Gamma_{N^4LO}(H \to gg) = \Gamma_0 \left(1.844 \pm 0.011_{\text{series}} \pm 0.045_{\alpha_s(M_Z),1\%} \right)$
- $\blacktriangleright O(\alpha_s^2)$ with $1/m_t$ expansion
- ► $\mathcal{O}(\alpha_c^2)$ three-loop form factor with full m_t dependence (hence also bottom loop)
- > $\mathcal{O}(\alpha)$ EW corrections

Freitas (2021) and references therein

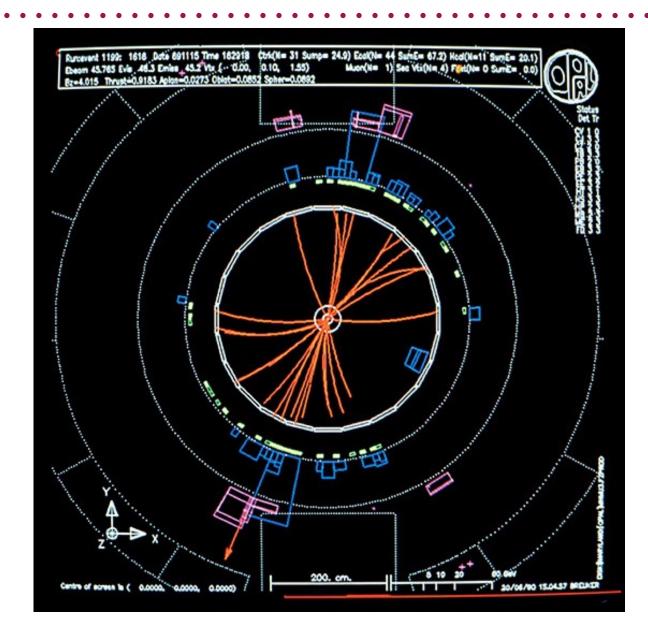
Herzog et al.: 1707.01044

Czakon, Niggetiedt: 2001.03008

Event shapes

Event shapes provide more information than the total rates

- Discrimination between quark and gluon final states
- Probing kinematic dependence of the Hgg vertex
- New-physics enhanced light-quark Yukawa couplings?

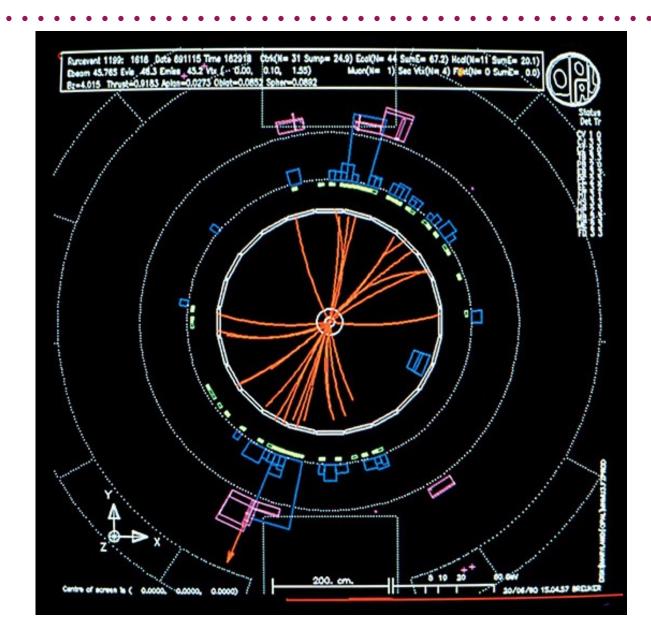


Event shapes

Event shapes provide more information than the total rates

- Discrimination between quark and gluon final states
- Probing kinematic dependence of the Hgg vertex
- New-physics enhanced light-quark Yukawa couplings?

I'll focus on one particular variable: thrust



$$T = \max_{\overrightarrow{n}} \frac{\sum_{i} |\overrightarrow{n} \cdot \overrightarrow{p}_{i}|}{\sum_{i} |\overrightarrow{p}_{i}|}$$

$$\tau = 1 - T$$

Fixed-order predictions for thrust distribution

С О

1/F₀

0

Ratio to

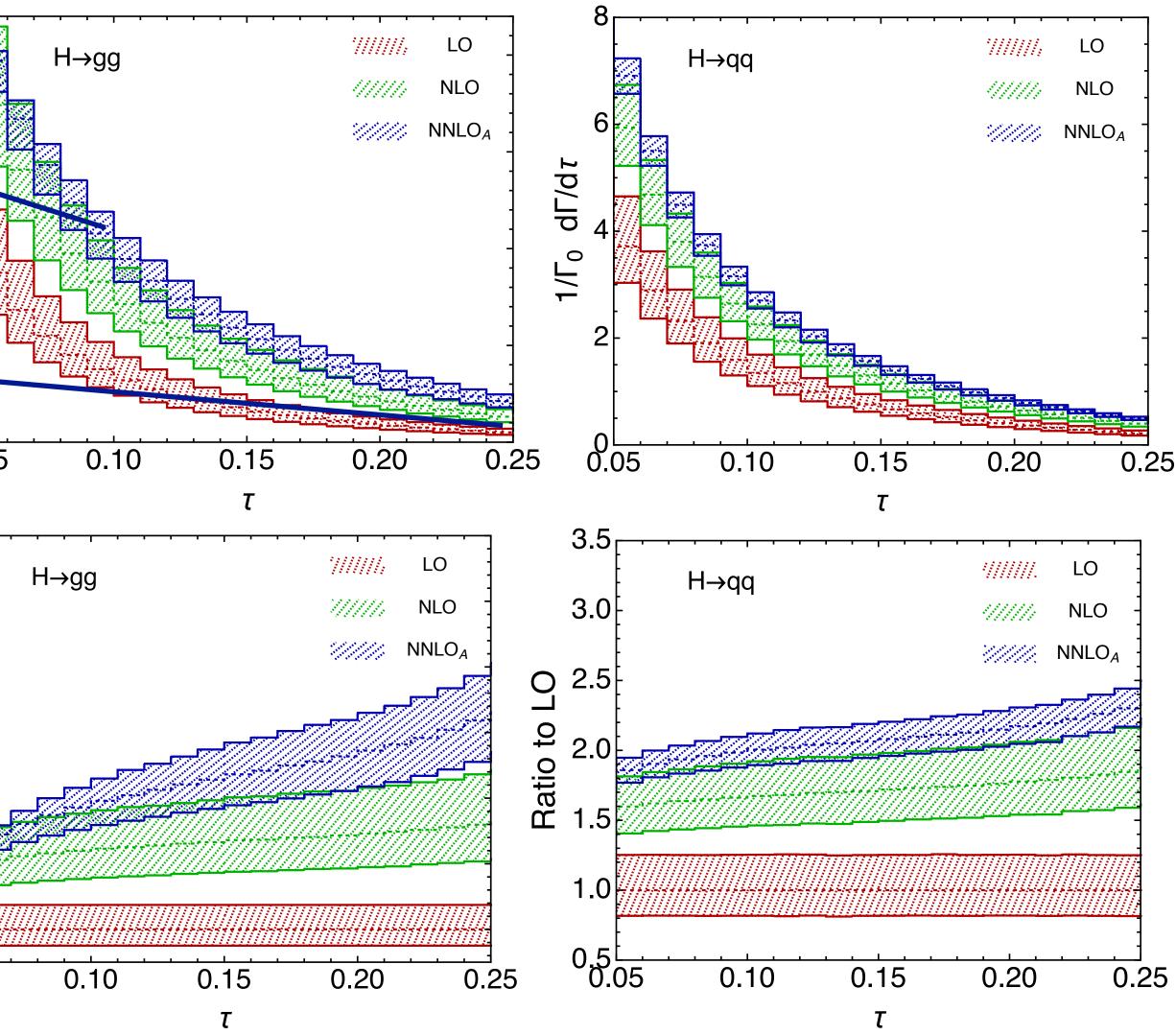
0.05

Large corrections, especially in the gluon channel; N³LO needed?

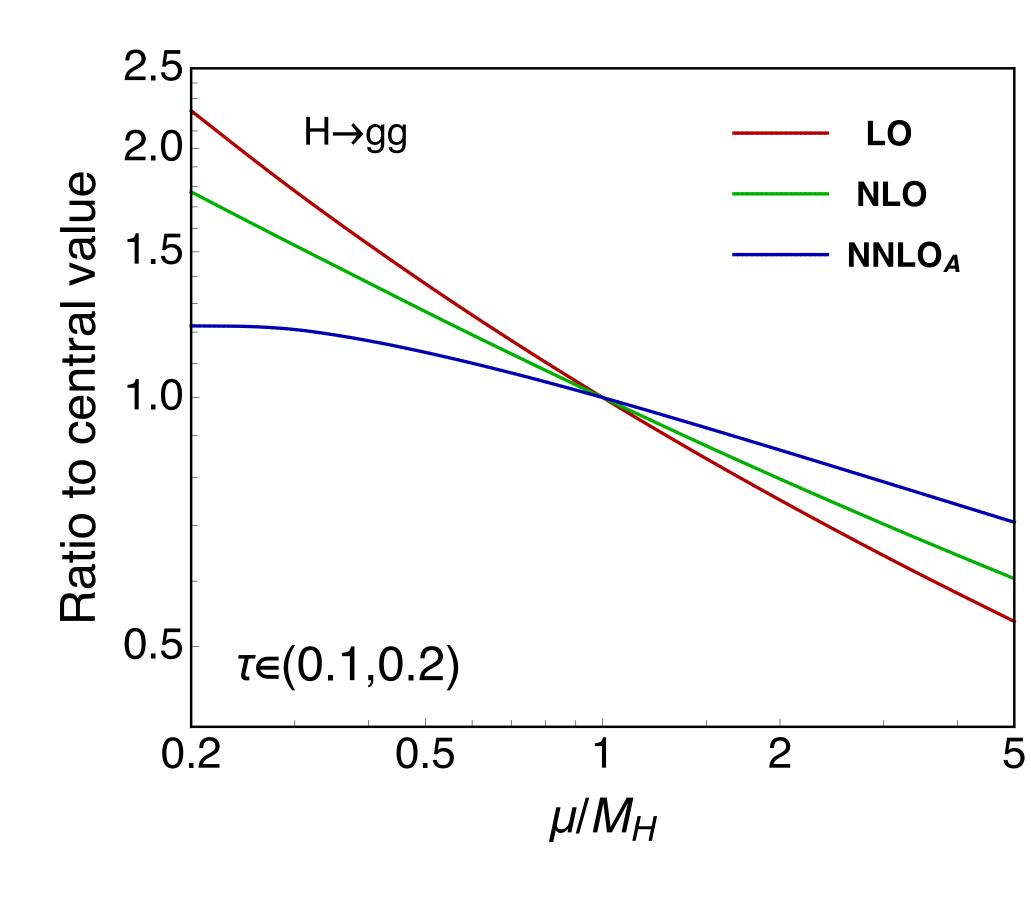
Soft-collinear approximation not valid for larger τ ; a full NNLO calculation required!

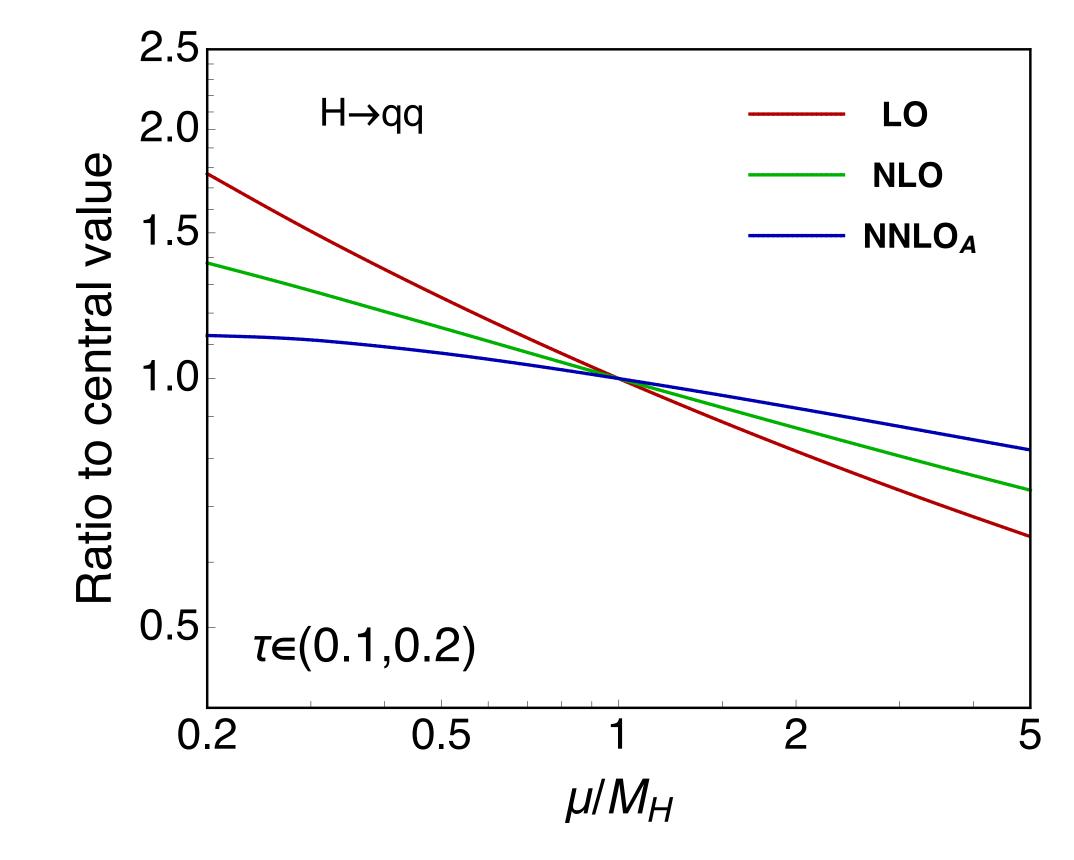
Parton shower and/or resummation needed for smaller τ

Gao, Gong, Ju, LLY: 1901.02253

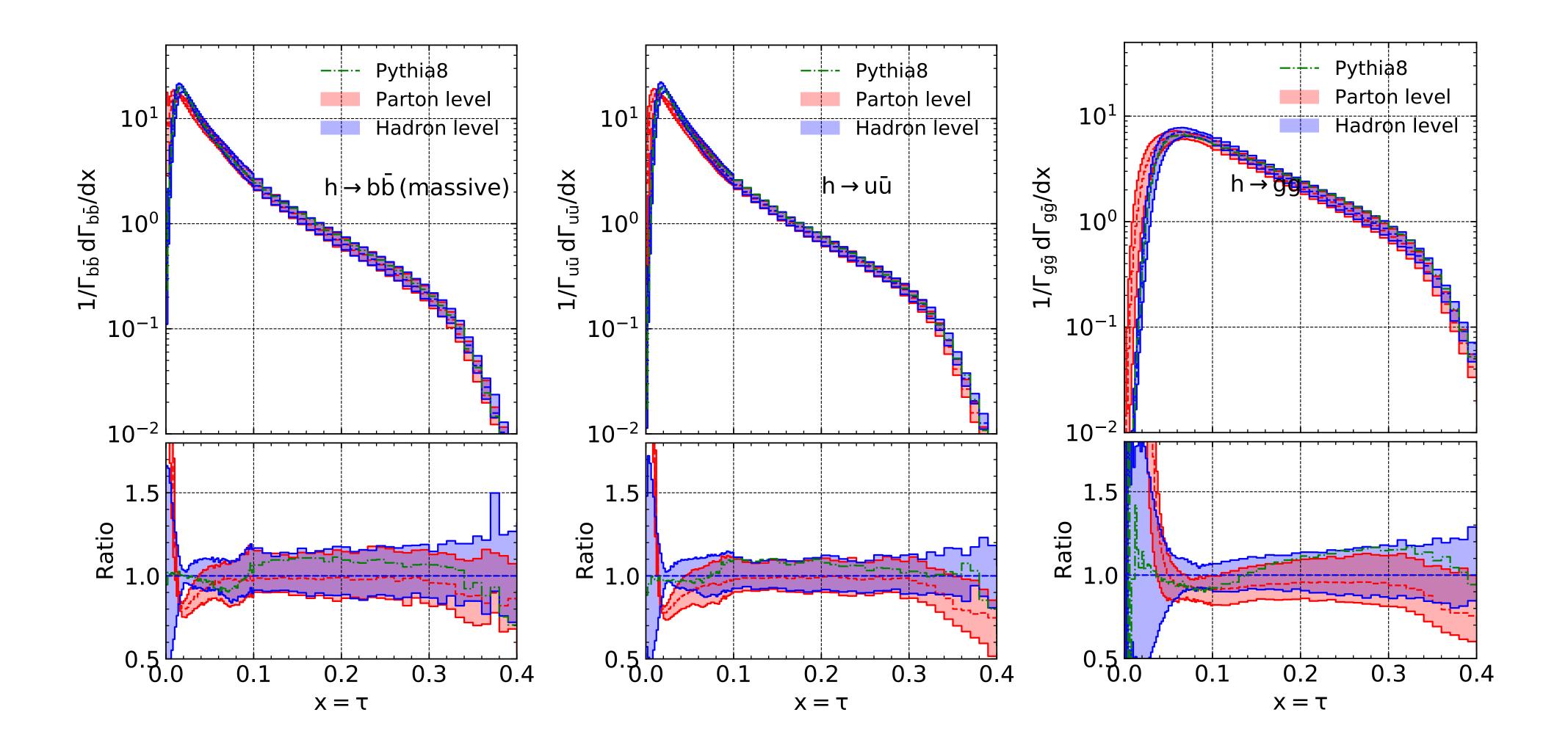


Scale dependence

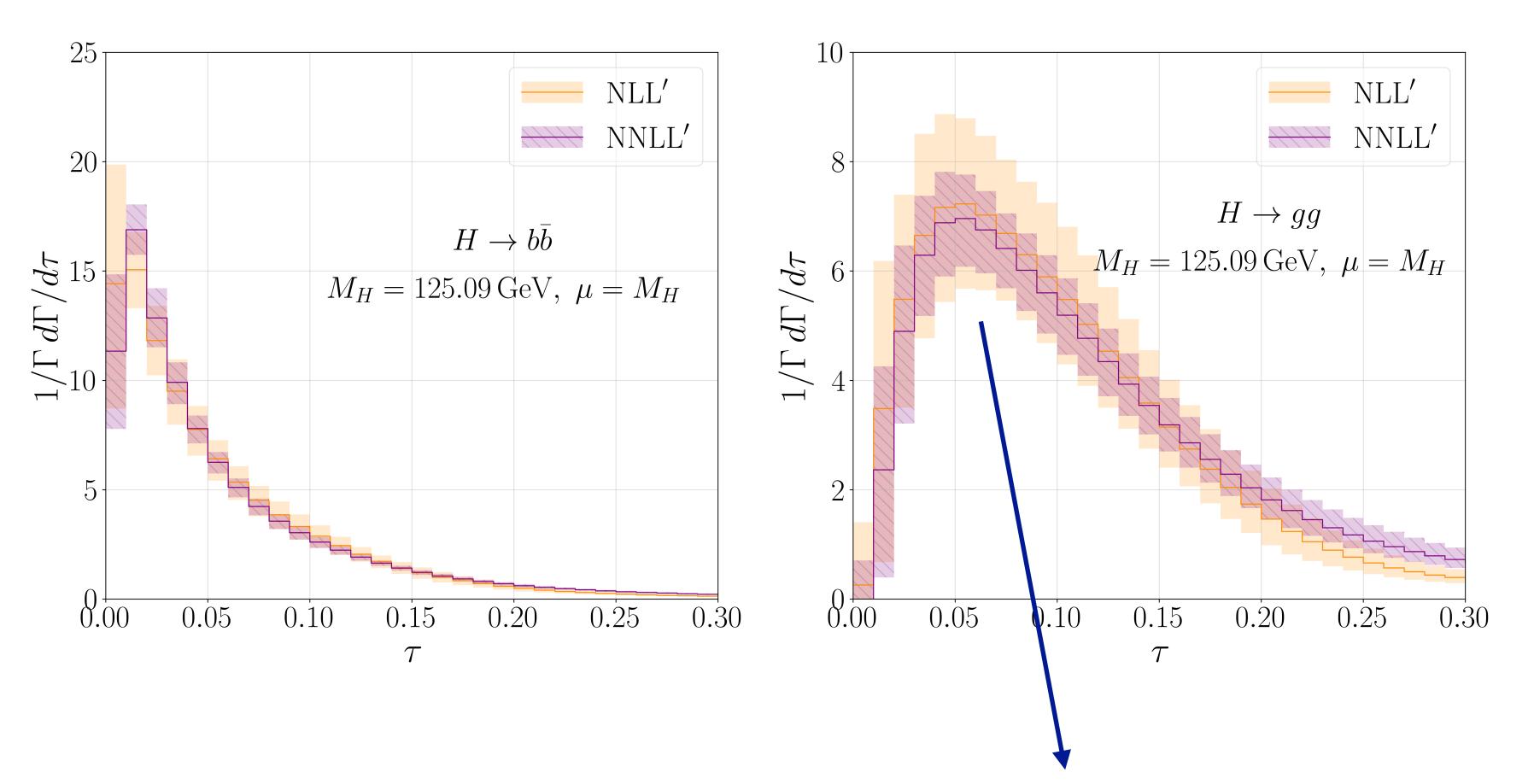




Matched with parton shower

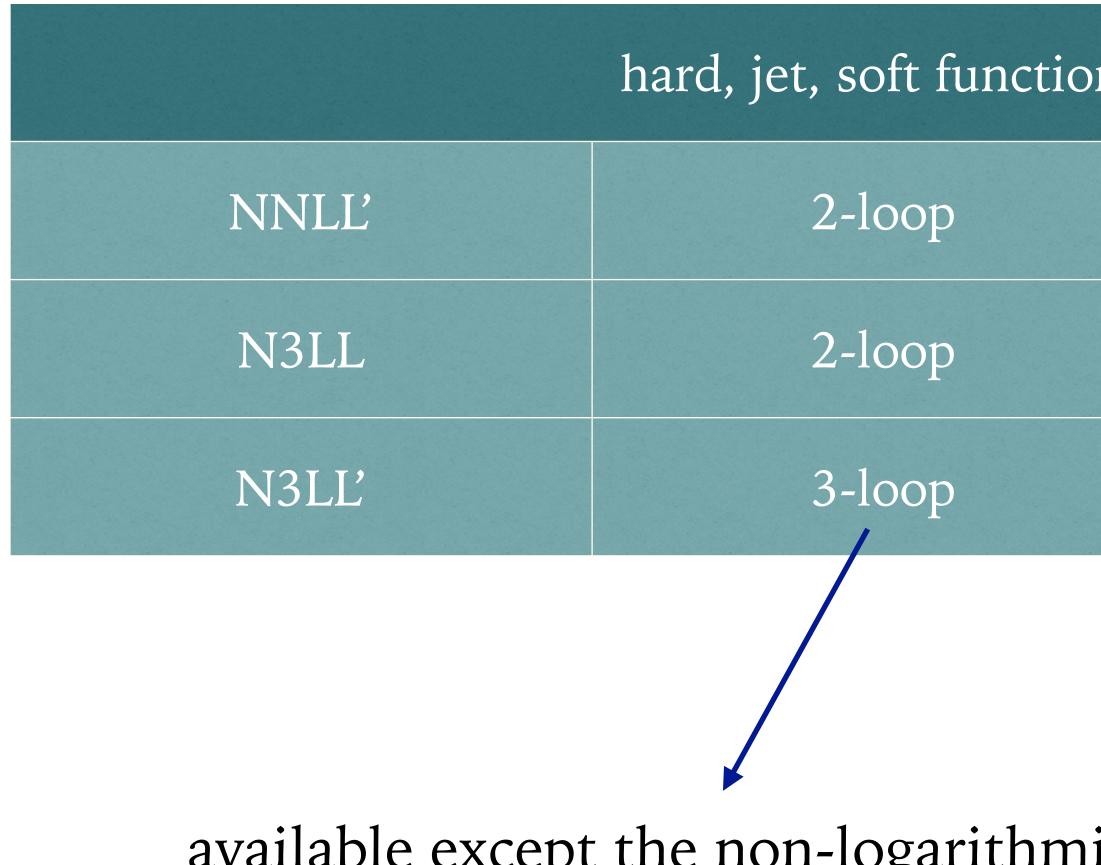


Resummed predictions



Large uncertainties in the gluon channel; N³LL or N³LL' needed?

Towards N³LL' thrust resummation



ons	hard, jet, soft anomalous dimensions	cusp anomalous dimension, beta function
	2-loop	3-loop
	3-loop	4-loop
	3-loop	4-loop
	available	available

available except the non-logarithmic term of the 3-loop soft function

The 3-loop soft function

The non-logarithmic term of the 3-loop soft function for quarks was extracted from the numeric result of EERAD3

$$c_3^S = 2s_3 + 691 = -1998$$

With a Casimir scaling, the corresponding term for gluons

$$c_3^S \sim -$$

A rather large constant term, one might worry about convergence!

Especially it multiplies $\alpha_s(\mu_s)$ at the low scale $\mu_s \sim \tau m_H$

 $88 \pm 1440 \,(\text{stat.}) \pm 4000 \,(\text{syst.})$

Brüser, Liu, Stahlhofen: 1804.09722

- 45000

Towards N³LL' thrust resummation

