
Latest IBP reduction techniques

Tiziano Peraro (Università di Bologna & INFN)

Precision calculations for future e+e− colliders: targets and tools

CERN, 13 June 2022

New challenges in collider physics

• Theoretical predictions at %-level precision

• search of new physics

• test symmetry breaking mechanism of SM

• Crucial high-multiplicity & massive multi-loop processes

1

Scattering amplitudes

• Main process-dependent part of a physical event

• They can be computed in perturbation theory

A ∼ Atree + αA1-loop + α2A2-loops + . . .

• precision ⇒ loops (% level ∼ 2 loops)

• energy ⇒ high multiplicity and mass scales

2

State of the art of loop calculations

• Tree-level and 1 loop

• “essentially” solved and automated

• 2 loops

• great recent progress in 2-loop 5-point processes

• massless internal and external states (max. 1 off-shell leg)

• great progress in 4-pt processes with internal masses

• 3 loops

• recent 2→ 2 results in massless QCD

• 4+ loops

• mostly form factors, anomalous dimensions. . .

• Complexity: # loops, # legs, external/internal masses

3

Loop amplitudes

• An integrand contribution to `-loop amplitude

A =

∫ ∞
−∞

(∏̀
i=1

ddki

)
N

D1D2D3 · · ·

• rational function in the components of loop momenta kj
• polynomial numerator N
• quadratic denominators corresp. to loop propagators

Dj = l2j −m2
j

4

Computing amplitudes: Step 1/3

• Write amplitudes as l.c. of Feynman integrals

A =
∑
j

ajIj

• Dependence on particle-content in rational coeff.s aj

• The integrals should have a “nice”/“standard” form

I =

∫ ∞
−∞

(∏̀
i=1

ddki

)
1

Dν1
1 Dν2

2 Dν3
3 · · ·

, νj Q 0

Dj =

{
l2j −m2

j

lj · vj −m2
j

Non-trivial at

high multiplicity

5

Getting the ”nice” form: Integrand reduction

Ossola, Papadopoulos, Pittau (2007)

• generic contribution to a loop amplitude∫ ∞
−∞

(∏̀
i=1

ddki

)
N (ki)∏
j Dj(ki)

,

• integrand reduction (integrand as sum of irreducible contributions)

N (ki)∏
j Dj(ki)

=
∑

T∈topologies

∑
α

cT,α (mT (ki))
α∏

j∈T Dj(ki)

• the on-shell integrands {mα
T }

• form a complete integrand basis

• can have the ”nice”/”standard” form we want

• fit unknown cT,α

• on multiple cuts {Dj = 0}j∈T (linear system)

• black-box polynomial reconstruction in {Dj} [T.P. (2019)]
6

Getting the ”nice” form alt.: Physical projectors

• Well-known decomposition of amplitudes in tensors and form factors

A =
∑
j

Fj Tj

• Tj tensor structures contracted with external polarizations

• Fj scalar form factors

• Projecting out the form factors

Fj = Pj · A with Pj =
∑
k

(T † · T)−1jk T †k

• traditionally impractical for ≥ 5 legs

• Use four-dimensional external polarization states

[Chen (2019), Tancredi, T.P. (2019,2021)]

• Tj span physical space for four-dim. polarizations

• scales much better with multiplicity

• #indep. structures ' #indep. helicity amplitudes
7

Computing amplitudes: Step 2/3

Chetyrkin, Tkachov (1981), Laporta (2000)

• Feynman integrals obey linear relations, e.g. IBPs∫ (∏
j

ddkj

) ∂

∂kµj
vµ

1

Dν1
1 Dν2

2 · · ·
= 0, vµ =

{
pµi external

kµi loop

• Very large and sparse linear systems

• Reduce to linearly independent Master Integrals (MIs)

{G1, G2, . . .} ⊂ {Ij}

Ij =
∑
k

cjkGk

8

Computing amplitudes: Step 3/3

• The MIs can often be computed analytically

• in terms of special functions (MPLs, elliptic, . . .)

• most effective method is differential equations (DEs)

Kotikov (1991), Gehrmann, Remiddi (2000)

∂xGi =
∑
j

A
(x)
ij Gj

• Great recent progress on (semi-)numerical methods

• differential equations (see e.g. DiffExp, AMFlow)

(also relies on reduction to MIs)

• sector decomposition [Binoth, Heinrich (2000)]

9

Analytic vs algebraic complexity

Analytic complexity

• understanding space of special functions for amplitudes

(especially with massive internal lines)

• appears in: step 3 (computing MIs, e.g. by solving DEs)

Algebraic complexity

• huge intermediate expressions

• appears in: step 1, step 2 and parts of step 3

(e.g. deriving DEs or expanding the amplitude)

⇒ this talk!

10

IBP REDUCTION

Definitions: integral families

• An integral family

I(ν1, . . . , νn) =

∫ ∞
−∞

(∏̀
i=1

ddki

)
1

Dν1
1 · · ·D

νn
n
, νj Q 0

Dj =

{
l2j −m2

j

lj · vj −m2
j

• may include auxiliary denomonators

• all scalar products ki · kj and ki · pj are lin. comb. of Dj

11

Definitions: sectors

I(ν1, . . . , νn) =

∫
1

Dν1
1 · · ·D

νn
n

• the sector S of an integral is identified by the set of

denominators with positive exponents

S (I(ν1, . . . , νn)) = {j|νj > 0}

• linear identities usually generated sector by sector

• symmetries/mappings only valid for specific sectors

12

Laporta algorithm (in a nutshell)

• Integration by parts (IBP)∫
∂

∂kµj
vµ

1

Dν1
1 Dν2

2 · · ·
= 0, vµ =

{
pµi external

kµi loop

and Lorentz invariance (LI) valid for all sectors

• symmetries/mappings (shifts of kj that re-map denominators)

specific to each sector

Laporta algorithm

• generate many identities for specific choices of vµ, νi

• define an ordering (or weight) for the integrals

• solve the (large and sparse) system of equations

• higher weight integrals in terms of lower weight integrals

13

Laporta algorithm

Pros

• systematic, general and easy to automate

• public implementations available (Reduze, Fire, Kira)

• process independent approach

⇒ the most popular and successful reduction method

Cons/Challenges

• linear systems can get huge (with more loops/legs)

• reduction tables can be large/complicated (esp. with more scales)

• large intermediate algebraic expressions

⇒ often a major bottleneck in modern predictions

14

Symbolic reduction

• The idea: solve the identities for generic exponents

• Example:

I(ν1, ν2) ≡
∫
ddk

1

(k2)ν1 ((k + p)2)ν2

one finds e.g.

I(ν1, ν2) =
ν1 + 2ν2 − d− 1

(ν1 − 1)p2
I(ν1 − 1, ν2) +

1

p2
I(ν1, ν2 − 1)

I(ν1, ν2) = I(ν2, ν1), etc. . .

• shifts of symbolic identities often required (Laporta-like)

• harder to automate (available in LiteRed [R. Lee])

• not widely used

15

FINITE FIELDS AND RATIONAL RECONSTRUCTION

Finite fields and functional reconstruction

The main idea

• reconstruct analytic results from numerical evaluations

• evaluation over finite fields Zp (i.e. modulo prime integers p)

Zp = {0, 1, 2, . . . , p− 1}

• use machine-size integers, p < 264 ⇒ fast and exact

• collect numerical evaluations and infer analytic result

• first applications

• linear solvers, IBPs and univariate reconstruction

Kant (2014), von Manteuffel, Schabinger (2014)

• helicity amplitudes and multivariate reconstruction T.P. (2016)

16

Some notable examples

• FinRed (private) [von Manteuffel]

• reduction for 4-loop form factors [von Manteuffel, Schabinger]

• 2-loop 5-pt red.s [Buccioni, Caola, von Manteuffel, Tancredi, et al.]

• FiniteFlow(computational framework) [T.P.]

• 2-loop 4- and 5-point amplitudes (incl. non planar)

[Badger, Brønnum-Hansen, Gehrmann, Hartanto, Henn, Zoia, T.P. et al.]

• Light-like four-loop cusp anomalous dimension

[Henn, T.P., Stahlhofen, Wasser]

• implementation of many new methods (finding identities, DEs. . .)

• Caravel [Abreu, Dormans, Febres Cordero, Ita, Page, Sotnikov, Zeng]

• analytic five-point amplitudes

• FireFly [Klappert, Lange])

• used e.g. by Kira Maierhöfer, Usovitsch, Uwer et al.

• Fire 6 [A.V. Smirnov, F.S. Chuharev]

• 4-loop form factors [Lee, Smirnov, Smirnov, Steinhauser]

17

The black-box interpolation problem

Given a rational function f in the variables z = (z1, . . . , zn) over Q

• Reconstruct analytic form of f , given a numerical procedure

(z, p) −→ f −→ f(z) mod p.

• evaluate f numerically for several z and p

• efficient multivariate reconstruction algorithms exist

e.g. T.P. (2016,2019), Klappert, Lange (2019)

• upgrade analytic f over Q using rational reconstruction algorithm

[Wang (1981)] and Chinese remainder theorem

Zp1 ,Zp2 , . . .→ Zp1p2··· → Q

• sidesteps large intermediate expressions & highly parallelizable

• applicable to any rational algorithm

18

Example: Linear solver

• A n×m linear system with parametric rational entries

m∑
j=1

Aij xj = bi, (i = 1, . . . , n), Aij = Aij(z), bi = bi(z)

• input: list of values for paramers z = (z1, . . . , zn)

• output: solution cij = cij(z) such that

xi =
∑

j∈indep

cij xj + ci0 (i 6∈ indep)

• can be part of a larger algorithm

19

Repeated numerical evaluations over finite fields

Efficient implementations (over finite fields) of numerical algorithms:

• use numerical evaluations to learn/optimize subsequent ones

Example: Linear solver

• learn linearly dependent/independent unknowns

• learn lin. dep. equations (that reduce to 0 = 0)

• filter equations for needed unknowns

• often only a subset of the unknown is needed

• track substitutions during (numerical Gauss elimination)

• filter out equations that are never substituted (directly or

indirectly) into solutions for needed unknowns

20

Finite fields + Rational reconstruction

• Applicable to any rational algorithm

• Sidesteps appearance of large intermediate expressions

• Massively parallelizable

• numerical evaluations are independent of each other

• algorithm-independent parallelization strategy

• Yielded some of the most impressive multi-loop results to date

21

Reduction to master integrals

• IBPs are large and sparse linear systems

• they reduce Feynman integrals Ij to a lin. indep. set of MIs Gj

Ii =
∑
j

cij Gj

• amplitudes and other multi-loop objects can be reduced mod IBPs

A =
∑
j

aj Ij =
∑
jk

aj cjkGk =
∑
j

Aj Gj , with Aj =
∑
k

ak ckj

• final results for Ak often much simpler than cij

⇒ solve IBPs numerically and compute Aj via a matrix multiplication

22

Differential equations for MIs

• The MIs Gk satisfy differential equations

∂xGi =
∑
j

A
(x)
ij Gj

• Identify MIs Gi (e.g. by solving IBPs numerically)

• Compute their derivatives in terms of (non-master) loop integrals

∂xGi =
∑
j

a
(x)
ij Ij

• Reduce the needed integrals modulo IBPs: Ii =
∑
j cij Gj

• The final result is given by a matrix multiplication

A
(x)
ij =

∑
k

a
(x)
ik ckj

• Reconstruct A
(x)
ij analytically from its numerical evaluations

23

Coefficients of the ε-expansion

• If MIs are known in terms of special functions fk

Gj =
∑
k

gjk(ε, x) fk +O(ε),

we compute

A =
∑
k

uk(ε, x) fk+O(ε), where uk(ε, x) =
∑
j

Aj(ε, x) gjk(ε, x)

• what we want is the ε-expansion of the uk(ε, x)

uk(ε, x) =

0∑
j=−p

u
(j)
k (x) εj +O(ε),

• reconstruct in ε only and expand to evaluate u
(j)
k (x)

24

Partial fractions

• reconstructed results (usually) come out collected and

GCD-simplified

• partial fractioning is known to yield simplifications

• multivariate partial fractions require some care

• uniqueness of result

• avoid spurious singularities

f(xi) =
n(xi)

d1(xi)a1 · · · dn(xi)an

• modern implementations require some algebraic geometry
[Abreu, Dormans, Cordero, Ita, Page, Sotnikov (2019)

Boehm, Wittmann, Wu, Xu, Zhang (2020)

Heller, von Manteuffel (MultivariateApart,2021)]

1/dj(xi)→ qj ⇒ reduction mod 〈q1d1(xi)− 1, . . . , qndn(xi)− 1〉

ordering: qj > xi (exact choice can affect the result)

25

Partial fractions and rational reconstruction

• Partial fractioned results are simpler, but they require prior analytic

knowledge of full result

• Simplifying the reconstruction

• guess denominator factors e.g. from the “letters” lk

u(xi) =
n(xi)∏
k lk(xi)

αk

by reconstructing it over univariate slices xi = aiτ + bi
• reconstruct w.r.t. one variable, say x1 (or two, say x1, x2)

• partial fraction univariate (or bivariate) result

• reconstruct dependence w.r.t. all the other xi

• applied e.g. gg → g + γγ at 2 loops

Badger, Brønnum-Hansen, Chicherin, Gehrmann, Hartanto, Henn, Marcoli, Moodie, Zoia, T.P. (2021)

26

SYZYGIES

Lowering the complexity of IBP systems

• IBP relations contain integrals with higher-powers of propagators

0 =

∫
∂

∂kµj
vµ

1

Dν1
1 Dν2

2 · · ·
= −ν1

∫ (
vµ

∂D1

∂kµj

)
1

Dν1+1
1 Dν2

2 · · ·
+ · · ·

• many of these don’t contribute to the amplitude

• can we build a system without them? [Gluza, Kajda, Kosower (2011)]∑
j

∫
∂

∂kµj
vµj

1

Dν1
1 Dν2

2 · · ·
= 0, vµj =

∑
m

αjmp
µ
m +

∑
n

βjnk
µ
n

∑
j

vµj
∂Di
∂kµj

= γiDi, for all i with νi > 0

⇒ syzygy equations for polynomials

αjm = αjm(Di), βjm = βjm(Di), γj = γj(Di)

27

Syzygy equations

• A syzygy equation has the form

f(z) · g(z) =
n∑
j=1

fj(z) gj(z) = 0

• f = {f1, . . . , fn} list of known polynomials

• g = {g1, . . . , gn} list of unknown polynomials

• can be solved via linear algebra by making an ansatz for gj
[see also Schabinger (2012)]

gj(z) =
∑

|α|<αmax

cj,α z
α

• if g(1), . . . ,g(M) are generators of the solutions, then any solution

g(z) =
M∑
j=1

pj(z)g
(j)(z)

with pj polynomials
28

IBPs in the Baikov representation

• The Baikov representation (kµj → zi = Di)

I =

∫ (∏̀
i=1

ddki

)
1

Dν1
1 · · ·D

νn
n

= C

∫
dz1 · · · dzn

B(z1, . . . , zn)
γ

zν11 · · · z
νn
n

with B = Baikov polynomial (a Gram determinant) and

γ = (d− `− e− 1)/2.

• IBPs

0 =
∑
j

∫
∂

∂zj

(
Bγ

aj(z1, . . . , zn)

zν11 · · · z
νn
n

)

0 =
∑
j

∫ ∂aj∂zj
+

γ

B
aj
∂B

∂zj︸ ︷︷ ︸
dim. shifted

− νj
aj
zj︸ ︷︷ ︸

higher powers

 Bγ

zν11 · · · z
νn
n

29

IBPs in the Baikov representation

Ita (2016), Larsen, Zhang (2016)

∑
j

∫ ∂aj∂zj
+

γ

B
aj
∂B

∂zj︸ ︷︷ ︸
dim. shifted

− νj
aj
zj︸ ︷︷ ︸

higher powers

 Bγ

zν11 · · · z
νn
n

= 0

• Syzygy equations∑
j

aj
∂B

∂zj
= b0B (1)

aj = zj bj (for sectors with νj > 0) (2)

for polynomials bj = bj(z1, . . . , zn)

• closed form solutions for (1) and (2) can be (separately) found

[Böhm, Georgoudis, Larsen, Schulze, Zhang (2018)]

30

IBPs in the Baikov representation

Three different approaches:

1. plug (2) into (1) and solve (1)

2. combine solutions of (1) and (2) (module intersections)

[Böhm, Georgoudis, Larsen, Schönemann, Zhang (2018)]

3. take solution of (1) and remove higher-powers of
denominators via Gauss elimination [von Manteuffel]

• 1-to-1 map btw. solutions into linear equations

g(z) =
∑
kα

ck αz
α êk ←→

∑
kα

ck αxk α = 0

• Gauss eliminate unwanted terms ⇔ combination of syzygies

• exploit solvers and rational reconstruction

• avoid reconstruction of complicated solutions

31

IBPs in the Baikov representation

• Syzygies yield new parametric identities for each sector

• Then proceed as in traditional Laporta alg.

• Identities can be used in integrand bases

(see e.g. numerical unitarity [Ita et al. (2016)])

• Can be combined with traditional Laporta identities

(e.g. to fix incomplete reductions or avoid complex syzygy solutions)

• Up to ∼ 10x improvements in efficiency

32

OTHER APPROACHES

The vector space of Feynman integrals

• A family of Feynman integrals {I} is a vector space

• Master Integrals {Gj} are a basis of this vector space

I =
∑
k

ckGk

with rational coefficients {ck}
• Can we directly project into this basis?

• A scalar product would do the job

ck =
∑
j

(G−1)kj (Gj · I), with Gjk ≡ Gj ·Gk

33

Intersection theory

• Consider a set of integrals

〈φ| ∼
∫
φ(z)u(z) dnz, u(z) =

∏
j

Bj(z)
γj

with γj “generic” exponents, u polynomial, φ rational

• Invariance under IBPs

φ→ φ+Di ξ, Di ξ ≡
(
∂zi +

∂ziu

u

)
ξ

• Dual space |φ〉 ∼ uses u→ u−1

• Intersection numbers: a scalar product (univariate case)

〈φL|φR〉 = Resp

[
ψpφR

]
∂zψp +

∂u

u
ψp = φL close to z ∼ p

with p ∈ {poles of ∂zu/u}
34

A scalar product for Feynman integrals (and more)

Mastrolia, Mizera (2019)

Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi, Mizera (2021)

• Intersection theory ⇒ requires a suitable integral form

• Example: Baikov representation

I ∼ 〈φ| ∼
∫
u(z)φ(z) dnz

with

u = Bγ , φ =
1

zν11 · · · z
νn
n

• Int. numbers can be generalized to multivariate case

(recursive algorithm)

• has been shown to work in many examples

35

Intersection Theory and Feynman Integrals: Outlook

• Manifest vector-space structure of integral families

• Some open questions and a few conceptual issues

• Can we implement it in a rational algorithm?

• poles can be in non-rational positions

• polynomial algebra + global residues [see e.g. Weinzierl (2020)]

• Missing public/efficient implementations

• An interesting direction to explore

36

Summary & Outlook

Summary

• IBP reduction is essential for multi-loop predictions

• Great recent progress in Laporta-like approaches

• Finite fields allow to delay analytic reconstruction

(avoid large intermediate expressions)

• Syzygies reduce complexity of the systems

Outlook

• Improving Laporta-like or parametric reductions

• Exploring alternatives, e.g. approaches for direct reduction

37

BACKUP SLIDES

Rational reconstruction

Functional reconstruction

Reconstruct the monomials zα and their coefficients from numerical

evaluations of the function (over finite fields)

• from Q to Zp:

q = a/b ∈ Q −→ q mod p ≡ a× (b−1 mod p) mod p

• how to go back from Zp to Q?

• rational reconstruction algorithm: given c ∈ Zn find its

pre-image q = a/b ∈ Q with “small” a, b [Wang (1981)]

• it’s correct when a, b .
√
n

• make n large enough using Chinese reminder theorem

• solution in Zp1 ,Zp2 . . .⇒ solution in Zp1p2...

Rational reconstruction: example

• Reconstruct q = −611520/341 from its images over finite fields

• Zp1 , with p1 = 897473

a1 = q mod p1 = 13998,

first guess: a1
rational rec. over Zp1−−−−−−−−−−−−→ g1 = −411/577

• Zp2 , with p2 = 909683

a2 = q mod p2 = 835862

g1 mod p2 = 807205 ⇒ guess g1 is wrong

• Chinese reminder: a1, a2 −→ a12 ∈ Zp1p2 , with

p1p2 = 816415931059

a12 ≡ q mod p1p2 = 629669763217
rational rec. over Zp1p2−−−−−−−−−−−−−−→ g2 = −611520

341

• calculation over other fields Zp3 , . . . confirm the guess g2

	Appendix

