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New challenges in collider physics

e Theoretical predictions at %-level precision
e search of new physics
e test symmetry breaking mechanism of SM

e Crucial high-multiplicity & massive multi-loop processes




Scattering amplitudes
M |

e Main process-dependent part of a physical event

They can be computed in perturbation theory
A~ Atree + @ -Al—loop + o A2—Ioops P ooc

e precision = |00ps (% level ~ 2 loops)

energy = high multiplicity and mass scales



State of the art of loop calculations

e Tree-level and 1 loop

e ‘essentially” solved and automated

e 2 loops
e great recent progress in 2-loop 5-point processes
e massless internal and external states (max. 1 off-shell leg)
e great progress in 4-pt processes with internal masses
e 3 loops
e recent 2 — 2 results in massless QCD
e 4+ loops
e mostly form factors, anomalous dimensions. . .
e Complexity: # loops, # legs, external/internal masses



Loop amplitudes

e An integrand contribution to /-loop amplitude
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e rational function in the components of loop momenta k;
e polynomial numerator A/
e quadratic denominators corresp. to loop propagators
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Computing amplitudes: Step 1/3

e Write amplitudes as |.c. of Feynman integrals
./4 = Zajlj
J

e Dependence on particle-content in rational coeff.s a;

e The integrals should have a “nice” / “standard” form
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Getting the "nice” form: Integrand reduction

Ossola, Papadopoulos, Pittau (2007)

e generic contribution to a loop amplitude

/. (Hdd )nDk)>

e integrand reduction (integrand as sum of irreducible contributions)

N(k) cr,a (mp(k;))”
[1; Dj(ki) 2 2 [Lier Di(k:)

the on-shell integrands {m.}

T ctopologies «

e form a complete integrand basis
e can have the "nice" /"standard” form we want

fit unknown cr o

e on multiple cuts {D; = 0};cr (linear system)
e black-box polynomial reconstruction in {D;} [T.P. (2019)]



Getting the "nice” form alt.: Physical projectors

e Well-known decomposition of amplitudes in tensors and form factors

A=) FT;
J
e T tensor structures contracted with external polarizations
e [ scalar form factors

e Projecting out the form factors
Fj=P;-A with =) (T"-1); T}
e traditionally impractical for > 5 Iegsk
e Use four-dimensional external polarization states

[Chen (2019), Tancredi, T.P. (2019,2021)]

e T} span physical space for four-dim. polarizations
e scales much better with multiplicity
e #indep. structures ~ #indep. helicity amplitudes



Computing amplitudes: Step 2/3

Chetyrkin, Tkachov (1981), Laporta (2000)

e Feynman integrals obey linear relations, e.g. |IBPs

ak: D1 Dy? - - k' loop

e Very large and sparse linear systems

e Reduce to linearly independent Master Integrals (Mls)
{Gla G27 ©o } C {I]}

Ij = chk Gk
k



Computing amplitudes: Step 3/3

e The Mls can often be computed analytically

e in terms of special functions (MPLs, elliptic, ...)
e most effective method is differential equations (DEs)
Kotikov (1991), Gehrmann, Remiddi (2000)

8:Gi=Y ADG;
J

e Great recent progress on (semi-)numerical methods
o differential equations (see e.g. DIFFExP, AMFLOW)
(also relies on reduction to Mls)
e sector decomposition [Binoth, Heinrich (2000)]



Analytic vs algebraic complexity

Analytic complexity

e understanding space of special functions for amplitudes

(especially with massive internal lines)

e appears in: step 3 (computing Mls, e.g. by solving DEs)

Algebraic complexity

e huge intermediate expressions

e appears in: step 1, step 2 and parts of step 3

(e.g. deriving DEs or expanding the amplitude)

= this talk!
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IBP REDUCTION



Definitions: integral families

e An integral family

I(Vl,...,yn)_/ (Hdd )Dl’lD”" yj§0

Iy 12/ ) )
14 — m=
I3 Dj:{ J J

e may include auxiliary denomonators

e all scalar products k; - k; and k; - p; are lin. comb. of D;
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Definitions: sectors

1
I(Vl,...,Vn):/M

e the sector S of an integral is identified by the set of
denominators with positive exponents

SI(v,...,vm)) = {jlv; >0}

e linear identities usually generated sector by sector

e symmetries/mappings only valid for specific sectors
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Laporta algorithm (in a nutshell)

e Integration by parts (IBP)

/i ot ; -0 P — pf external
or" " DI DP D s

and Lorentz invariance (LI) valid for all sectors

e symmetries/mappings (shifts of k; that re-map denominators)
specific to each sector

Laporta algorithm

e generate many identities for specific choices of v*, v;

e define an ordering (or weight) for the integrals

e solve the (large and sparse) system of equations

e higher weight integrals in terms of lower weight integrals
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Laporta algorithm

Pros

e systematic, general and easy to automate
e public implementations available (REDUZE, FIRE, KIRA)
e process independent approach

=- the most popular and successful reduction method

Cons/Challenges

e linear systems can get huge (with more loops/legs)
e reduction tables can be large/complicated (esp. with more scales)
e large intermediate algebraic expressions

= often a major bottleneck in modern predictions
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Symbolic reduction

e The idea: solve the identities for generic exponents

e Example:

1
@) (6 + 7)™

I(vy,1) = /ddkz

one finds e.g.

I/1+2l/27d71 1
I L e By VYR | -y 1
(VlaVQ) (Vl — 1)]?2 (Vl 71/2) + p2 (V17V2 )

I(vy,v9) = I(va, 1), ete...

e shifts of symbolic identities often required (Laporta-like)
e harder to automate (available in LITERED [R. Lee])

e not widely used

ii5)



FINITE FIELDS AND RATIONAL RECONSTRUCTION



Finite fields and functional reconstruction

The main idea

e reconstruct analytic results from numerical evaluations

e evaluation over finite fields Z, (i.e. modulo prime integers p)
z,=40,1,2,...,p—1}

e use machine-size integers, p < 264 = fast and exact

e collect numerical evaluations and infer analytic result
e first applications

e linear solvers, IBPs and univariate reconstruction
Kant (2014), von Manteuffel, Schabinger (2014)
e helicity amplitudes and multivariate reconstruction T.P. (2016)
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Some notable examples

e FINRED (private) [von Manteuffel]
e reduction for 4-loop form factors [von Manteuffel, Schabinger]
e 2-loop 5-pt red.s [Buccioni, Caola, von Manteuffel, Tancredi, et al.]
e FINITEFLOW (computational framework) [T.P.]
e 2-loop 4- and 5-point amplitudes (incl. non planar)
[Badger, Brgnnum-Hansen, Gehrmann, Hartanto, Henn, Zoia, T.P. et aI.]
e Light-like four-loop cusp anomalous dimension
[Henn, T.P., Stahlhofen, Wasser]
e implementation of many new methods (finding identities, DEs. .. )
o CARAVEL [Abreu, Dormans, Febres Cordero, Ita, Page, Sotnikov, Zeng]
e analytic five-point amplitudes
e FIREFLY [Klappert, Lange])
e used e.g. by KIRA Maierhéfer, Usovitsch, Uwer et al.
e F'IRE 6 [A.V. Smirnov, F.S. Chuharev]

° 4-|00p form factors [Lee, Smirnov, Smirnov, Steinhauser]
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The black-box interpolation problem

Given a rational function f in the variables z = (z1,...,2,) over Q

e Reconstruct analytic form of f, given a numerical procedure

(z,p) —| f |— f(z) mod p.

e evaluate f numerically for several z and p

e efficient multivariate reconstruction algorithms exist
e.g. T.P. (2016,2019), Klappert, Lange (2019)

e upgrade analytic f over Q using rational reconstruction algorithm
[Wang (1981)] and Chinese remainder theorem

Zp1s Zpyy e = Zpipg —+ Q
e sidesteps large intermediate expressions & highly parallelizable
e applicable to any rational algorithm
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Example: Linear solver

e A n x m linear system with parametric rational entries
m
ZAZ']‘QZ]‘ :bi, (i:1,...,n), Aij :Aij(z), bi:bi(z)
Jj=1

e input: list of values for paramers z = (21, ..., 2y)
e output: solution ¢;; = ¢;;(z) such that
9By = Z Cij Tj + Cio (Z € indep)

j€Eindep

linear
z solver {Cij(z)}

e can be part of a larger algorithm
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Repeated numerical evaluations over finite fields

Efficient implementations (over finite fields) of numerical algorithms:

e use numerical evaluations to learn/optimize subsequent ones

Example: Linear solver

e learn linearly dependent/independent unknowns
e learn lin. dep. equations (that reduce to 0 = 0)
e filter equations for needed unknowns

e often only a subset of the unknown is needed

e track substitutions during (numerical Gauss elimination)

e filter out equations that are never substituted (directly or
indirectly) into solutions for needed unknowns
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Finite fields + Rational reconstruction

Applicable to any rational algorithm

Sidesteps appearance of large intermediate expressions

Massively parallelizable

e numerical evaluations are independent of each other
e algorithm-independent parallelization strategy

Yielded some of the most impressive multi-loop results to date
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Reduction to master integrals

e IBPs are large and sparse linear systems

e they reduce Feynman integrals /; to a lin. indep. set of Mls G;

Ii = ZCU Gj

J
e amplitudes and other multi-loop objects can be reduced mod IBPs

AzZaj[j:Zajc.jka:ZAjGj, WithAj=Zakckj
J Jk J k

e final results for Aj;, often much simpler than ¢;;

= solve IBPs numerically and compute A; via a matrix multiplication

22



Differential equations for Mls

e The Mls G, satisfy differential equations
0:Gi=> AP G,
J

J

Identify Mls G; (e.g. by solving IBPs numerically)

Compute their derivatives in terms of (non-master) loop integrals
(9;5 Gl‘ = Zaff) Ij
J

Reduce the needed integrals modulo IBPs: I; =3~ ¢;; G,

e The final result is given by a matrix multiplication

A =Y a0 e
k

Reconstruct AE;) analytically from its numerical evaluations
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Coefficients of the c-expansion

e If Mls are known in terms of special functions f
G] = Z gjk(E,fL') fk =+ O(E),
k
we compute

A= Z ug (e, x) fr+O0(€), where uy(e, x) Z Aj(e, ) gk (e, )
k

e what we want is the e-expansion of the wug(e, z)

0
ug (e, z) = Z uf@j)(z) e 4 O(e),

e reconstruct in € only and expand to evaluate u(J)( )
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Partial fractions

e reconstructed results (usually) come out collected and
GCD-simplified

e partial fractioning is known to yield simplifications

e multivariate partial fractions require some care

e uniqueness of result
e avoid spurious singularities
n(z;)

o) = gy ey

e modern implementations require some algebraic geometry
[Abreu, Dormans, Cordero, Ita, Page, Sotnikov (2019)
Boehm, Wittmann, Wu, Xu, Zhang (2020)

Heller, von Manteuffel (MULTIVARIATEAPART,2021)]

1/d;j(z:) — q¢; = reduction mod (qidi(z;) — 1,...,gndn(z;) — 1)
ordering: ¢; > x; (exact choice can affect the result)
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Partial fractions and rational reconstruction

e Partial fractioned results are simpler, but they require prior analytic

knowledge of full result
e Simplifying the reconstruction
e guess denominator factors e.g. from the “letters” [

_ n(x;)

[Tk (i)

u(;)

by reconstructing it over univariate slices z; = a;,7 + b;
e reconstruct w.r.t. one variable, say ; (or two, say xy, x3)
e partial fraction univariate (or bivariate) result
e reconstruct dependence w.r.t. all the other z;

e applied e.g. gg — g+ vy at 2 loops

Badger, Brgnnum-Hansen, Chicherin, Gehrmann, Hartanto, Henn, Marcoli, Moodie, Zoia, T.P. (2021)
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SYZYGIES



Lowering the complexity of IBP systems

e |BP relations contain integrals with higher-powers of propagators

0 1 0D, 1
om [t e = [(# OB
/ak; D' DY .. L okl ) DI pre .

e many of these don’t contribute to the amplitude

e can we build a system without them? [Gluza, Kajda, Kosower (2011)]
"0 1 —0 B H "
> gt oo =0 ¥ = Ll + Y Bk

j J m n

D; ..
E v;‘g = = % Ds, for all 7+ with v; > 0
kj

= syzygy equations for polynomials
Ajm = ajm(Di)v Bjm = ﬁjm(Dl)v Vi = /VJ(DZ)
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Syzygy equations

e A syzygy equation has the form

f(2)-g(z) =) _ fi(2) g;(2) =0
Jj=1
o f={f,..., fn} list of known polynomials
e g2=1{g1,...,9n} list of unknown polynomials

e can be solved via linear algebra by making an ansatz for g;
[see also Schabinger (2012)]

GE)= Y Ge

|| <amax

o if g ... g™ are generators of the solutions, then any solution
M
g(z) = > p(2) g9 (2)
j=1

with p; polynomials
28



IBPs in the Baikov representation

e The Baikov representation (kf — 2z =D;)

' B(z1,...,2,)7
d . ) )

with B = Baikov polynomial (a Gram determinant) and
y=(d-{4—e—-1)/2.

e |IBPs
Z1y.vyZn)
0= e AN SRR K VA
> [ ()
da; v OB a; BY
0= 77 W= et -
Z/ 8zj + Ba']aZj Y Zj Zfl"'Zrl;n
J —_——

dim. shifted  higher powers
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IBPs in the Baikov representation

Ita (2016), Larsen, Zhang (2016)

Z/ by o G ay B
. d0z; B 70z 7 2 e

Un
ce e Zn

N——
dim. shifted higher powers

e Syzygy equations

(1)

(for sectors with v; > 0)
for polynomials b; = b;(21,

(2)
ey Zn)

e closed form solutions for (1) and (2) can be (separately) found
[Bohm, Georgoudis, Larsen, Schulze, Zhang (2018)]
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IBPs in the Baikov representation

Three different approaches:
1. plug (2) into (1) and solve (1)

2. combine solutions of (1) and (2) (module intersections)

[Bohm, Georgoudis, Larsen, Schénemann, Zhang (2018)]

3. take solution of (1) and remove higher-powers of
denominators via Gauss elimination [von Manteuffel]
e 1-to-1 map btw. solutions into linear equations

g(z):ZCkazaék — chakaazo

ko ko

e Gauss eliminate unwanted terms < combination of syzygies
e exploit solvers and rational reconstruction
e avoid reconstruction of complicated solutions
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IBPs in the Baikov representation

Syzygies yield new parametric identities for each sector

Then proceed as in traditional Laporta alg.

Identities can be used in integrand bases

(see e.g. numerical unitarity [Ita et al. (2016)])
Can be combined with traditional Laporta identities

(e.g. to fix incomplete reductions or avoid complex syzygy solutions)

Up to ~ 10x improvements in efficiency
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OTHER APPROACHES



The vector space of Feynman integrals

A family of Feynman integrals {I} is a vector space

e Master Integrals {G;} are a basis of this vector space
J= ch Gk
k

with rational coefficients {cy}

e Can we directly project into this basis?

A scalar product would do the job

k=Y (G (Gj-I),  with Gjp=G;- Gy
J
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Intersection theory

e Consider a set of integrals
@~ [ u@ s ue) =] B
J

with 7; “generic” exponents, v polynomial, ¢ rational

e Invariance under IBPs

¢ — ¢+ D¢, Di§:<3z¢+azu>€

e Dual space |¢) ~ uses u — u~?

e |ntersection numbers: a scalar product (univariate case)
(6116R) = Resy[Ypor]

0.y + a—uuwp =¢r close to z ~ p

with p € {poles of d,u/u}
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A scalar product for Feynman integrals (and more)

Mastrolia, Mizera (2019)

Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi, Mizera (2021)

e Intersection theory = requires a suitable integral form

e Example: Baikov representation

i o ] o / u(z) (2) &z

with
1

— o —
u= B, O =—
Zl ce e Zn

e Int. numbers can be generalized to multivariate case

(recursive algorithm)

e has been shown to work in many examples
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Intersection Theory and Feynman Integrals: Outlook

Manifest vector-space structure of integral families

e Some open questions and a few conceptual issues
e Can we implement it in a rational algorithm?

e poles can be in non-rational positions
e polynomial algebra + global residues [see e.g. Weinzierl (2020)]

Missing public/efficient implementations

An interesting direction to explore
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Summary & Outlook

Summary

e |BP reduction is essential for multi-loop predictions

Great recent progress in Laporta-like approaches

Finite fields allow to delay analytic reconstruction

(avoid large intermediate expressions)

Syzygies reduce complexity of the systems

Outlook

e Improving Laporta-like or parametric reductions

e Exploring alternatives, e.g. approaches for direct reduction
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BACKUP SLIDES



Rational reconstruction

Functional reconstruction

Reconstruct the monomials 2% and their coefficients from numerical
evaluations of the function (over finite fields)

o from Q to Z,:
gq=a/be Q@ — gmodp=ax (b~ modp) modp

e how to go back from Z, to Q7

e rational reconstruction algorithm: given ¢ € Z,, find its
pre-image ¢ = a/b € Q with “small” a,b [Wang (1981)]
e it's correct when a,b < \/n

e make n large enough using Chinese reminder theorem

e solution in Z,,,2,, ... = solution in Z, ., .



Rational reconstruction: example

e Reconstruct ¢ = —611520/341 from its images over finite fields
o Z, , with p; = 897473
a; = q mod p; = 13998,

rational rec. over Z,,

first guess: a g1 = —411/577

o Z,,, with pp = 909683
as = q mod py = 835862
g1 mod po = 807205 = guess g1 is wrong

e Chinese reminder: ai,as — a1z € Zp,p,, with
p1p2 = 816415931059

rational rec. over Z,, ;. 611520

a12 = ¢ mod p1ps = 629669763217 9=——

e calculation over other fields Z,, ... confirm the guess g,
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