Modern calculation techniques for multi-scale loop amplitudes

Vasily Sotnikov

University of Zurich \&
Michigan State University

Precision calculations for future $e^{+} e^{-}$colliders: targets and tools,

Outline

1. Introduction
2. Loops \& legs: state of the art
3. Recent developments on the multi-scale frontier
4. Towards $e^{+} e^{-} \rightarrow 4 j @$ NNLO QCD
5. Discussion

Introduction

Precision at future $e^{+} e^{-}$colliders

- Measure EW \& Higgs observables, α_{s} to unprecedented precision
- Discovery via precision: search anomalous deviations from SM
- Sub-percent uncertainties
- Theoretical input crucial

Fixed order partonic cross sections

Collinear factorization:

Loops \& legs: state of the art

Loops\&legs: state of the art

Loops\&legs: state of the art

Warning: a biased selection of references!

Loops\&legs: state of the art

Warning: a biased selection of references!

Dynamic and fixed scales

Dynamic scales

- Mandelstam invariants $s_{i j}$, off-shell legs p_{i}^{2}
- Monte Carlo integrals over phase space
$\int \mathrm{d} \Phi_{n}\left(s_{i j}, p_{i}^{2}\right)\left|\mathcal{A}_{2 \rightarrow n}\left(s_{i j}, p_{i}^{2}\right)\right|^{2}$
- Need fast and robust numerical evaluation of $\mathcal{A}_{2 \rightarrow n}$ over phase space

Fixed scales

- Particle (complex) masses, e.g. m_{t}, m_{W}
- Mathematical complexity can escalate very quickly [see Stefan's talk]
- With few dynamic scales can profit the most from numerical methods [see talks by Vitalii, Janusz, Martijn, Xiao]

Recent developments on the multi-scale frontier

Structure of analytic loop amplitudes

Goal: fast and stable evaluation over whole physical phase space

Recent developments on the multi-scale frontier

Transcendental part

Feynman integrals: the canonical way

Feynman integrals: the canonical way

Feynman integrals: the canonical way

- proliferation of spurious branch cuts
- analytic continuation
- explosion of number of MPLs

Special function basis construction

[Chicherin, VS, Zoia '21] (see also [Chicherin, Vs '20] [Badger, Hartanto, Zoia '21])

Special function basis construction

[Chicherin, VS, Zoia '21] (see also |Chicherin, VS '20| [Badger, Hartanto, Zoia '21])

Vector subspace, weight-graded

$$
\mathbf{G}=\bigoplus_{w} \mathbf{G}^{(w)}
$$

+ shuffle product

$$
\mathbf{G}^{w_{1}} \times \mathbf{G}^{\left(w_{2}\right)} \mapsto \mathbf{G}^{\left(w_{1}+w_{2}\right)}
$$

Chen iterated integrals [Chen '77]

$$
\begin{aligned}
& {\left[W_{1}, \ldots, W_{n}\right]_{\gamma}=} \\
& \int_{0}^{1} \mathrm{~d} \log W_{n}\left(t_{n}\right) \cdots \int_{0}^{t_{2}} \mathrm{~d} \log W_{n}\left(t_{1}\right)
\end{aligned}
$$

Basis in $\mathbf{G}^{(w)}$ mod products

$$
\left[W_{1}, \ldots, W_{r}\right]_{\gamma}\left[W_{r+1}, \ldots, W_{n}\right]_{\gamma}
$$

\checkmark complete

$$
=\sum_{\mathrm{i} \in \text { shuffles }}\left[W_{i_{1}}, \ldots, W_{i_{n}}\right]_{\gamma}
$$

\checkmark non-redundant
\checkmark amplitudeology friendly

Example: two-loop five-point one-mass integrals

One-mass kinematics
e.g. $p p \rightarrow V j j$, $e^{+} e^{-} \rightarrow 4 j$

Example: two-loop five-point one-mass integrals

Canonical DE

Planar

[Abreu, Ita, Moriello, Page, Tschernow, Zeng '20]

Hexa-box

[Abreu, Ita, Page, Tschernow '21]

GPL results

[Papadopoulos, Tommasini, Wever '15]
[Canko, Papadopoulos, Syrrakos '20] [Syrrakos '20]
[Kardos, Papadopoulos, Smirnov, Syrrakos, Wever '22]

Function basis (planar)
[Badger, Hartanto, Zoia '21] color-ordered, numerical evaluation
[Chicherin, VS, Zoia '21]

One-mass kinematics
e.g. $p p \rightarrow V j j$. $e^{+} e^{-} \rightarrow 4 j$

$p_{1}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}$

Semi-numerical DE solution

DiffExp [Moriello '19] [Hidding '20] AMFLow [Liu, Ma, Wang '17] [Liu, Ma '21]

Initial values, validation, small scale sampling

Example: planar function basis

+24 permutations $\left\{p_{2}, p_{3}, p_{4}, p_{5}\right\}$

Numerical evaluation

Weights 1 and 2

Well-defined combinations of \log , Li_{2} functions

Weights 3 and 4

- Numerical one-fold integration [Caron-Huot, Henn '14] of analytic integrands
\Longrightarrow exponential convergence [Takahasi, Mori '73]
- No crossing of physical thresholds \Longrightarrow no analytic continuation needed
- Dedicated series expansions around spurious singularities

Numerical performance

All functions: any one mass planar five-point amplitude in all "crossings"

Sample over physical phase space

(vs. quad precision targets)
[Chicherin, VS, Zoia '21]

Available as a C++ library PentagonFunctions++ https://gitlab.com/pentagon-functions/PentagonFunctions-cpp
(also Mathematica interface)
So far the only method to get to $2 \rightarrow 3$ cross sections!
[Czakon, Mitov, Poncelet '21] [Chen, Gehrmann, Glover, Huss, Marcoli '21] [Chawdry, Czakon, Mitov, Poncelet '21] [Kallweit, VS, Wiesemann '20] [Badger, Gehrmann, Marcoli, Moodie '21] [Hartanto, Poncelet, Popescu, Zoia '22]

Recent developments on the multi-scale frontier

Rational coefficients

Rational coefficients: algebraic complexity

Numerical unitarity: universal ansatz

Build ansatz for integrand of full amplitude:
Master terms

$$
\begin{aligned}
& \mathcal{A}\left(\ell_{l}\right)=\sum_{\Gamma} \sum_{i \in M_{\Gamma} \cup S_{\Gamma}} c_{\Gamma, i} \frac{m_{\Gamma, i}\left(\ell_{l}\right)}{\prod_{j} \rho_{\Gamma, j}} \\
& \begin{array}{c}
\text { Surface terms } \\
\text { terms } \\
\text { naster integrals upon loop integration }
\end{array}
\end{aligned}
$$

coefficients of master integrals

Generalization of one-loop unitarity methods:
[Bern, Dixon, Kosower, Dunbar '94, '95] [Britto, Feng, Cachazo '05] [Ossola, Papadopoulos, Pittau '07]
[Ellis, Giele, Kunszt '08] [Giele, Kunszt, Melnikov '08]

Related work
[Badger, Frellesvig, Zhang '12] [Zhang '12] [Mastrolia, Mirabella, Ossola, Peraro '13]
[Ita '15] [Mastrolia, Peraro, Primo '16] [Abreu, Febres Cordero, Ita, Jaquier, Page, Zeng '17]

Numerical unitarity: universal ansatz

Build ansatz for integrand of full amplitude:
Master terms
coefficients of master integrals

$$
\begin{aligned}
& \qquad \mathcal{A}\left(\ell_{l}\right)=\sum_{\Gamma} \sum_{i \in M_{\Gamma} \cup S_{\Gamma}} c_{\Gamma, i} \frac{m_{\Gamma, i}\left(\ell_{l}\right)}{\prod_{j} \rho_{\Gamma, j}} \\
& \begin{array}{c}
\text { Surface terms } \\
\text { vanish upon loop integration }
\end{array} \\
& \text { terms } \\
& \text { master integrals }
\end{aligned}
$$

Surface terms produced from unitarity-compatible IBPs [Gluza, Kadja, Kosower '11]:

$$
\int\left(\prod_{l} \mathrm{~d}^{D} \ell_{l}\right) \sum_{l} \frac{\partial}{\partial \ell_{l}^{\nu}}\left(\frac{u_{l}^{\nu} m\left(\ell_{l}\right)}{\prod_{j \in P_{\Gamma}} \rho_{j}}\right)=0, \quad u_{l}^{\nu} \frac{\partial}{\partial \ell_{l}^{\nu}} \rho_{j}=f_{j} \rho_{j}
$$

Generating vectors u_{l}^{ν} from computational algebraic geometry (e.g. with Singular) [Ita '15] [Larsen, Zhang '15] [Georgoudis, Larsen, Zhang '16] [Abreu, Febres Cordero, Ita, Page, Zeng '17]
[Böhm, Georgoudis, Larsen, Schulze, Zhang '17]

- Targeted set of identities for each Γ
- Eliminate linear dependencies with on-shell conditions $\rho_{j}=0, j \in P_{\Gamma}$ imposed
- No need to invert IBP systems at this stage

Numerical unitarity: cut equations

Obtain coefficients $c_{\Gamma, i}$ from linear systems of cut equations:

$$
\lim _{\ell_{l} \rightarrow \ell_{l}^{\Gamma}}\left(\mathcal{A}\left(\ell_{l}\right) \prod_{j} \rho_{j}\right)=\sum_{i} c_{\Gamma, i} m_{\Gamma, i}+\begin{gathered}
\text { topologies with more propagators } \\
\text { (from previous steps) }
\end{gathered}
$$

on-shell limit for $\Gamma \quad|\mid \quad$ Unitarity \rightarrow factorization into product of trees

Implemented in C++ library Caravel
[Abreu, Dormans, Febres Cordero, Ita, Kraus, Page, Pascual, Ruf, VS '20]

Coravel

Analytic results from finite-field evaluations

[Abreu, Dormans, Febres Cordero, Ita, Page, VS '19]
[Heller, von Manteuffel '21][Böhm, Wittmann, Wu, Xu, Zhang '20]
[Bendle, Böhm, Heymann, Ma, Rahn, Ristau, et al. '21]

Multivariate partial fractioning

Analytic results from finite-field evaluations

[Abreu, Dormans, Febres Cordero, Ita, Page, VS '19]
[Heller, von Manteuffel '21][Böhm, Wittmann, Wu, Xu, Zhang '20]
[Bendle, Böhm, Heymann, Ma, Rahn, Ristau, et al. '21]

Multivariate partial fractioning

Compact expressions
A. Large number of samples

Analytic results from finite-field evaluations

[Abreu, Dormans, Febres Cordero, Ita, Page, VS '19] [Heller, von Manteuffel '21][Böhm, Wittmann, Wu, Xu, Zhang '20]
[Bendle, Böhm, Heymann, Ma, Rahn, Ristau, et al. '21]

Analytic results from finite-field evaluations

[Abreu, Dormans, Febres Cordero, Ita, Page, VS '19]
[Heller, von Manteuffel '21][Böhm, Wittmann, Wu, Xu, Zhang '20]

Towards $e^{+} e^{-} \rightarrow 4 j$ © NNLO QCD

Two-loop amplitudes for $V j j$ production at hadron colliders

[Abreu, Febres Cordero, Ita, Klinkert, Page, VS '21]

$$
\begin{gathered}
p p \rightarrow V j j, \quad V=W, Z / \gamma^{*} \\
\longrightarrow \ell \bar{\ell}
\end{gathered}
$$

Helicity amplitudes

$$
\begin{aligned}
& \mathcal{M}\left(\bar{q}_{p_{1}}^{+}, \mathrm{g}_{p_{2}}^{h_{2}}, \mathrm{~g}_{p_{3}}^{h_{3}}, q_{p_{4}}^{-} ; \bar{\ell}_{p_{5}}^{+}, \ell_{p_{6}}^{-}\right) \\
& \mathcal{M}\left(\bar{q}_{p_{1}}^{+}, Q_{p_{2}}^{h}, \bar{Q}_{p_{3}}^{-h}, q_{p_{4}}^{-} ; \bar{\ell}_{p_{5}}^{+}, \ell_{p_{6}}^{-}\right)
\end{aligned}
$$

- $N_{c} \rightarrow \infty, N_{f} \sim N_{c}, 5$ FNS, no top loops

$$
\mathcal{M}_{\kappa}=\mathcal{M}_{\kappa}^{(0)}\left(1+\frac{\alpha_{s}}{2 \pi} \tilde{\mathcal{M}}_{\kappa}^{(1)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \tilde{\mathcal{M}}_{\kappa}^{(2)}+\ldots\right), \quad \text { for } \kappa=\mathrm{g}, Q
$$

$$
\mathcal{M}_{\mathrm{g}}^{(k)} \xrightarrow{\text { L.C. }}\left(\frac{N_{c}}{2}\right)^{k} \sum_{\sigma \in S_{2}}\left(T^{a_{\sigma(3)}} T^{a_{\sigma(2)}}\right)_{i_{4}}^{\bar{i}_{1}} \sum_{j=0}^{k}\left(\frac{N_{f}}{N_{c}}\right)^{j} \mathcal{A}_{\mathrm{g}}^{(k)[j]}
$$

$$
\mathcal{M}_{q}^{(k)} \xrightarrow{\text { L.C. }}\left(\frac{N_{c}}{2}\right)^{k} \delta_{i_{2}}^{\bar{i}_{1}} \delta_{i_{4}}^{\bar{i}_{3}} \sum_{j=0}^{k}\left(\frac{N_{f}}{N_{c}}\right)^{j} \mathcal{A}_{q}^{(k)[j]}
$$

Analytic reconstruction

Numerical reduction (in \mathbb{F}_{p}) to finite remainders expressed in basis of pentagon functions [Chicherin, VS, Zoia '21]

$$
\mathcal{R}^{(2)}=\mathcal{A}^{(2)}-\mathbf{I}^{(1)} \mathcal{A}^{(1)}-\mathbf{I}^{(2)} \mathcal{A}^{(0)}=\sum_{\overrightarrow{\mathbf{i}}} r_{\overrightarrow{\mathbf{i}}}(\overrightarrow{\boldsymbol{s}}) \boldsymbol{g}^{\overrightarrow{\mathbf{i}}}
$$

with Caravel.
Black-box reconstruction too hard: would require 10^{7} samples, each few minutes!

- Denominators are letters of the alphabet,

$$
r_{i}=\frac{n_{i}}{\prod_{j=1}^{37} W_{j}^{q_{i j}}}, \quad\left(\text { recall: } \quad \mathrm{d} \vec{g}=\epsilon\left(\sum_{i} \mathrm{~d} \log W_{i} A_{i}\right) \vec{g}\right)
$$

\Longrightarrow exponents $q_{i j}$ from univariate reconstruction

- Reconstruct in one variable $s_{23} \rightarrow$ partial fraction \rightarrow dense ansatz for polynomials in remaining variables
- Maximal ansatz size 500 k , exploit special structure of Vandermonde matrix to invert in $\mathcal{O}\left(N^{2}\right)$

Analytic results available at http://www.hep.fsu.edu/~ffebres/W4partons

From $p p \rightarrow V j j$ to $e^{+} e^{-} \rightarrow 4 j$

Analytic results for 6-point helicity amplitudes in the form

$$
\mathcal{R}=\sum_{\overrightarrow{\mathbf{i}}} r_{\overrightarrow{\mathbf{i}}}(\overrightarrow{\boldsymbol{s}}) g^{\overrightarrow{\mathbf{i}}(\overrightarrow{\boldsymbol{s}})}
$$

alternatively we know the vector current

$$
\mathcal{R}^{\mu}=\sum_{\overrightarrow{\mathbf{i}}} r_{\overrightarrow{\mathbf{i}}}^{\mu}(\overrightarrow{\boldsymbol{s}}) \boldsymbol{g}^{\overrightarrow{\mathbf{i}}}(\overrightarrow{\boldsymbol{s}}), \quad \mathcal{R}^{\mu} J_{\mu}, \quad J_{\mu}=\frac{\kappa}{s_{56}-M_{v}^{2}+\mathrm{i} \Gamma_{v} M_{v}} \bar{u}\left(p_{6}\right) \gamma_{\mu} v\left(p_{5}\right)
$$

Crossing from scattering to decay kinematics

- Attach appropriate lepton current; permutations, charge/parity conjugation of $r_{\overrightarrow{\mathbf{i}}}^{\mu}(\overrightarrow{\boldsymbol{s}})$ trivial
- Special function basis constructed for scattering kinematics $2 \rightarrow 3$.

Need to redo the construction [Chicherin, VS, Zoia '21] for decay kinematics $1 \rightarrow 4$.

Nonplanar contributions

- All subleading in N_{c} not included, likely suppressed
- Contribution proportional to $\sum_{f} Q_{f}$ not small?

Summary

- Loop amplitudes remain major bottleneck in precision of theoretical predictions
- Future $e^{+} e^{-}$colliders will benefit from advances in calculation techniques for the LHC
- Two-loop QCD corrections for $2 \rightarrow 3$ processes, mixed QCD×EW corrections for $2 \rightarrow 2$ are becoming a reality

Main lessons

- Multiscale calculations require new techniques and ideas
- Large final-state phase space \Longrightarrow loop amplitudes must evaluate fast
- Good grasp on analytic structure of Feynman integrals and associated function spaces has been essential
- Judicious combination of analytic and numerical methods fruitful

Discussion

Analytic vs numerical methods: rational

Analytic reconstruction from samples in \mathbb{F}_{p}

- Best bet so far: framework for educated guess work, we hope to get much better at it!
- Also useful for deriving DEs for Feynman integrals
- Can we handle even more scales comfortably?
- Special function basis needed

Fully numerical?

- Numerical (floating point) amplitude reduction is in principle possible right now (e.g. Caravel)
- But: slow due to severe numerical instabilities in integral reduction, cancellations between Feynman integrals \Longrightarrow high intermediate precision needed
- Can developments by [Lang, Pozzorini, Schär, Zhang, Zoller] (OpenLoops@2loops) help with this? [see Max's talk]

Analytic vs numerical methods: Feynman integrals

Analytic

\checkmark MPLs successful for $2 \rightarrow 2$, also with masses, when possible
\checkmark For $2 \rightarrow 3$ up to two loops "pentagon functions" method, when possible
? Biggest issue: general class of functions not understood, even mathematically [see Stefan's talk]

(Semi-)numerical

Solutions of DEs by matching local series expansions [see talks by Martijn, Xiao]
\checkmark Successfully sidestep analytic complexity with few dynamic scales
\checkmark Even very difficult multi-scale integrals integrals can be tackled [Liu, Ma '21]
? Still too slow for many dynamic scales?

To the shopping list

Basically there

- $e^{+} e^{-} \rightarrow 4 j, \alpha_{s}^{2}$ (also as a $4 f$ background)

Still difficult, but imaginable with incremental progress

- $e^{+} e^{-} \rightarrow 3 j, \alpha_{s}^{3} \quad$ (do we need $\alpha_{s} \alpha$?)
- $e^{+} e^{-} \rightarrow 5 j, \alpha_{s}^{2}$
- $e^{+} e^{-} \rightarrow Q Q j, \alpha_{s}^{2}$, massive b

Terrifying

α^{2} corrections to five-point functions

- $e^{+} e^{-} \rightarrow \nu \nu H$
- $e^{+} e^{-} \rightarrow l^{+} l^{-} H$

A break-through in understanding of elliptic Feynman integrals might be required

Acknowledgments

This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, Novel structures in scattering amplitudes (grant agreement No. 725110).

This work has received funding from the Swiss National Science Foundation (SNF) under contract 200020-204200 and from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme grant agreement 101019620 (ERC Advanced Grant TOPUP).

