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Introduction



Precision at future e+e− colliders

� Measure EW & Higgs observables, αs to

unprecedented precision

� Discovery via precision: search anomalous

deviations from SM

� Sub-percent uncertainties

� Theoretical input crucial

[1910.11775]
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Fixed order partonic cross sections
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Loops & legs: state of the art



Loops&legs: state of the art
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Loops&legs: state of the art
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Dynamic and fixed scales

Dynamic scales

� Mandelstam invariants sij ,

off-shell legs p2
i

� Monte Carlo integrals over phase

space∫
dΦn (sij , p

2
i )
∣∣A2→n(sij , p

2
i )
∣∣2

� Need fast and robust numerical

evaluation of A2→n over phase space

Fixed scales

� Particle (complex) masses, e.g.

mt,mW

� Mathematical complexity can

escalate very quickly [see Stefan’s talk]

� With few dynamic scales can profit

the most from numerical methods

[see talks by Vitalii, Janusz, Martijn, Xiao]

4/22



Recent developments on the
multi-scale frontier



Structure of analytic loop amplitudes
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Recent developments on the
multi-scale frontier

Transcendental part



Feynman integrals: the canonical way
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Feynman integrals: the canonical way
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Feynman integrals: the canonical way
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Special function basis construction
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Special function basis construction
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Example: two-loop five-point one-mass integrals
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Example: two-loop five-point one-mass integrals
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Example: planar function basis
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Numerical evaluation

Weights 1 and 2

Well-defined combinations of log, Li2
functions

Weights 3 and 4

� Numerical one-fold integration [Caron-Huot, Henn ’14] of analytic integrands

=⇒ exponential convergence [Takahasi, Mori ’73]

� No crossing of physical thresholds =⇒ no analytic continuation needed

� Dedicated series expansions around spurious singularities
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Numerical performance

All functions: any one mass

planar five-point amplitude in

all “crossings”

Sample over physical phase

space
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PentagonFunctions++

Avg. time per point: 0.22s

(vs. quad precision targets) [Chicherin, VS, Zoia ’21]

Available as a C++ library PentagonFunctions++

https://gitlab.com/pentagon-functions/PentagonFunctions-cpp

(also Mathematica interface)

So far the only method to get to 2→ 3 cross sections!

[Czakon, Mitov, Poncelet ’21] [Chen, Gehrmann, Glover, Huss, Marcoli ’21] [Chawdry, Czakon, Mitov, Poncelet ’21]

[Kallweit, VS, Wiesemann ’20] [Badger, Gehrmann, Marcoli, Moodie ’21] [Hartanto, Poncelet, Popescu, Zoia ’22]
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Recent developments on the
multi-scale frontier

Rational coefficients



Rational coefficients: algebraic complexity
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Numerical unitarity: universal ansatz

Build ansatz for integrand of full amplitude:

A(`l) =
∑
Γ

∑
i∈MΓ∪SΓ

cΓ,i
mΓ,i(`l)∏
j ρΓ,j

Master terms

coefficients of master integrals

Surface terms

vanish upon loop integration

Generalization of one-loop unitarity methods:

[Bern, Dixon, Kosower, Dunbar ’94, ’95] [Britto, Feng, Cachazo ’05] [Ossola, Papadopoulos, Pittau ’07]

[Ellis, Giele, Kunszt ’08] [Giele, Kunszt, Melnikov ’08]

Related work

[Badger, Frellesvig, Zhang ’12] [Zhang ’12] [Mastrolia, Mirabella, Ossola, Peraro ’13]

[Ita ’15] [Mastrolia, Peraro, Primo ’16] [Abreu, Febres Cordero, Ita, Jaquier, Page, Zeng ’17]
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Numerical unitarity: universal ansatz

Build ansatz for integrand of full amplitude:

A(`l) =
∑
Γ

∑
i∈MΓ∪SΓ

cΓ,i
mΓ,i(`l)∏
j ρΓ,j

Master terms

coefficients of master integrals

Surface terms

vanish upon loop integration

Surface terms produced from unitarity-compatible IBPs [Gluza, Kadja, Kosower ’11]:

∫ (∏
l

dD`l

)∑
l

∂

∂`νl

(
uνl m(`l)∏
j∈PΓ

ρj

)
= 0, uνl

∂

∂`νl
ρj = fjρj

Generating vectors uνl from computational algebraic geometry (e.g. with Singular) [Ita ’15]

[Larsen, Zhang ’15] [Georgoudis, Larsen, Zhang ’16] [Abreu, Febres Cordero, Ita, Page, Zeng ’17]

[Böhm, Georgoudis, Larsen, Schulze, Zhang ’17]

� Targeted set of identities for each Γ

� Eliminate linear dependencies with on-shell conditions ρj = 0, j ∈ PΓ imposed

� No need to invert IBP systems at this stage
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Numerical unitarity: cut equations

Obtain coefficients cΓ,i from linear systems of cut equations:

lim
`
l
→`Γ

l

(
A(`l)

∏
j

ρj

)
=
∑
i

cΓ,i mΓ,i +
topologies with more propagators

(from previous steps)

on-shell limit for Γ

=

Unitarity→ factorization into product of trees

Solve cut equations numerically

X analytic integrand or individual Feynman

diagrams not needed

X numerical IBP reduction included

X suitable for floating point and finite fields

Implemented in C++ library Caravel

[Abreu, Dormans, Febres Cordero, Ita, Kraus, Page, Pascual, Ruf, VS ’20]
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Analytic results from finite-field evaluations
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Analytic results from finite-field evaluations
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Towards e+e− → 4j @ NNLO QCD



Two-loop amplitudes for V jj production at hadron colliders
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Analytic reconstruction

Numerical reduction (in Fp) to finite remainders expressed in basis of pentagon functions

[Chicherin, VS, Zoia ’21]

R(2) = A(2) − I(1)A(1) − I(2)A(0) =
∑
~i

r~i(~s) g
~i

with Caravel.

Black-box reconstruction too hard: would require 107 samples, each few minutes!

� Denominators are letters of the alphabet,

ri =
ni∏37

j=1 W
qij
j

,

(
recall: d~g = ε

(∑
i

d logWi Ai

)
~g

)

=⇒ exponents qij from univariate reconstruction

� Reconstruct in one variable s23 → partial fraction → dense ansatz for polynomials in

remaining variables

� Maximal ansatz size 500k, exploit special structure of Vandermonde matrix to invert in

O(N2)

Analytic results available at http://www.hep.fsu.edu/~ffebres/W4partons
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From pp → V jj to e+e− → 4j

Analytic results for 6-point helicity amplitudes in the form

R =
∑
~i

r~i(~s) g
~i(~s)

alternatively we know the vector current

Rµ =
∑
~i

rµ
~i

(~s) g
~i(~s), RµJµ, Jµ =

κ

s56 −M2
v + i ΓvMv

ū(p6)γµv(p5)

Crossing from scattering to decay kinematics

� Attach appropriate lepton current; permutations, charge/parity conjugation of rµ
~i

(~s)

trivial

� Special function basis constructed for scattering kinematics 2→ 3.

Need to redo the construction [Chicherin, VS, Zoia ’21] for decay kinematics 1→ 4.

Nonplanar contributions

� All subleading in Nc not included, likely suppressed

� Contribution proportional to
∑
f Qf not small?

Q̄

Q
ℓ

ℓ̄

q

q̄

V
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Summary

� Loop amplitudes remain major bottleneck in precision of theoretical predictions

� Future e+e− colliders will benefit from advances in calculation techniques for the LHC

� Two-loop QCD corrections for 2→ 3 processes, mixed QCDxEW corrections for 2→ 2

are becoming a reality

Main lessons

� Multiscale calculations require new techniques and ideas

� Large final-state phase space =⇒ loop amplitudes must evaluate fast

� Good grasp on analytic structure of Feynman integrals and associated function spaces has

been essential

� Judicious combination of analytic and numerical methods fruitful
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Discussion



Analytic vs numerical methods: rational

Analytic reconstruction from samples in Fp

� Best bet so far: framework for educated guess work, we hope to get much better at it!

� Also useful for deriving DEs for Feynman integrals

� Can we handle even more scales comfortably?

� Special function basis needed

Fully numerical?

� Numerical (floating point) amplitude reduction is in principle possible right now (e.g.

Caravel)

� But: slow due to severe numerical instabilities in integral reduction, cancellations between

Feynman integrals =⇒ high intermediate precision needed

� Can developments by [Lang, Pozzorini, Schär, Zhang, Zoller] (OpenLoops@2loops) help with this?

[see Max’s talk]
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Analytic vs numerical methods: Feynman integrals

Analytic

X MPLs successful for 2→ 2, also with masses, when possible

X For 2→ 3 up to two loops “pentagon functions” method, when possible

? Biggest issue: general class of functions not understood, even mathematically

[see Stefan’s talk]

(Semi-)numerical

Solutions of DEs by matching local series expansions [see talks by Martijn, Xiao]

X Successfully sidestep analytic complexity with few dynamic scales

X Even very difficult multi-scale integrals integrals can be tackled [Liu, Ma ’21]

? Still too slow for many dynamic scales?
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To the shopping list

Basically there

� e+e− → 4j, α2
s (also as a 4f background)

Still difficult, but imaginable with incremental progress

� e+e− → 3j, α3
s (do we need αsα?)

� e+e− → 5j, α2
s

� e+e− → QQj, α2
s, massive b

Terrifying

α2 corrections to five-point functions

� e+e− → ννH

� e+e− → l+l−H

A break-through in understanding of elliptic Feynman integrals might be required
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