
OpenLoops @ 2 loops

M. F. Zoller

based on
JHEP 05 (2022) 161 [arXiv:2201.11615]

in collaboration with
S. Pozzorini and N. Schär

CERN workshop “Precision calculations for future e+e− colliders: targets and tools”, 13th May 2022

https://arxiv.org/abs/2201.11615

Scattering amplitudes in perturbation theory
Hard scattering amplitudes for Monte Carlo simulations are computed in perturbation
theory from matrix elements

M̄ = M̄0 + M̄1 + M̄2 + . . .

with M̄0 = + +. . . , M̄1 = q1 +. . . , M̄2 = q1 q2 +. . .

Partonic cross sections
σ̂ =

∫
dΦN︸ ︷︷ ︸

N -particle phase space
integration, flux factor

W + ∑
X

∫
dΦN+X W(X)

︸ ︷︷ ︸
contribution with X extra

unresolved particles

computed from colour- and helicity-summed scattering probability density

W = ∑̄
h,col︸ ︷︷ ︸

colour and helicity sum with
average and symmetry factor

∣∣∣∣RM̄∣∣∣∣2 = ∑̄
h,col

 |M̄0|2︸ ︷︷ ︸
LO

+ 2 Re
M̄∗0 RM̄1


︸ ︷︷ ︸

NLO virtual

+ |RM̄1|2 + 2 Re
M̄∗0 RM̄2


︸ ︷︷ ︸

NNLO virtual-virtual

+ . . .



with UV divergences subtracted by the renormalisation procedure R M̄ = M̄0+R M̄1+R M̄2+. . .

1

OpenLoops

OpenLoops [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, M.Z.] is a fully automated numerical tool
for the computation of scattering probability densities from tree and one-loop amplitudes

W00 = ∑̄
h,col
|M̄0|2, W01 = ∑̄

h,col
2 Re

M̄∗0RM̄1
, W11 = ∑̄

h,col
|RM̄1|2

Download from https://gitlab.com/openloops/OpenLoops.git

• Full NLO QCD and NLO EW corrections available
• Excellent CPU performance and numerical stability ← Crucial for real-virtual contributions

Real-emission contributions up to NNLO available in OpenLoops

W(1)
00 = ∑̄

h,col
|M̄(1)

0 |2, W(1)
01 = ∑̄

h,col
2 Re

M̄(1)∗
0 RM̄(1)

1
, W(2)

00 = ∑̄
h,col
|M̄(2)

0 |2

M̄0 = + . . ., M̄(1)
0 = + . . ., M̄(2)

0 = + . . ., M̄1 = q1 + . . ., M̄(1)
1 = + . . ., M̄2 = q1 q2 + . . .

W02 = ∑̄
h,col

2 Re
M̄∗0RM̄2

 required for NNLO, but no fully automated tool available
⇒ OpenLoops for two-loop amplitudes highly desirable

2

https://gitlab.com/openloops/OpenLoops.git

Outline

I. One-loop amplitudes

→ OpenLoops algorithm for tree and one-loop amplitudes

II. Two-loop amplitudes

→ New algorithm for two-loop integrands

→ Numerical stability and CPU efficiency

III. OpenLoops features @ 1 loop and 2 loop

V. Summary and Outlook

3

I. One-loop amplitudes
One-loop diagram Γ in D = 4− 2ε dimensions

M̄1,Γ = C1,Γ︸ ︷︷ ︸
colour factor

∫
dq̄1
N̄ (q̄1)
D(q̄1)

= D0

D1

D2

DN−1

q1

D(q̄1) = N−1∏
i=0

Dk(q̄1),

Dk(q̄1) = (q̄1 + pk)2 −m2
k,

∫
dq̄1 = µ2ε

∫ dD

q̄1
(2π)D

Numerical tools, such as OpenLoops [Buccioni et al], Recola [Actis et al], MadLoop [Hirschi et al],
construct the numerator in 4 dimensions (D-dim quantities with bar, 4-dim without)

N (q1)︸ ︷︷ ︸
4−dim

= N̄ (q̄1)︸ ︷︷ ︸
D−dim

∣∣∣∣∣∣∣∣∣∣q̄i → qi,
γ̄µ̄ → γµ,
ḡµ̄ν̄ → gµν

⇒ M1,Γ = C1,Γ
R1∑
r=0

Nµ1···µr︸ ︷︷ ︸
tensor coefficient

∫
dq̄1

q
µ1
1 · · · q

µr1
1

D(q̄1)︸ ︷︷ ︸
tensor integral

Steps of the calculation
• Construction of tensor coefficients

• Reduction of tensor integrals and
evaluation of master integrals

• Restoration of ε-dim numerator
parts Ñ (q̄1) = N̄ (q̄1)−N (q1)

← OpenLoops algorithm [van Hameren; Cascioli, Maierhöfer,

Pozzorini; Buccioni, Lang, Lindert, Pozzorini, Zhang, M.Z.]

← On-the-fly reduction [Buccioni, Pozzorini, M.Z.] and
Collier [Denner, Dittmaier, Hofer],OneLoop [van Hameren]

← Rational counterterms [Ossola, Papadopoulos, Pittau]

4

The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

Example: M0 = + . . .

Numerical recursion step:

wαa = = ×
sub-tree wb

sub-tree wc

=
Xα
βγ(kb, kc)
k2
a −m2

a︸ ︷︷ ︸
universal building block
from Feynman rules

w
β
b wγc

Generic depiction: α wa

ka

= α

wb

wc

kb

kc

(ki external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams

5

The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

Example: M0 = + . . . → split into subtrees

Numerical recursion step:

wαa = = ×
sub-tree wb

sub-tree wc

=
Xα
βγ(kb, kc)
k2
a −m2

a︸ ︷︷ ︸
universal building block
from Feynman rules

w
β
b wγc

Generic depiction: α wa

ka

= α

wb

wc

kb

kc

(ki external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams

5

The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

Example: M0 = + . . . → connect subtrees

Numerical recursion step:

wαa = = ×
sub-tree wb

sub-tree wc

=
Xα
βγ(kb, kc)
k2
a −m2

a︸ ︷︷ ︸
universal building block
from Feynman rules

w
β
b wγc

Generic depiction: α wa

ka

= α

wb

wc

kb

kc

(ki external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams

5

The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

Example: M0 = + . . . → connect subtrees

Numerical recursion step:

wαa = = ×
sub-tree wb

sub-tree wc

=
Xα
βγ(kb, kc)
k2
a −m2

a︸ ︷︷ ︸
universal building block
from Feynman rules

w
β
b wγc

Generic depiction: α wa

ka

= α

wb

wc

kb

kc

(ki external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams

5

The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

Example: M0 = + . . . → connect subtrees

Numerical recursion step:

wαa = = ×
sub-tree wb

sub-tree wc

=
Xα
βγ(kb, kc)
k2
a −m2

a︸ ︷︷ ︸
universal building block
from Feynman rules

w
β
b wγc

Generic depiction: α wa

ka

= α

wb

wc

kb

kc

(ki external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams

5

The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

Example: M0 = + . . . → connect diagram

Numerical recursion step:

wαa = = ×
sub-tree wb

sub-tree wc

=
Xα
βγ(kb, kc)
k2
a −m2

a︸ ︷︷ ︸
universal building block
from Feynman rules

w
β
b wγc

Generic depiction: α wa

ka

= α

wb

wc

kb

kc

(ki external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams

5

The OpenLoops algorithm at one loop
High complexity in loop diagram Γ due to analytical structure in loop momentum q

M1,Γ =

wN−1wN

w1 w2

D0

D1

D2

DN−1

q = C1,Γ
∫

dDq S1(q)· · ·SN (q)
D0· · ·DN−1

Scalar propagators Di(q) = (q + pi)2 −m2
i

Factorisation into colour factor C1,Γ
and loop segments

Si(q) =
βi−1

wi

ki

Di

βi

= {Y iσ(ki, pi)+Ziν;σ q
ν}wσi

Universal building block × subtree(s)

Cut-open loop at D0

N0(q) = 11 =
β0

w1

D1

w2

D2

w3

D3

wN−1

DN−1

wN

D0

βN

︸ ︷︷ ︸
undressed segments

Open loop is a matrix with two Lorentz/spinor indices β0, βN

6

The OpenLoops algorithm at one loop
High complexity in loop diagram Γ due to analytical structure in loop momentum q

M1,Γ =

wN−1wN

w1 w2

D0

D1

D2

DN−1

q = C1,Γ
∫

dDq S1(q)· · ·SN (q)
D0· · ·DN−1

Scalar propagators Di(q) = (q + pi)2 −m2
i

Factorisation into colour factor C1,Γ
and loop segments

Si(q) =
βi−1

wi

ki

Di

βi

= {Y iσ(ki, pi)+Ziν;σ q
ν}wσi

Universal building block × subtree(s)

Dress chain of segments (open loop) recursively

N1(q) = N0(q)S1(q) = S1(q) =
β0

w1

D1

β1

w2

D2

w3

D3

wN−1

DN−1

wN

D0

βN

︸ ︷︷ ︸
dressed

︸ ︷︷ ︸
undressed segments= N (1) +N (1)

µ1 q
µ1

Recursion steps can increase the rank in q by 1.

6

The OpenLoops algorithm at one loop
High complexity in loop diagram Γ due to analytical structure in loop momentum q

M1,Γ =

wN−1wN

w1 w2

D0

D1

D2

DN−1

q = C1,Γ
∫

dDq S1(q)· · ·SN (q)
D0· · ·DN−1

Scalar propagators Di(q) = (q + pi)2 −m2
i

Factorisation into colour factor C1,Γ
and loop segments

Si(q) =
βi−1

wi

ki

Di

βi

= {Y iσ(ki, pi)+Ziν;σ q
ν}wσi

Universal building block × subtree(s)

Dress chain of segments (open loop) recursively

N2(q) = N1(q)S2(q) =
2∏
i=1

Si(q) =
β0

w1

D1

w2

D2

β2

w3

D3

wN−1

DN−1

wN

D0

βN

︸ ︷︷ ︸
dressed

︸ ︷︷ ︸
undressed segments= N (2) +N (2)

µ1 q
µ1 +N (2)

µ1µ2q
µ1qµ2

Recursion steps are matrix multiplications:
Nn(q)

βn
β0

=
Nn−1(q)

βn−1

β0

Sn(q)
βn
βn−1

6

The OpenLoops algorithm at one loop
High complexity in loop diagram Γ due to analytical structure in loop momentum q

M1,Γ =

wN−1wN

w1 w2

D0

D1

D2

DN−1

q = C1,Γ
∫

dDq S1(q)· · ·SN (q)
D0· · ·DN−1

Scalar propagators Di(q) = (q + pi)2 −m2
i

Factorisation into colour factor C1,Γ
and loop segments

Si(q) =
βi−1

wi

ki

Di

βi

= {Y iσ(ki, pi)+Ziν;σ q
ν}wσi

Universal building block × subtree(s)

Dress chain of segments recursively → Close loop by contracting β0 and βN

NN (q) = NN−1(q)SN (q) =
N∏
i=1

Si(q) =
β0

w1

D1

w2

D2

w3

D3

wN−1

DN−1

wN

D0

βN

︸ ︷︷ ︸
dressed segments=

N∑
r=0
N (N)
µ1...µrq

µ1 . . . qµr

Recursion steps Nn(q) = Nn−1(q)Sn(q) at the level of tensor coefficients N (n)
µ1...µr

Completely general and highly efficient algorithm
6

Born-loop interference
Scattering probability density from interference of one-loop diagrams Γ with full Born

W01,Γ = ∑̄
h,col

2 Re
M̄∗0RM̄1,Γ

 ⇒ W01 = ∑
Γ
W01,Γ

Consider colour-helicity summed numerator ⇒ nested sums of helicities hi of individual segments

U(q, 0) = ∑
h

2
∑

col
M∗0(h)C1,Γ


︸ ︷︷ ︸

=U0(h)

N (q, h) = ∑
hN

 . . .
∑
h2


∑
h1
U0(h)S1(q, h1)

S2(q, h2) · · ·

Sn(q, hN)

On-the-fly helicity summation [Buccioni, Pozzorini, M.Z.]

Un(q, ȟn) = ∑
hn
Un−1(q, ȟn−1)Sn(q, hn) = ∑

h1...hn

∑
col

wn+1wN

w1 wn

Born ×
wn+1wN

w1 wn

1-loop

Un(q, ȟn) = n∑
r=0
U (n)
µ1...µr q

µ1 . . . qµr depends on helicity ȟn =
N∑

k=n+1
hk of undressed segments

Implemented at the level of tensor integral coefficients U (n)
µ1...µr

Huge gain in CPU efficiency, especially for high-multiplicity processes

7

One-loop rational terms

Amputated one-loop diagram γ (1PI)

M̄1,γ = C1,γ︸ ︷︷ ︸
colour factor

∫
dq̄1
N (q1) + Ñ (q̄1)
D(q̄1)

= D0

D1

D2

DN−1

q1 ⇒ δR1,γ = C1,γ
∫

dq̄1
Ñ (q̄1)
D(q̄1)

The ε-dim numerator parts Ñ (q̄1) = N̄ (q̄1)−N (q1) contribute only via interaction with 1
ε UV poles

⇒ Can be restored through rational counterterm δR1,γ [Ossola, Papadopoulos, Pittau]

⇒ RM̄1,γ︸ ︷︷ ︸
D−dim, renormalised

= M1,γ︸ ︷︷ ︸
4−dim numerator

+ δZ1,γ + δR1,γ︸ ︷︷ ︸
UV and rational counterterm

Generic one-loop diagram Γ factorises into 1PI subdiagram γ and external subtrees wi (4-dim):

M̄1,Γ =

wN−1wN

w1 w2

=
M̄1,γ

σ1...σN N∏
i=1

[wi]σi ⇒
RM̄1,Γ =M1,Γ +

(
δZ1,γ + δR1,γ

) N∏
i=1

wi
︸ ︷︷ ︸

tree diagram

Finite set of process-independent rational terms in renormalisable models
computed from UV divergent vertex functions

8

II. Two-loop amplitudes
Two-loop diagram Γ in D = 4− 2ε dimensions

M̄2,Γ = C2,Γ︸ ︷︷ ︸
colour factor

∫
dq̄1

∫
dq̄2
N̄ (q̄1, q̄2)
D(q̄1, q̄2)

=

q1 q2 with the D-dim denominator
D(q̄1, q̄2) = ∏

i

∏
k
D

(i)
k (q̄i)

D
(i)
k (q̄i) = (q̄i + pik)2 −m2

ik

Numerical construction requires N (q1, q2)︸ ︷︷ ︸
4−dim

= N̄ (q̄1, q̄2)︸ ︷︷ ︸
D−dim

∣∣∣∣∣∣∣∣∣∣q̄i → qi, γ̄µ̄ → γµ, ḡµ̄ν̄ → gµν

⇒ M2,Γ = C2,Γ︸ ︷︷ ︸
colour

R1∑
r1=0

R2∑
r2=0

Nµ1···µr1ν1···νr2︸ ︷︷ ︸
tensor coefficient

∫
dDq1

∫
dDq2

q
µ1
1 · · · q

µr1
1 qν1

2 · · · q
νr2
2

D(q1, q2)︸ ︷︷ ︸
tensor integral

Steps of the calculation
• Construction of tensor coefficients
• Reduction and evaluation of tensor integrals
• Restoration of Ñ (q̄1, q̄2) = N̄ (q̄1, q̄2)−N (q1, q2)

← Now fully implemented
← Not yet automated
← Two-loop rational terms

[Lang, Pozzorini, Zhang, M.Z.]

9

Two-loop rational terms
Start from renormalisation procedure for (1PI) diagram Γ in D-dim

RM̄2,Γ = M̄2,Γ + ∑
γ
δZ1,γ · M̄1,Γ/γ︸ ︷︷ ︸

subtract
subdivergences

+ δZ2,Γ︸ ︷︷ ︸
subtract remaining
local divergence

Sum over all subdiagrams γ of Γ. Numerator dimension Dn = D.

Example: R



Dn =D

=

 + δZ1,γ + δZ2,Γ


Dn =D

Extension from single diagrams to full vertex functions Γ due to linearity of R

Goal: Computation from amplitudes with numerator dimension Dn = 4

• Split numerator N̄ (q̄1, q̄2) = N (q1, q2) + Ñ (q̄1, q̄2)

• Compute amplitudes on lhs with N (q1, q2) = N̄ (q̄1, q̄2)
∣∣∣∣∣∣ḡµ̄ν̄→gµν , γ̄µ̄→γµ, q̄i→qi

• Restore Ñ -terms (from subdiagrams and a remaining global one) through additional counterterms

10

Two-loop rational terms
Renormalised D-dim amplitudes from amplitudes with 4-dim numerator [Pozzorini, Zhang, M.Z.]

RM̄2,Γ =M2,Γ +∑
γ

 δZ1,γ + δZ̃1,γ︸ ︷︷ ︸
subtract

subdivergences

+ δR1,γ︸ ︷︷ ︸
restore Ñ -terms
from subdiagrams

 ·M1,Γ/γ +
 δZ2,Γ︸ ︷︷ ︸

subtract remaining
local divergence

+ δR2,Γ︸ ︷︷ ︸
restore remaining
Ñ -term



Example:

RM̄2,Γ =

 +
(
δZ1,γ + δZ̃1,γ + δR1,γ

)
+

(
δZ2,Γ + δR2,Γ

) 
4-dim
numerators

• Divergences from subdiagrams γ and remaining global one subtracted by usual UV counterterms
δZ1,γ, δZ2,Γ. Additional UV counterterm δZ̃1,γ ∝

q̃12
ε for subdiagrams with mass dimension 2.

• δR2,Γ is a two-loop rational term stemming from the interplay of Ñ with UV poles

• External subtrees factorise and do not generate rational terms (see one-loop case)

• Extension from single diagrams to full vertex functions due to linearity of R

⇒ Finite set of process-independent rational terms for UV divergent vertex functions

11

Two-loop rational terms
Renormalised D-dim amplitudes can be computed from amplitudes with 4-dim numerators and a
finite set of universal UV and rational counterterms inserted lower-loop amplitudes

RM̄2,Γ = M2,Γ + ∑
γ

δZ1,γ + δZ̃1,γ + δR1,γ
 · M1,Γ/γ +

δZ2,Γ + δR2,Γ


Status of two-loop rational terms

• General method for the computation of rational counterterms of UV origin from simple
tadpole integrals in any renormalisable model [Pozzorini, Zhang, M.Z.,2020]

• Complete renormalisation scheme dependence [Lang, Pozzorini, Zhang, M.Z.,2020]

• Rational Terms for Spontaneously Broken Theories [Lang, Pozzorini, Zhang, M.Z.,2021]

• Full set of two-loop rational terms for QED and QCD corrections to the SM
[Pozzorini, Zhang, M.Z.,2020] [Lang, Pozzorini, Zhang, M.Z.,2020] [Lang, Pozzorini, Zhang, M.Z.,2021]

• Rational terms of IR origin currently under investigation

12

https://arxiv.org/abs/2001.11388
https://arxiv.org/abs/2007.03713
https://arxiv.org/abs/2107.10288
https://arxiv.org/abs/2001.11388
https://arxiv.org/abs/2007.03713
https://arxiv.org/abs/2107.10288

Reducible two-loop diagrams

Reducible diagram Γ factorises into one-loop diagrams and a tree-like bridge P (or quartic vertex)

M2,Γ =

w(1)
1

w(1)

N1−1

D(1)
0

D(1)
1

D(1)

N1−1

q1

P

w(2)
N2

w(2)
2

D(2)

N2−1

D(2)
1

D(2)
0

q2

= C2,Γ Pα1α2
2∏
i=1

∫
dq̄i

N (i)(qi)
αi

D(i)(q̄i)

with D(i)(q̄i) = D
(i)
0 (q̄i) · · ·D(i)

Ni−1(q̄i) , D(i)
a (q̄i) = (q̄i + pia)2 −m2

ia

Loop numerators factorise
into segments

S
(i)
a (qi, h

(i)
a) =

β
(i)
a−1

w(i)

a

kia

β(i)
a

=
Y aσ (kia, pia) + Ziν;σ q

ν
i

︸ ︷︷ ︸
Feynman rule of loop
vertex and propagator

w(i)
a (h(i)

a)
σ

︸ ︷︷ ︸
external subtree with
helicity configuration h(i)

a

• Cut-open both loops and dress first one
• Close and integrate first loop, attach bridge
• Use first loop + bridge as “subtree” for second loop
⇒ Extension of the tree and one-loop algorithm

w(1)
1

w(1)

N1−1

D(1)
0

D(1)
1

D(1)

N1−1

q1

w(B)
1 w(B)

NB

w(2)
N2

w(2)
2

D(2)

N2−1

D(2)
1

D(2)
0

q2

Fully implemented for QED and QCD corrections to the SM

13

New algorithm to construct two-loop tensor coefficients

Amplitude of irreducible two-loop diagram Γ (1PI on amputation of all external subtrees):

M2,Γ =

w(1)
1

w(1)
2

w(1)

N1−1

D(1)
0

D(1)
1

D(1)

N1−1

w(3)
1

w(3)

N3−1

D(3)
0

D(3)
N3−1

w(2)
1

w(2)
2

w(2)

N2−1

D(2)
0

D(2)
1

D(2)

N2−1

V0

V1

q1 q2

q3

= C2,Γ
∫

dDq1
∫

dDq2
N (q1, q2)
3∏
i=1
D(i)(qi)

∣∣∣∣∣∣q3→−(q1+q2)

Exploit factorisation of numerator N (q1, q2) = 3∏
i=1
N (i)(qi)

1∏
j=0
Vj(q1, q2)

• Three chains, each depending on a single loop momentum qi (i = 1, 2, 3)

with chain numerators factorising into loop segments N (i)(qi) = S
(i)
0 (qi) · · ·S

(i)
Ni−1(qi)

→ Same structure as one-loop chain
• Two connecting vertices V0,V1

• Chain denominators D(i)(qi) = D
(i)
0 (qi) · · ·D

(i)
Ni−1(qi) where D

(i)
a (qi) = (qi + pia)2−m2

ia
(External momenta pia and masses mia along i-th chain)

14

General structure of a recursive two-loop algorithm

Final result: Helicity and colour–summed Born–loop interference U(q1, q2)

= ∑
h
U0(h)


3∏
i=1

Ni−1∏
k=0

S
(i)
k (qi, h

(i)
k)

 β
(i)
Ni

β
(i)
0︸ ︷︷ ︸

chain N (i)


V0(q1, q2, h

(V)
0)

β
(1)
0 β

(2)
0 β

(3)
0

V1(q1, q2, h
(V)
1)


β

(1)
N1β

(2)
N2β

(3)
N3︸ ︷︷ ︸

connecting vertices (quartic vertices with external subtrees w(V)
a)

with Born–colour factor U0(h) = 2
 ∑

col
M∗0(h)C2,Γ



Algorithm with recursion steps Ûn = Ûn−1 · Kn =
R1∑
r=0

R2∑
s=0
Û (n)
µ1···µrν1···νsq

µ1
1 . . . q

µr
1 qν1

2 . . . qνs2

with partially dressed numerators Ûn and building blocks Kn ∈
U0, S

(i)
k ,Vj,N (i)

.
• Each step increases the rank in a qi by 0 or 1
• Segment S(i)

k , Vj depend on helicities of external subtrees

⇒ global helicity h = 3∑
i=1

Ni−1∑
k=0

h
(i)
k + h

(V)
0 + h

(V)
1

• High complexity in steps connecting Vj due to dependence
on q1, q2 and three open Lorentz/spinor indices β(i)

k

• Number of tensor coefficients grows exponentially with ranks R1, R2

Number of tensor components
R2

R1 0 1 2 3
0 1 5 15 35
1 5 25 75 175
2 15 75 225 525
3 35 175 525 1225
4 70 350 1050 2450
5 126 630 1890 4410

15

General structure of a recursive two-loop algorithm

Final result: Helicity and colour–summed Born–loop interference U(q1, q2)

= ∑
h
U0(h)


3∏
i=1

Ni−1∏
k=0

S
(i)
k (qi, h

(i)
k)

 β
(i)
Ni

β
(i)
0︸ ︷︷ ︸

chain N (i)


V0(q1, q2, h

(V)
0)

β
(1)
0 β

(2)
0 β

(3)
0

V1(q1, q2, h
(V)
1)


β

(1)
N1β

(2)
N2β

(3)
N3︸ ︷︷ ︸

connecting vertices (quartic vertices with external subtrees w(V)
a)

with Born–colour factor U0(h) = 2
 ∑

col
M∗0(h)C2,Γ



Algorithm with recursion steps Ûn = Ûn−1 · Kn =
R1∑
r=0

R2∑
s=0
Û (n)
µ1···µrν1···νsq

µ1
1 . . . q

µr
1 qν1

2 . . . qνs2

with partially dressed numerators Ûn and building blocks Kn ∈
U0, S

(i)
k ,Vj,N (i)

.
CPU cost of n-th step ∼ number of (#) multiplications → depends on type of Kn and
components of Ûn = (# tensor components in q1, q2) × (# active helicities) × 4(# open indices β(i)

a)

⇒ Most efficient algorithm found through cost simulation
of possible candidates for a wide range of QED and QCD Feynman diagrams

16

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

Example:

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

Order of chains and of two-loop vertices V0,V1 has major impact on efficiency
17

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

Example: n = 0

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

N (3)
n (q3, ĥ

(3)
n) = N (3)

n−1(q3, ĥ
(3)
n−1) · S(3)

n (q3, h
(3)
n) with initial condition N (3)

−1 = 11

18

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

Example: n = 1

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

N (3)
n (q3, ĥ

(3)
n) = N (3)

n−1(q3, ĥ
(3)
n−1) · S(3)

n (q3, h
(3)
n) with initial condition N (3)

−1 = 11

◦ Shortest chain ⇒ Low number of helicity d.o.f. ĥ(3)
n = ĥ

(3)
n−1 + h

(3)
n and low rank in q3

◦ Partial chains N (3)
n computed only once for multiple diagrams

⇒ Only a small number of low-complexity steps for the full process
18

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

Example: n = 0

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (1)
n (q1, ȟ

(1)
n) = ∑

h
(1)
n

U (1)
n−1(q1, ȟ

(1)
n−1) · S(1)

n (q1, h
(1)
n) with U (1)

−1(h) = 2
 ∑

col
M∗0(h)︸ ︷︷ ︸

Born

C2,Γ︸ ︷︷ ︸
colour



19

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

Example: n = 1

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (1)
n (q1, ȟ

(1)
n) = ∑

h
(1)
n

U (1)
n−1(q1, ȟ

(1)
n−1) · S(1)

n (q1, h
(1)
n) with U (1)

−1(h) = 2
 ∑

col
M∗0(h)︸ ︷︷ ︸

Born

C2,Γ︸ ︷︷ ︸
colour



On-the-fly summation of segment helicities h(1)
n

⇒ Partial chains depend on remaining helicities of the diagram ȟ
(1)
n = h− n∑

k=1
h

(1)
k

19

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

Example: n = 2

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (1)
n (q1, ȟ

(1)
n) = ∑

h
(1)
n

U (1)
n−1(q1, ȟ

(1)
n−1) · S(1)

n (q1, h
(1)
n) with U (1)

−1(h) = 2
 ∑

col
M∗0(h)︸ ︷︷ ︸

Born

C2,Γ︸ ︷︷ ︸
colour



On-the-fly summation of segment helicities h(1)
n

⇒ Partial chains depend on remaining helicities of the diagram ȟ
(1)
n = h− n∑

k=1
h

(1)
k

19

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

Example: n = 3

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (1)
n (q1, ȟ

(1)
n) = ∑

h
(1)
n

U (1)
n−1(q1, ȟ

(1)
n−1) · S(1)

n (q1, h
(1)
n) with U (1)

−1(h) = 2
 ∑

col
M∗0(h)︸ ︷︷ ︸

Born

C2,Γ︸ ︷︷ ︸
colour



On-the-fly summation of segment helicities h(1)
n

⇒ Partial chains depend on remaining helicities of the diagram ȟ
(1)
n = h− n∑

k=1
h

(1)
k

⇒ Large portion of helicity d.o.f already summed over during dressing of longest chain
19

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

Example:

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (13)
1 (q1, q3, h

(2) + h
(V)
0) = ∑

h(3)

∑
h

(V)
1

U (1)(q1, ȟ
(1)
N1−1) N (3)(q3, h

(3)) V1(q1, q3, h
(V)
1)

◦ On-the-fly summation of chain helicity h(3) (and potential subtree helicity at V1)

20

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

Example:

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (123)
−1 (q1, q2, h

(2)) = ∑
h

(V)
0

U (13)
1 (q1, q3, h

(2) + h
(V)
0) V0(q1, q1, h

(V)
0)

∣∣∣∣∣∣q3→−(q1+q2)

◦ Partial diagram depends on undressed chain helicity h(2) and two open indices

21

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example: n = 0

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (123)
n (q1, q2, h̃

(2)
n) = ∑

h
(2)
n

U (123)
n−1 (q1, q2, h̃

(2)
n−1) S(2)

n (q2, h
(2)
n)

22

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example: n = 1

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (123)
n (q1, q2, h̃

(2)
n) = ∑

h
(2)
n

U (123)
n−1 (q1, q2, h̃

(2)
n−1) S(2)

n (q2, h
(2)
n)

On-the-fly summation of segment helicities h̃(2)
n =

N2−1∑
k=n+1

h
(2)
k

⇒ Partial diagram depends only on helicities of remaining undressed segments

22

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example: n = 2

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (123)
n (q1, q2, h̃

(2)
n) = ∑

h
(2)
n

U (123)
n−1 (q1, q2, h̃

(2)
n−1) S(2)

n (q2, h
(2)
n)

On-the-fly summation of segment helicities h̃(2)
n =

N2−1∑
k=n+1

h
(2)
k

⇒ Partial diagram depends only on helicities of remaining undressed segments

⇒ Lowest complexity in helicities for steps with highest rank in loop momenta
22

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example:

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

Exploit diagram factorisation for full process:

UA + UB =
(
UA,n · Sn+1 · · ·SN

)
+

(
UB,n · Sn+1 · · ·SN

)
=

(
UA,n + UB,n

)
· Sn+1 · · ·SN

Merge partially dressed diagrams with same topology and subsequent recursion steps

23

Two-loop algorithm for irreducible diagrams

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example:

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

Exploit diagram factorisation for full process:

UA + UB =
(
UA,n · Sn+1 · · ·SN

)
+

(
UB,n · Sn+1 · · ·SN

)
=

(
UA,n + UB,n

)
· Sn+1 · · ·SN

Merge partially dressed diagrams with same topology and subsequent recursion steps

Highly efficient and completely general algorithm for two-loop tensor coefficients

Fully implemented for QED and QCD corrections to the SM
23

Numerical stability

Pseudo-tree test

• Cut-open diagram at two propagators

• Saturate indices with random wavefunctions e1, . . . , e4

• Evaluate integrand constructed with new two-loop
algorithm at fixed values for q1, q2

⇒ Ŵ(2L)
02,Γ = U(q1,q2)

D(q1,q2) ⇒ Ŵ(2L)
02 = ∑

Γ
Ŵ(2L)

02,Γ

e1e2
e3 e4

D(1)
0

D(3)
0

D(2)
0

V0

V1

q1 q2

q3

• Compute the same object with the OpenLoops tree-level algorithm for fixed q1, q2 ⇒ Ŵ
(t)
02

Compute relative numerical uncertainty in double (DP) and quadruple (QP) precision

A(t) := log10

 |Ŵ(t)
02 − Ŵ

(2L)
02 |

Min(|Ŵ(t)
02 |, |Ŵ

(2L)
02 |)


⇒ Implementation validated for wide range of processes (105 uniform random points)

Typical accuracy around 10−15 in DP and 10−30 in QP, and always much better than 10−17 in QP
⇒ QP calculation as benchmark for numerical accuracy of DP calculation

24

Numerical stability

Numerical instability of double (DP) wrt quad precision (QP) calculation:

ADP = log10

 |Ŵ(2L,DP)
02 − Ŵ(2L,QP)

02 |
Min(|Ŵ(2L,DP)

02 |, |Ŵ(2L,QP)
02 |)


Fraction of points with ADP > Amin as a function of Amin for 105 uniform random points

−12−13−14−15−16−17

accuracy Amin

10−4

10−3

10−2

10−1

100

fr
ac

ti
on

of
p

oi
n
ts

gg → t̄t

−11−12−13−14−15−16−17

accuracy Amin

10−4

10−3

10−2

10−1

100

fr
ac

ti
on

of
p

oi
n
ts

dd̄→ uūg

Excellent numerical stability
⇒ Important for full calculation (tensor integral reduction will be main source of instabilities)

25

Timings for two-loop tensor coefficients

QED, QCD and SM (NNLO QCD) processes (single Intel i7-6600U @ 2.6 GHz, 16GB RAM, 103 points)

101

102

103

104

ti
m

e/
p

o
in

t
t V

V
[m

s]

e+e− → e+e−

e+e− → e+e−γ
gg → uū

dd̄→ uū

dd̄→ uūg

uū→ tt̄g

gg → tt̄

gg → tt̄g

ud̄→ W+gg

uū→ W+W−g

uū→ tt̄H

gg → tt̄H

gg → gg

gg → ggg

linear fit

2
4
6
8

t V
V
/t

fu
ll

R
V

average

102 103 104 105

Ndiags

6
8

10
12

t V
V
/
t R

V

2→ 2 process: 10− 300 ms/psp

2→ 3 process: 65− 9200 ms/psp
(on a laptop)

Runtime ∝ number of diagrams
time/psp/diagram ∼ 150µs

Constant ratios between virtual–
virtual (VV) and real-virtual (RV)
with and without 1-loop integrals
• tensor coefficients: tVV

tRV
∼ 9

• full RV: tVV
tfullRV
∼ 4

Strong CPU performance, comparable to real-virtual corrections in OpenLoops

26

III. OpenLoops features at 1 and 2 loops

General algorithm: Any model can be implemented and any process can be generated automatically
(provided the tensor/master integrals are available)
Program structure is the same at 1 and 2 loops:

• Process generator (Mathematica) → process libraries (Fortran)

• OpenLoops program (Fortran) with process-independent routines and user interfaces
→ Simple extension of interfaces and same input parameters as at 1 loop

⇒ Many OpenLoops features transfered from 1 to 2 loops

• Wide selection of diagram filters

• Polarisation selection for external particles

• Fully automated and flexible power counting in any number of coupling constants
→ Selection of all contributions of order αnαms to W ∼ |M|2 in a fully automated way
→ Selection of specific powers in charges, e.g. QED corrections to e+e− → µ+µ− split into

electronic, muonic and mixed corrections (power counting in Qe,Qµ → 1)
→ better control over numerical stability

27

New OpenLoops features at 1 and 2 loops

• Massive QED and separation of EW corrections:
– Process libraries with any configuration of active lepton generations
– massive e, µ, τ
– pure QED (1 and 2 loops), pure weak (1 loop) and full EW (1 loop) corrections available

Recently applied e.g. to Møller and Bhabha scattering at NNLO QED
[Banerjee, Engel, Schalch, Signer, Ulrich] with OpenLoops and McMule [Banerjee, Engel, Signer, Ulrich]

• Fully automated efficient generation of scattering processes factorising into a hard process
and any number of factorised subtrees, e.g.
– QCD corrections to

e+e− → q̄q + X factorised into e+e− → V ∗︸ ︷︷ ︸
subtree

and V ∗ → q̄q + X︸ ︷︷ ︸
hard process

with V = γ, Z

– Factorisation of W → lνl and Z → l+l− decays

28

Input schemes, parameters and renormalisation
• Three EW schemes implemented:

ew scheme input parameters value of 1/α
α(0)-scheme 0 α(0), MW , MZ , MH + fermion masses ≈ 137
Gµ-scheme 1 (default) Gµ, MW , MZ , MH + fermion masses ≈ 132
α(MZ)-scheme 2 α(MZ), MW , MZ , MH + fermion masses ≈ 128

• Consistent treatment of resonances with complex mass scheme at 1-loop [Denner, Dittmaier]

→ complex mass µ2
p = M2

p − iMpΓp from real physical mass Mp and width Γp as input

• Different Renormalisation schemes implemented, e.g. on-shell or MS for quark masses;
different flavour schemes for αS

• External photons in process A→ B + n γ︸︷︷︸
on-shell

+n∗ γ∗︸︷︷︸
off-shell

(+ γ︸︷︷︸
real emission

)

⇒ rescale with ratios of input α and αon = α(0), αoff =


α|Gµ if α = α(0),
α if α = α|Gµ or α = α(MZ)

⇒ W →
αon
α

n αoff
α

n∗W (No rescaling for real emission)

Optimal scale choice for external on-shell, off-shell and real-emission photons

29

IV. Summary and Outlook

One and two-loop calculations can be split into construction of tensor coefficients,
reduction and evaluation of tensor integrals, and restoration of (D − 4)-dim numerator parts
Status of the OpenLoops framework @ 2 loops:
• Numerical calculation of two-loop tensor coefficients

– Completely general recursive algorithm exploiting the factorisation of diagrams
– Fully implemented for NNLO QCD and NNLO QED corrections in the SM
– Strong numerical precision and CPU performance comparable to RV contributions

• Method to restore (D − 4)-dim numerator parts through universal Rational counterterms of
UV origin @ 2 loops → Full set computed for QED and QCD corrections to the SM
→ currently being implemented in the OpenLoops framework

• Many OpenLoops features transferable to 2 loops, such as power counting, renormalisation
schemes, polarisation selection, input schemes, user interfaces

Short-term and mid-term projects:

• Rational terms of IR origin → currently under investigation

• Tensor integral reduction and evaluation (analytical or numerical, in-house framework or
external tool → possible mixture thereof)

30

Backup

Two-loop diagrams

C1

q1

P

C2

q2

C1

q1

C2

q2

V4

C1 C3

C2

V0

V1

q1 q2

q3

(Red2) (Red1) (Irreducible)

Two-loop diagrams consist of loop chains Ci, each depending on a single loop momentum qi.
Types of diagrams:

• Reducible diagrams: Two factorised loop integrals
– Red2: Two loop chains C1, C2 connected by a tree-like bridge P .
– Red1: Two loop chains C1, C2 connected by a single quartic vertex V4

• Irreducible diagrams: Three loop chains C1, C2, C3 with loop momenta
q1, q2, q3 = −(q1 + q2) and two connecting vertices V0,V1

32

Processes considered in performance tests

corrections process type massless fermions massive fermions process
QED 2→ 2 e − e+e− → e+e−

2→ 3 e − e+e− → e+e−γ
QCD 2→ 2 u − gg → uū

u, d − dd̄→ uū
u − gg → gg
u t uū→ tt̄g
u t gg → tt̄
u t gg → tt̄g

2→ 3 u, d − dd̄→ uūg
u − gg → ggg
u, d − ud̄→ W+gg
u, d − uū→ W+W−g
u t uū→ tt̄H
u t gg → tt̄H

33

Memory usage of the two-loop algorithm

virtual–virtual memory [MB] real–virtual [MB]
hard process segment-by-segment diagram-by-diagram coefficients full
e+e− → e+e− 18 8 6 23
e+e− → e+e−γ 154 25 22 54
gg → uū 75 31 10 26
gg → tt̄ 94 35 15 34
gg → tt̄g 2000 441 152 213
ud̄→ W+gg 563 143 54 90
uū→ W+W−g 264 67 36 67
uū→ tt̄H 82 28 14 40
gg → tt̄H 604 145 50 90
uū→ tt̄g 323 83 41 74
gg → gg 271 94 41 55
dd̄→ uū 18 10 9 20
dd̄→ uūg 288 85 39 68
gg → ggg 6299 1597 623 683

34

Power counting: Nontrivial QCD-EW interplay at 1 loop

Simple example: qq̄ → qq̄ cross section at Born level: O(α2
S)︸ ︷︷ ︸

QCD

+ O(α1
Sα

1)︸ ︷︷ ︸
EW−QCD interf.

+ O(α2)︸ ︷︷ ︸
EW

In general (e.g. pp→ X + jets): O(αnSαm) + O(αn−1
S αm+1) + . . . + O(αn−kS αm+k)

NLO EW corrections of O(α2
Sα

1) for qq̄ → qq̄:
• EW corrections to QCD Born

γ γ γ, Z

• QCD corrections to EW–QCD interference

γ, Z γ, Z γ, Z

→ only full O(α2
Sα

1) IR finite

→ O(α) corrections can involve
emissions of γ and g, q, q̄

⇒ Mixed ααS power counting with non-trivial interference contributions
⇒ OpenLoops provides any desired order O(αnSαm) in a fully automated way

35

