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Scattering amplitudes in perturbation theory

Hard scattering amplitudes for Monte Carlo simulations are computed in perturbation

theory from matrix elements

M:M0+M1+M2+...

WithMQM +Z}g+---, M =

Partonic cross sections

o = /dCI)N )4% —|-§ /d@]\er W(X>

———
N-particle phase space contribution with X extra

integration, flux factor unresolved particles

computed from colour- and helicity-summed scattering probability density

MO*RMQ} +o

W= £ RM = £ {|Mo +2Re| Mg RMy| + |RM;[* + 2 Re
h,col h,col | ~——

~— LO . . -
colour and helicity sum with NLO virtual NNLO virtual-virtual

average and symmetry factor

with UV divergences subtracted by the renormalisation procedure R M = My+R M{+R Mo+. ..
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OpenlLoops

OPENLOOPS [Buccioni, Lang, Lindert, Maierhofer, Pozzorini, Zhang, M.Z.] IS a fuIIy automated numerical tool
for the computation of scattering probability densities from tree and one-loop amplitudes
W = % |M0|2, Wii= % QRG{MéRMJ, Wii= ¥ |R./\;11|2
h,col h,col h,col

Download from https://gitlab.com/openloops/OpenLoops.git

e Full NLO QCD and NLO EW corrections available
e Excellent CPU performance and numerical stability <— Crucial for real-virtual contributions

Real-emission contributions up to NNLO available in OPENLOOPS

1 — - (1 1 1) - (1 2
Wi = s MR Wil = SoarelPRMY) W) = s PP
h,col h,col h,col

- - - |required for NNLO, but no fully automated tool available
We= X QRe[ME)kR/\/lQ]

1ol = OPENLOOPS for two-loop amplitudes highly desirable
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https://gitlab.com/openloops/OpenLoops.git

Outline

|. One-loop amplitudes

— OPENLOOPS algorithm for tree and one-loop amplitudes

[I. Two-loop amplitudes
— New algorithm for two-loop integrands

— Numerical stability and CPU efficiency

lIl. OPENLOOPS features @ 1 loop and 2 loop

V. Summary and Outlook




. One-loop amplitudes

One-loop diagram I' in D = 4 — 2¢ dimensions ) Nol
Dy, D(Ql) - iEO Dk‘(Ql);
Di(q1) = (q1 + pr)* — mf,
_ d'q
da: = 2e
Jdgy = p> | o)
Numerical tools, such as OPENLOOPS [Buccioni et al], RECOLA [Actis et al], MADLOOP [Hirschi et al],
construct the numerator in 4 dimensions (D-dim quantities with bar, 4-dim without)

~ Nl(g
Mir = Cir /dQ1D<<;1>>

colour factor

f41 Hiry
Nia) = (g Mip = Cr Y N faq A
<q1) — Q1) G — @ = 3 i 1y D(@)
T T ~H N' .
4—dim  D—dim gﬂ” _}l}uy tensor coefficient tensor integral

Steps of the calculation
e Construction of tensor coefficients <+ QPENLOOPS algorithm [van Hameren; Cascioli, Maierhofer,
Pozzorini; Buccioni, Lang, Lindert, Pozzorini, Zhang, M.Z.]
e Reduction of tensor integrals and ~ «— On-the-fly reduction [Buccioni, Pozzorini, M.z.] and
evaluation of master integrals COLLIER [Denner, Dittmaier, Hofer], ONELOOP [van Hameren]

e Restoration of e-dim numerator <+ Rational counterterms [Ossola, Papadopoulos, Pittau]

parts N'(q1) = N(q1) — N(q1)



The OPENLOOPS algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

Example: My = w + ...

Numerical recursion step:

sub-tree w,
@§< X9 (kp, k)
q = = JowX = DO )

N
wr w
k%—mQ b ¢

a
sub-tree wy
KQQQ universal building block

from Feynman rules

Generic depiction: (k; external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams
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The OPENLOOPS algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

@ + ... — split into subtrees
Numerical recursion step:

sub-tree w,
— mxr@6< _ X3y ko, ke) g

N
wr w
k%—mQ b ¢

a
sub-tree wy
KQQQ universal building block

from Feynman rules

Example: My =

S0

Generic depiction: (k; external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams
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The OPENLOOPS algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

/M'@< + ... — connect subtrees
Numerical recursion step:

sub-tree w,
— mxr@6< _ X3y ko, ke) g

N
wr w
k%—m% b ¢

sub-tree wy
universal building block

from Feynman rules

Example: My =

S0

Generic depiction: (k; external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams

5



The OPENLOOPS algorithm at tree level
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The OPENLOOPS algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

/M€< + ... — connect subtrees
Numerical recursion step:

sub-tree w,
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wr w
k%—m% b ¢

sub-tree wy
universal building block

from Feynman rules

Example: My =

S0

Generic depiction: (k; external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams
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The OPENLOOPS algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

Example: My = >’VD’FS€< +... — connect diagram

Numerical recursion step:

sub-tree w,
@§< X9 (kp, k)
q = = JowX = DO )

N
wr w
k%—mQ b ¢

a
sub-tree wy
KQQQ universal building block

from Feynman rules

Generic depiction: (k; external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams
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The OPENLOOPS algorithm at one loop

High complexity in loop diagram I' due to analytical structure in loop momentum ¢
Factorisation into colour factor Cy
and loop segments

Si(q) = iwﬁ = (Y5 (ki i)+ Z1g 0" 0]
Bi-1 Bi

D;

Universal building block X subtree(s)

Cut-open loop at D

99999

undressed segments

Open loop is a matrix with two Lorentz/spinor indices 5y, B



The OPENLOOPS algorithm at one loop

High complexity in loop diagram I' due to analytical structure in loop momentum ¢
Factorisation into colour factor Cy
and loop segments

Si(q) = iwﬁ = (Y5 (ki i)+ Z1g 0" 0]
Bi-1 Bi

D;

Universal building block X subtree(s)

M(q) = No(@)S1(q) = S1(q) - @ @ @ @ @

_ /G (1)
= N( ) -|-NM1 Q’ul dressed undressed segments

Recursion steps can increase the rank in ¢ by 1.



The OPENLOOPS algorithm at one loop

High complexity in loop diagram I' due to analytical structure in loop momentum ¢
Factorisation into colour factor Cy
and loop segments

Si(a) = !M = (Y5 (ki i)+ Z1g 0" 0]
Bi-1 Bi

D;

Scalar propagators Di(q) = (q +pi)2 - 77%2

Universal building block X subtree(s)

Dress chain of segments (open loop) recursively

Nolo) = Mi@)Sala) = T Sila) = ’ ’ @ @ @

Dl D2 DS DN—l DO
_Ar(2 (2) (2)
- N( ) +NM1 g +Nﬂlﬂ2qmqﬂ2 dressed undressed segments
s Bn—1 p
Recursion steps are matrix multiplications: |Np,(q) = Nn_1(q)] " Sn(q) "
5o 5o Bn—1




The OPENLOOPS algorithm at one loop

High complexity in loop diagram I' due to analytical structure in loop momentum ¢
Factorisation into colour factor Cy
and loop segments

Lkl = {Y0i<kiapi>+zg;a q"} wy
Bi-1 Bi

Si(q) =

Scalar propagators Di(q) = (q +pi)2 - 77%2

Universal building block X subtree(s)

Dress chain of segments recursively — Close loop by contracting ) and 5y

Nn(q) = Ny_1(9)Sn(q) = Z,][IVISi@ = ’ ’ | I I

= ;O ngjl\_[.).wqm gttt dressed segments

Recursion steps N, (¢) = N,,_1(¢)Sp(q) at the level of tensor coefficients J\/}(ff)ur

Completely general and highly efficient algorithm



Born-loop interference

Scattering probability density from interference of one-loop diagrams I' with full Born

Woir = hZIQRe[MSRMl,F] = W01=§F3W01,F
,CO

Consider colour-helicity summed numerator = nested sums of helicities /; of individual segments

U(q,0) = >2 (Z M?ﬁ(h)cl,r) N(g,h)= > JEp3 Sa(q, ha) -+ |Sn(g, hy)
2

col h

hZUo(h)bH(q, hi)
1

=Uy(h)

On-the-fly helicity summation [Buccioni, Pozzorini, M.Z ]

Un(q, ;L?”L) — %: un—l(% En—l)&z(qa hn) — . > >
n 1--

v v N
Un(q, hyp) = rgo u,ﬁ?_),,w gl ... q"" | depends on helicity h), - Z+{Lk of undressed segments
= o

(n)

Implemented at the level of tensor integral coefficients {4, . ;,

Huge gain in CPU efficiency, especially for high-multiplicity processes



One-loop rational terms

Amputated one-loop diagram ~ (1PI)

Miy = Ciy [dg - =

colour factor

The e-dim numerator parts A'(q1) = N'(q1) — N(q1) contribute only via interaction with ; UV poles
= Can be restored through rational counterterm 572177 [Ossola, Papadopoulos, Pittau]

——
D—dim, renormalised  4—dim numerator UV and rational counterterm

=

Generic one-loop diagram [ factorises into 1P| subdiagram ~ and external subtrees w; (4-dim):

OERS v N
_ _ 01..0N N RM1F2M1F‘|‘ (521 ‘|‘6R1 T w;
Mir= = |M; 1 [wl, = ! r+ (071, 2) =1
Y 77 _1 0-7/ —_——
@ @ = tree diagram

Finite set of process-independent rational terms in renormalisable models
computed from UV divergent vertex functions



Il. Two-loop amplitudes

Two-loop diagram I' in D = 4 — 2¢ dimensions

Myp = Cop /d(n/dqz

N——
colour factor

Numerical construction requires N(q1, Q)

e

with the D-dim denominator
D(a, @) = 11D} (4)
= (g + pix)* — m3,

D/@ (@)

™

v

q1, G2

0
B
.

12)

4—dim D—dim '@ — g, 3" = A g = g
Ry Ry q’ul ”,LLrl v, bro
1 q1 42 42
Mo = Cor Sy Ny /qul/qug
; ; 1 Vv
colour tensor coefficient tensor integral

Steps of the calculation

e Construction of tensor coefficients

e Reduction and evaluation of tensor integrals

e Restoration of J\N/'(q], ) = /\_/(q_la )

— N(q1, @)

< Now fully implemented
< Not yet automated

< Two-loop rational terms
[Lang, Pozzorini, Zhang, M.Z.]




Two-loop rational terms

Start from renormalisation procedure for (1Pl) diagram [' in D-dim

RM27F = MQ’F + > 52177 : MI,F/7 + 5ZQ,F
Y —_—

subtract subtract remaining

subdivergences local divergence

Sum over all subdiagrams ~ of I'. Numerator dimension D,, = D.

% % + %521,7 + W‘XQZQ?F

Extension from single diagrams to full vertex functions I' due to linearity of R

Example: R

Dn:D Dn:D

Goal: Computation from amplitudes with numerator dimension D, =4

e Split numerator N'(q1, @) = N(q1, ¢2) + N'(q1, )

e Compute amplitudes on lhs with NV(q1, ¢2) = N(q1, ¢2)| - o )
- gHv —=gh?, yE=F, 4i—q;
e Restore N/-terms (from subdiagrams and a remaining global one) through additional counterterms
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Two-loop rational terms

Renormalised D-dim amplitudes from amplitudes with 4-dim numerator [Pozzorini, Zhang, M.Z ]

RMQF:M2F+2(521,Y+5ZM+ SRy, )-Mlp/ +( 52y  +  0Ror )

) 9 ’y 9 ) ) 9 ’Y 9 9
subtract restore N\ -terms subtract remaining restore remaining

subdivergences  from subdiagrams local divergence N -term

Example:

RMQ,F — «A@ + w<é(521’7 + 5217,}/ + 5R1’7> + <5ZQ7F + 5R2,F)
4-dim

numerators

e Divergences from subdiagrams -y and remaining global one subtracted by usual UV counterterms

0Z1 ~,0Z9 . Additional UV counterterm 52177 o L= for subdiagrams with mass dimension 2.

7
e 0R5 is a two-loop rational term stemming from the interplay of N with UV poles
e External subtrees factorise and do not generate rational terms (see one-loop case)

e Extension from single diagrams to full vertex functions due to linearity of R

= Finite set of process-independent rational terms for UV divergent vertex functions

11



Two-loop rational terms

Renormalised D-dim amplitudes can be computed from amplitudes with 4-dim numerators and a
finite set of universal UV and rational counterterms inserted lower-loop amplitudes

RMor = Mar+y (6214021 +6R1 ) - My pjs + (6250 + Ro )

Status of two-loop rational terms

e General method for the computation of rational counterterms of UV origin from simple
tadpole integrals in any renormalisable model [Pozzorini, Zhang, M.Z.,2020]

e Complete renormalisation scheme dependence [Lang, Pozzorini, Zhang, M.Z.,2020]
e Rational Terms for Spontaneously Broken Theories [Lang, Pozzorini, Zhang, M.Z.,2021]

e Full set of two-loop rational terms for QED and QCD corrections to the SM
[Pozzorini, Zhang, M.Z.,2020] |[Lang, Pozzorini, Zhang, M.Z.,2020] ([Lang, Pozzorini, Zhang, M.Z.,2021]

e Rational terms of IR origin currently under investigation
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Reducible two-loop diagrams

Reducible diagram I factorises into one-loop diagrams and a tree-like bridge P (or quartic vertex)

—

with DO (g) = DI (@) - DN_1(@),  DP(@) = (@ +pia)* — m,

Loop numerators factorise N a0
wy (hf!)

Sles
SN——
/N
)
~.
>
Sioa
SN———
N—
I
I

{Yaa(/{?m,pm) + Zi;a QZV}

Feynman rule of loop external subtree with
vertex and propagator helicity configuration th>

into segments

e Cut-open both loops and dress first one

e Close and integrate first loop, attach bridge

e Use first loop + bridge as “subtree” for second loop
= Extension of the tree and one-loop algorithm

Fully implemented for QED and QCD corrections to the SM
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New algorithm to construct two-loop tensor coefficients

Amplitude of irreducible two-loop diagram I' (1Pl on amputation of all external subtrees):

, N(q1, )

i D) (g;) 3=~ (a1+a2)

3 ' 1
Exploit factorisation of numerator MN(q1,q2) = z'ElN(Z)<%>jEO Vi(q1, q)

e Three chains, each depending on a single loop momentum ¢; (i = 1,2, 3)
with chain numerators factorising into loop segments Nm(%‘) — Sé )(qﬁ e Sj(\fz—l(%')
— Same structure as one-loop chain

e Two connecting vertices ), V;

e Chain denominators D@(qi) = D(()i)(qi) e D%z_l(qi) where Déi)(qz-) = (g +pm)2 —m3,

(External momenta p;, and masses m;, along i-th chain)

14



General structure of a recursive two-loop algorithm

Final result: Helicity and colour—summed Born—loop interference U(q1, )

3)
=¥ Uo(h){ Il [ Sy (gis by >)] (0 } {V()(Cll Y w [Vl(QbCJQ, n')
h k=0 By BN, PNgBN;
chain N@ connecting vertices (quartic vertices with external subtrees wév))
with Born—colour factor Uy(h) = 2( le\/lé(h) Cy p)
cO ’
A R1 Ry ~
Algorithm with recursion steps | Uy, = U,_1 - Ky, | = Tzlo SZZOU,L(H) apvpvsql T gy
with partially dressed numerators Uy, and building blocks /C,, € {U@, S](f), V-,N(i)}.
e Each step increases the rank in a ¢; by 0 or 1
e Segment S](;), V; depend on helicities of external subtrees N“ml}%r of tensor components
3 N1 V) ) ol R S
ici — ) 0 T 5 15 35
= global helicity | / EE, hy” +hy * + hy 0 S -]
2 15 75 225 525
e High complexity in steps connecting V; due to dependence 3 35 175 525 1225
4 70 350 1050 2450
on ¢1, 2 and three open Lorentz/splnor indices 5 5 126 630 1890 4410

e Number of tensor coefficients grows exponentially with ranks R, Ro

15




General structure of a recursive two-loop algorithm

Final result: Helicity and colour—summed Born—loop interference U(q1, )

) %L{O(h) {Zﬁl [NH 15](;)(qz,h/(g>>]§])v } [V()(ql q%hé ))}50 657 65 [

- 0

V)
Vi(g1, @2, b}
S

chain N0 connecting vertices (quartic vertices with external subtrees w("))

with Born—colour factor Uy(h) = 2( Z}Mﬁ(h) Cs r)
CO ’

2 R R A
Algorithm with recursion steps | U, = Z/{n 1-KCn | = 210 QOU£L1) TR ysql ...q’f”"qgl QY
T S

with partially dressed numerators I, and building blocks K, € {Z/{o, S/(;), Vj,/\/'(i)}.

CPU cost of n-th step ~ number of (#) multiplications — depends on type of 1, and

4 components of Uy, = (# tensor components in 1, ¢2) X (# active helicities) x 4(# open indices 3{))

= Most efficient algorithm found through cost simulation
of possible candidates for a wide range of QED and QCD Feynman diagrams

16



Two-loop algorithm for irreducible diagrams

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

Order of chains and of two-loop vertices 1)), V| has major impact on efficiency

17




Two-loop algorithm for irreducible diagrams

e Sort chains by length: N1 > Ny > Nj Example: n=>0

Choose order of V), V1 by vertex type AQ1/ T %
@) - S

e Dress N'(3) (shortest chain)

Vi

N3, 23 = A (g3, 2P 1) - 5B (g3, B3))  with initial condition A = 1

18




Two-loop algorithm for irreducible diagrams

e Sort chains by length: N1 > Ny > Nj Example: n=1

Choose order of V), V1 by vertex type ‘91/ _I_ %
@) - S

e Dress N'(3) (shortest chain)

Vi

N3, 23 = A (g3, 2P 1) - 5B (g3, B3))  with initial condition A = 1

o Shortest chain = Low number of helicity d.o.f. iAL7<13> = 351311 + h7<13> and low rank in ¢3

o Partial chains ./\/}(13) computed only once for multiple diagrams

= Only a small nhumber of low-complexity steps for the full process

18




Two-loop algorithm for irreducible diagrams

e Sort chains by length: N7 > Ny > Nj Example: y n =0
Choose order of V), V| by vertex type ‘91/ —IO— %
q
o Dress A'(3) (shortest chain) @ i ’ @
o Dress UV o /\/l?)‘/\/<1) (longest chain) |
Vi

U 1) = < UGBS hil) with Ul =2 £ M) Car)

19




Two-loop algorithm for irreducible diagrams

e Sort chains by length: N1 > Ny > Nj Example: n=1

Choose order of V), V1 by vertex type
e Dress N'(3) (shortest chain)
o Dress UV o /\/16/\/(1) (longest chain)

¢, Vo 0>
e
(@) n @)

Vi

U 1) = < UGBS hil) with Ul =2 £ M) Car)

(1)

On-the-fly summation of segment helicities hy,

(1)

= Partial chains depend on remaining helicities of the diagram hi' = h —

noo (1)
o1 hy
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Two-loop algorithm for irreducible diagrams

e Sort chains by length: N1 > Ny > N3 Example: —

V.

4D

Choose order of V), V1 by vertex type
e Dress N'(3) (shortest chain)
o Dress UV o Mﬁ/\/(l) (longest chain)

U 1Y) = < Ui Bl ) - S0 bY) - it u<_1%<h> 2( = Mii(h) Cor)

n Born colour

(1)

On-the-fly summation of segment helicities Ay,

7 (1)

= Partial chains depend on remaining helicities of the diagram hy;,’ = h —

noo (1)
o1 hy
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Two-loop algorithm for irreducible diagrams

e Sort chains by length: N1 > Ny > Nj Example: n=23

o Dress UV o /\/l(’)‘/\/(l) (longest chain)

Choose order of V), V1 by vertex type “11/ _VIO_ %
iqg
| ¢

e Dress N'(3) (shortest chain)
Vi

U i) = < Uit i) G ) with Ul () = £ M) Car)

(1)

On-the-fly summation of segment helicities Ay,

(1)

= Partial chains depend on remaining helicities of the diagram hi' = h —

noo (1)
o1 hy

= Large portion of helicity d.o.f already summed over during dressing of longest chain
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Two-loop algorithm for irreducible diagrams

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

o Dress N'(?) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V; with (1) and A3

¢ Vo ¢

Vi

> u(q, 5%_1) N® (g3, k) Vi(gr, g3, 1))

UM (a1, 3, 0@ + 1) =
) )

>
h(3

o On-the-fly summation of chain helicity K3 (and potential subtree helicity at V)

20




Two-loop algorithm for irreducible diagrams

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

o Dress N'(?) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V; with (1) and A3

e Connect V and map g3 — —(q1 + @)

1%
U (1,00, = > U™ (g1, a3, 82 + 287 Volar, a1, b )
W) 43——(q1+42)

o Partial diagram depends on undressed chain helicity h2) and two open indices

21




Two-loop algorithm for irreducible diagrams

e Sort chains by length: N7 > Ny > Nj Example: n=>0

Choose order of V), V1 by vertex type
o Dress N'(?) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V; with 2} and A/
e Connect V and map g3 — —(q1 + @)

e Connect segments of A/(2)

Vi

U (g1, go, hD)) = %)uﬁi’)wl, a2, 1) 52 (o, )
hn

22




Two-loop algorithm for irreducible diagrams

e Sort chains by length: N7 > Ny > Nj Example: n=1

Choose order of V), V1 by vertex type
o Dress N'(?) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V; with 2} and A/
e Connect V and map g3 — —(q1 + @)

e Connect segments of A/(2)

Vi
7 123 7 (2
U a0, b)) = 5 U2 (01,00, Tn ) 500,17
hay
~ No—1
On-the-fly summation of segment helicities hq@ = QEH h§€2>
—n

= Partial diagram depends only on helicities of remaining undressed segments

22




Two-loop algorithm for irreducible diagrams

e Sort chains by length: N1 > Ny > N3 Example:

Choose order of V), V1 by vertex type
o Dress N'(?) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V; with UV and NG)
e Connect V and map g3 — —(q1 + @)

e Connect segments of A/(2)

Vi
7 123 7 (2
U a0, b)) = 5 U2 (01,00, Tn ) 500,17
ha,
~ No—1
On-the-fly summation of segment helicities hq@ = QEH h§€2>
—n

= Partial diagram depends only on helicities of remaining undressed segments

= Lowest complexity in helicities for steps with highest rank in loop momenta
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Two-loop algorithm for irreducible diagrams

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

o Dress N'(?) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V; with (1) and A3

Aql/

e Connect V and map g3 — —(q1 + @)

e Connect segments of A/(2)

Vi

Exploit diagram factorisation for full process:
Us+Up = Uap- Sy SN)+ Uy - Spv1---SN) = Uan+Upy) - Spst -+ Sy

Merge partially dressed diagrams with same topology and subsequent recursion steps

23




Two-loop algorithm for irreducible diagrams

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

o Dress N'(?) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V; with (1) and A3

Aql/

e Connect V and map g3 — —(q1 + @)

e Connect segments of A/(2)

Vi

Exploit diagram factorisation for full process:
Us+Up = Uap- Sy SN)+ Uy - Spv1---SN) = Uan+Upy) - Spst -+ Sy
Merge partially dressed diagrams with same topology and subsequent recursion steps

Highly efficient and completely general algorithm for two-loop tensor coefficients

Fully implemented for QED and QCD corrections to the SM
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Numerical stability

Pseudo-tree test
e Cut-open diagram at two propagators
e Saturate indices with random wavefunctions ey, ..., ey

e Evaluate integrand constructed with new two-loop

algorithm at fixed values for q1, ¢o

2L) _ Ulq1,92) 2L o2l
= Wil = o) — Mo = I

e Compute the same object with the OPENLOOPS tree-level algorithm for fixed ¢1, ¢» = Wég)

Compute relative numerical uncertainty in double (DP) and quadruple (QP) precision

W — Wi )

A(t) = loglo ( — —
Min(AV ], PVS™)

= Implementation validated for wide range of processes (10° uniform random points)

Typical accuracy around 10712 in DP and 1072V in QP, and always much better than 10717 in QP
= QP calculation as benchmark for numerical accuracy of DP calculation
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Numerical stability

Numerical instability of double (DP) wrt quad precision (QP) calculation:

App = logy

W

(2L,DP)

WéQL QP)

107 @ ®
o
1071 .
5}
ihicy
g
2
o °
= 1072 1
S
=
Q
b
=
°
1073 .
10_4 B T T T T T f
—-17 —16 -15 —14 -13 —12
accuracy Amin

Excellent numerical stability

= Important for full calculation (tensor integral reduction will be main source of instabilities)

Min(V5-P0), i)

Fraction of points with App > A, as a function of Ay, for 10° uniform random points

fraction of points

100 4

1071

1072 4

10—3 4

10—4 4

—17

—16

-15 —14 -13 ~12 ~11
accuracy Amin

dd — uig
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Timings for two-loop tensor coefficients

QED, QCD and SM (NNLO QCD) processes (single Intel i7-6600U @ 2.6 GHz, 16GB RAM, 10° points)

time /point tyy [ms]

full

tvv /iRy

tvv/trv

Strong CPU performance, comparable to

104 E
103 3

102 3

Q
Q;Q.

I

uu

®dd — ua

€ > _€ €

g — tt
U

'tH

1

®59 — tig

®9 — ttH

euu g ttg
®ad uug

linear fit

average

10*
Ndiags

10°

2 — 2 process: 10 — 300 ms/psp

2 — 3 process: 65 — 9200 ms/psp
(on a laptop)

Runtime o< number of diagrams

time/psp/diagram ~ 150us

Constant ratios between virtual-
virtual (VV) and real-virtual (RV)

with and without 1-loop integrals

e tensor coefficients: YV ~
tRV

o full RV: By 4
t
RV

real-virtual corrections in OPENLOOPS
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Ill. OPENLOOPS features at 1 and 2 loops

General algorithm: Any model can be implemented and any process can be generated automatically
(provided the tensor/master integrals are available)

Program structure is the same at 1 and 2 loops:
e Process generator (Mathematica) — process libraries (Fortran)

e OPENLOOPS program (Fortran) with process-independent routines and user interfaces

— Simple extension of interfaces and same input parameters as at 1 loop
= Many OPENLOOPS features transfered from 1 to 2 loops

e Wide selection of diagram filters
e Polarisation selection for external particles

e Fully automated and flexible power counting in any number of coupling constants
— Selection of all contributions of order a"*a” to W ~ |M|? in a fully automated way
— Selection of specific powers in charges, e.g. QED corrections to ete™ — pt ™ split into
electronic, muonic and mixed corrections (power counting in Q¢,Q);, — 1)

— better control over numerical stability
27



New OPENLOOPS features at 1 and 2 loops

e Massive QED and separation of EW corrections:
— Process libraries with any configuration of active lepton generations

— massive e, (i, T

— pure QED (1 and 2 loops), pure weak (1 loop) and full EW (1 loop) corrections available

Recently applied e.g. to Mgller and Bhabha scattering at NNLO QED
[Banerjee, Engel, Schalch, Signer, Ulrich] with OPENLOOPS and MCMULE [Banerjee, Engel, Signer, Ulrich]

e Fully automated efficient generation of scattering processes factorising into a hard process
and any number of factorised subtrees, e.g.

— QCD corrections to

e"e” — gqg+ X factorised into ete” = V* and V* - gg+ X withV =~,Z7

subtree hard process
— Factorisation of W — lv; and Z — 71~ decays
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Input schemes, parameters and renormalisation

e Three EW schemes implemented:

ew scheme | input parameters value of 1/«
a(0)-scheme 0 a(0), My, My, My + fermion masses ~ 137
G -scheme 1 (default) | Gy, My, Mz, My + fermion masses ~ 132
a(M 7 )-scheme | 2 a(Myz), My, My, My + fermion masses ~ 128

e Consistent treatment of resonances with complex mass scheme at 1-loop [Denner, Dittmaier]
— complex mass ,u]% = Mg — 1 Mpl'y from real physical mass M), and width I}, as input

e Different Renormalisation schemes implemented, e.g. on-shell or M S for quark masses;
different flavour schemes for a g

*

e External photons in process A - B+n v +4+ns v (+ v )

—~— ~
on-shell off-shell real emission

o alg, ifa=a0),
= rescale with ratios of input o and a,, = @(0), Qoff = g
o if @ =alg, or v = a(My)

n

87 «

= W—>[O‘°”

O‘ofF] W (No rescaling for real emission)

Optimal scale choice for external on-shell, off-shell and real-emission photons
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IV. Summary and Outlook

One and two-loop calculations can be split into construction of tensor coefficients,
reduction and evaluation of tensor integrals, and restoration of (D — 4)-dim numerator parts

Status of the OPENLOOPS framework @ 2 loops:

e Numerical calculation of two-loop tensor coefficients

— Completely general recursive algorithm exploiting the factorisation of diagrams
— Fully implemented for NNLO QCD and NNLO QED corrections in the SM
— Strong numerical precision and CPU performance comparable to RV contributions

e Method to restore (D — 4)-dim numerator parts through universal Rational counterterms of
UV origin @ 2 loops — Full set computed for QED and QCD corrections to the SM
— currently being implemented in the OPENLOOPS framework

e Many OPENLOOPS features transferable to 2 loops, such as power counting, renormalisation
schemes, polarisation selection, input schemes, user interfaces

Short-term and mid-term projects:

e Rational terms of IR origin — currently under investigation

e Tensor integral reduction and evaluation (analytical or numerical, in-house framework or
external tool — possible mixture thereof)
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Two-loop diagrams

Vo

‘ql/
Ci Cs

(Red2) (Redl) (Irreducible)

Up)
PN

Co

<«

00

Two-loop diagrams consist of loop chains C;, each depending on a single loop momentum g;.
Types of diagrams:

e Reducible diagrams: Two factorised loop integrals
— Red2: Two loop chains Cy, Co connected by a tree-like bridge P.
— Redl: Two loop chains Cy, Co connected by a single quartic vertex V,

e Irreducible diagrams: Three loop chains C1, Cy, C5 with loop momenta
q1, 92,93 = —(q1 + ¢2) and two connecting vertices V), V;
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Processes considered in performance tests

corrections | process type | massless fermions | massive fermions process
QED 2 — 2 e — eTe” —ete
2—=3 e — ete” —ete
QCD 2 — 2 u — gg — uu
u, d — dd — uu
u - 99 — 99
U t uu — ttg
U t gg — tt
U t gg — ttg
2—3 u, d — dd — uug
U — 99 — 999
u, d — ud — WTgg
u, d — wa — WTW g
U wu — ttH
U gg — ttH
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Memory usage of the two-loop algorithm

virtual-virtual memory [MB] real-virtual [MB]
hard process segment-by-segment | diagram-by-diagram || coefficients | full
ete” —ete” 18 8 § 23
ete” = ete 154 25 22 54
qgg — Ul 75 31 10 26
gg — tt 94 35 15 34
gg — ttg 2000 441 152 213
ud — Wtgg 563 143 54 90
wu — WTW g 264 67 36 67
wu — ttH 82 28 14 40
gg — ttH 604 145 50 90
uu — ttg 323 33 41 74
gg — gg 271 94 41 55
dd — v 18 10 9 20
dd — uig 288 85 39 68
gg — ggg 6299 1597 623 683




Power counting: Nontrivial QCD-EW interplay at 1 loop

Simple example: gqg — qq cross section at Born level: 0(0425) + (’)(0415041) + 0(042)

QCD EW—QCD interf. EW

In general (e.g. pp — X + jets): O(aka™) + O o™ty 4. + O(ag_kozm+k)

NLO EW corrections of (’)(oz%ozl) for qq — qq:
e EW corrections to QCD Born

_ _ — O(«) corrections can involve
e QCD corrections to EW-QCD interference

OS2 O

= Mixed o vg power counting with non-trivial interference contributions

emissions of v and ¢, q, q

= OPENLOOPS provides any desired order O(a’4a) in a fully automated way
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