

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

OpenLoops @ 2 loops

M. F. Zoller

based on JHEP 05 (2022) 161 [arXiv:2201.11615] in collaboration with S. Pozzorini and N. Schär

CERN workshop "Precision calculations for future e^+e^- colliders: targets and tools", 13th May 2022

Scattering amplitudes in perturbation theory

Hard scattering amplitudes for Monte Carlo simulations are computed in perturbation theory from matrix elements

$$\bar{\mathcal{M}} = \bar{\mathcal{M}}_0 + \bar{\mathcal{M}}_1 + \bar{\mathcal{M}}_2 + \dots$$

computed from colour- and helicity-summed scattering probability density

$$\mathcal{W} = \sum_{\substack{h, \text{col} \\ \text{average and symmetry factor}}} \left| \mathbf{R}\bar{\mathcal{M}} \right|^2 = \sum_{\substack{h, \text{col} \\ \text{IO}}} \left\{ \underbrace{|\bar{\mathcal{M}}_0|^2}_{\text{IO}} + \underbrace{2\operatorname{Re}\left[\bar{\mathcal{M}}_0^* \mathbf{R}\bar{\mathcal{M}}_1\right]}_{\text{NLO virtual}} + \underbrace{|\mathbf{R}\bar{\mathcal{M}}_1|^2 + 2\operatorname{Re}\left[\bar{\mathcal{M}}_0^* \mathbf{R}\bar{\mathcal{M}}_2\right]}_{\text{NLO virtual-virtual}} + \dots \right\}$$

with UV divergences subtracted by the renormalisation procedure $\mathbf{R} \, \bar{\mathcal{M}} = \bar{\mathcal{M}}_0 + \mathbf{R} \, \bar{\mathcal{M}}_1 + \mathbf{R} \, \bar{\mathcal{M}}_2 + \dots$

OpenLoops

OPENLOOPS [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, M.Z.] is a fully automated numerical tool for the computation of **scattering probability densities** from tree and one-loop amplitudes

$$\mathcal{W}_{00} = \sum_{h,\text{col}} |\bar{\mathcal{M}}_0|^2, \qquad \mathcal{W}_{01} = \sum_{h,\text{col}} 2 \operatorname{Re} \left[\bar{\mathcal{M}}_0^* \mathbf{R} \bar{\mathcal{M}}_1 \right], \qquad \mathcal{W}_{11} = \sum_{h,\text{col}} |\mathbf{R} \bar{\mathcal{M}}_1|^2$$

Download from https://gitlab.com/openloops/OpenLoops.git

- $\bullet\,$ Full NLO QCD and NLO EW corrections available
- Excellent CPU performance and numerical stability Crucial for real-virtual contributions

Real-emission contributions up to NNLO available in $\operatorname{OPENLOOPS}$

$$\mathcal{W}_{00}^{(1)} = \bar{\sum}_{h,\text{col}} |\bar{\mathcal{M}}_{0}^{(1)}|^{2}, \qquad \mathcal{W}_{01}^{(1)} = \bar{\sum}_{h,\text{col}} 2 \operatorname{Re} \left[\bar{\mathcal{M}}_{0}^{(1)*} \mathbf{R} \bar{\mathcal{M}}_{1}^{(1)} \right], \qquad \mathcal{W}_{00}^{(2)} = \bar{\sum}_{h,\text{col}} |\bar{\mathcal{M}}_{0}^{(2)}|^{2}$$

$$\bar{\mathcal{M}}_{0} = \underbrace{\bar{\mathcal{M}}_{0}}_{0} = \underbrace{\bar{\mathcal{M}}_{0}}$$

required for NNLO, but no fully automated tool available \Rightarrow OPENLOOPS for two-loop amplitudes highly desirable

Outline

- I. One-loop amplitudes
 - $\rightarrow~\mathrm{OPENLOOPS}$ algorithm for tree and one-loop amplitudes
- II. Two-loop amplitudes
 - $\rightarrow\,$ New algorithm for two-loop integrands
 - $\rightarrow\,$ Numerical stability and CPU efficiency
- III. OPENLOOPS features @ 1 loop and 2 loop
- V. Summary and Outlook

I. One-loop amplitudes

One-loop diagram
$$\Gamma$$
 in $D = 4 - 2\varepsilon$ dimensions
 $\bar{\mathcal{M}}_{1,\Gamma} = \underbrace{C_{1,\Gamma}}_{\text{colour factor}} \int \mathrm{d}\bar{q}_1 \frac{\bar{\mathcal{N}}(\bar{q}_1)}{\mathcal{D}(\bar{q}_1)} = \underbrace{D_0}_{D_1} \underbrace{D_1}_{D_1} D_2$

$$\mathcal{D}(\bar{q}_1) = \underbrace{(\bar{q}_1 + p_k)^2 - m_k^2}_{D_1}, \quad D_k(\bar{q}_1) = \underbrace{(\bar{q}_1 + p_k)^2$$

Numerical tools, such as OPENLOOPS [Buccioni et al], RECOLA [Actis et al], MADLOOP [Hirschi et al], construct the numerator in 4 dimensions (D-dim quantities with bar, 4-dim without)

$$\underbrace{\mathcal{N}(\boldsymbol{q}_{1})}_{4-\operatorname{dim}} = \underbrace{\bar{\mathcal{N}}(\bar{\boldsymbol{q}}_{1})}_{D-\operatorname{dim}} \begin{vmatrix} \bar{\boldsymbol{q}}_{i} \to \boldsymbol{q}_{i}, \\ \bar{\boldsymbol{q}}^{\bar{\mu}} \to \gamma^{\mu}, \\ \bar{\boldsymbol{g}}^{\bar{\mu}\bar{\nu}} \to \boldsymbol{g}^{\mu\nu} \end{vmatrix} \Rightarrow \underbrace{\mathcal{M}_{1,\Gamma}}_{p = C_{1,\Gamma}} \underbrace{\mathcal{N}_{1}}_{r=0} \underbrace{\mathcal{N}_{\mu_{1}\cdots\mu_{r}}}_{tensor \ coefficient} \underbrace{\int \mathrm{d}\bar{\boldsymbol{q}}_{1} \frac{\boldsymbol{q}_{1}^{\mu_{1}}\cdots\boldsymbol{q}_{1}^{\mu_{r}}}{\mathcal{D}(\bar{\boldsymbol{q}}_{1})}}_{tensor \ integral}$$

Steps of the calculation

- Construction of tensor coefficients
- Reduction of tensor integrals and evaluation of master integrals
- Restoration of ε -dim numerator parts $\tilde{\mathcal{N}}(\bar{q}_1) = \bar{\mathcal{N}}(\bar{q}_1) - \mathcal{N}(q_1)$

- OPENLOOPS algorithm [van Hameren; Cascioli, Maierhöfer, Pozzorini; Buccioni, Lang, Lindert, Pozzorini, Zhang, M.Z.]
- ← On-the-fly reduction [Buccioni, Pozzorini, M.Z.] and COLLIER [Denner, Dittmaier, Hofer], ONELOOP [van Hameren]
- ← Rational counterterms [Ossola, Papadopoulos, Pittau]

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

Example:

Numerical recursion step:

 $\mathcal{M}_0 =$

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

 $\downarrow + \ldots \rightarrow$ split into subtrees

Example:

Numerical recursion step:

 $\mathcal{M}_0 =$

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

ightarrow connect subtrees

Example:

Numerical recursion step:

 $\mathcal{M}_0 =$

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

ightarrow connect subtrees

Example:

Numerical recursion step:

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

High complexity in loop diagram Γ due to analytical structure in loop momentum q

Factorisation into colour factor $\mathcal{C}_{1,\Gamma}$

and loop segments

$$S_{i}(\boldsymbol{q}) = \underbrace{w_{i}}_{D_{i}} = \{Y_{\sigma}^{i}(k_{i}, p_{i}) + Z_{\nu;\sigma}^{i} \boldsymbol{q}^{\nu}\} w_{i}^{\sigma}$$

Universal building block \times subtree(s)

Scalar propagators $D_i(\mathbf{q}) = (\mathbf{q} + p_i)^2 - m_i^2$

Cut-open loop at D_0

Open loop is a matrix with two Lorentz/spinor indices β_0 , β_N

High complexity in loop diagram Γ due to analytical structure in loop momentum q

Factorisation into colour factor $\mathcal{C}_{1,\Gamma}$

and loop segments

$$S_{i}(\boldsymbol{q}) = \underbrace{w_{i}}_{D_{i}} = \{Y_{\sigma}^{i}(k_{i}, p_{i}) + Z_{\nu;\sigma}^{i} \boldsymbol{q}^{\nu}\} w_{i}^{\sigma}$$

Universal building block imes subtree(s)

Dress chain of segments (open loop) recursively

Scalar propagators $D_i(\mathbf{q}) = (\mathbf{q} + p_i)^2 - m_i^2$

$$\mathcal{N}_{1}(\boldsymbol{q}) = \mathcal{N}_{0}(\boldsymbol{q})S_{1}(\boldsymbol{q}) = S_{1}(\boldsymbol{q}) = S_{1}(\boldsymbol{q}) = \mathcal{N}_{0}(\boldsymbol{q}) = \mathcal{N}_{1}(\boldsymbol{q}) =$$

Recursion steps can increase the rank in q by 1.

High complexity in loop diagram Γ due to analytical structure in loop momentum q

Factorisation into colour factor $\mathcal{C}_{1,\Gamma}$

and loop segments

$$S_{i}(\boldsymbol{q}) = \underbrace{\boldsymbol{w}_{i}}_{\boldsymbol{p}_{i-1}} = \{Y_{\sigma}^{i}(k_{i}, p_{i}) + Z_{\nu;\sigma}^{i} \boldsymbol{q}^{\nu}\} w_{i}^{\sigma}$$

Universal building block \times subtree(s)

Dress chain of segments (open loop) recursively

Scalar propagators $D_i(\mathbf{q}) = (\mathbf{q} + p_i)^2 - m_i^2$

$$\mathcal{N}_{2}(q) = \mathcal{N}_{1}(q)S_{2}(q) = \prod_{i=1}^{2} S_{i}(q) = \int_{\beta_{0}}^{2} S_{i}(q) = \int_{\beta_{0}}^{\sqrt{1-1}} \int_{D_{1}}^{\sqrt{2}} \int_{D_{2}}^{\sqrt{2}} \int_{D_{3}}^{\sqrt{2}} \int_{D_{n-1}}^{\sqrt{2}} \int_{D_{0}}^{\beta_{n}} \int_{D_{n-1}}^{\beta_{n}} \int_{D_{0}}^{\beta_{n}} \int_{D_{n-1}}^{\beta_{n}} \int_{D_{n-1}}^{\beta_{n}} \int_{D_{n-1}}^{\beta_{n}} \int_{D_{n-1}}^{\beta_{n}} \int_{\beta_{n-1}}^{\beta_{n}} \int_{\beta_{n-1}}^{\beta_{n-1}} \int_{\beta$$

High complexity in loop diagram Γ due to analytical structure in loop momentum q

Factorisation into colour factor $\mathcal{C}_{1,\Gamma}$

and loop segments

$$S_{i}(\boldsymbol{q}) = \underbrace{\boldsymbol{w}_{i}}_{\boldsymbol{p}_{i-1}} = \{Y_{\sigma}^{i}(k_{i}, p_{i}) + Z_{\nu;\sigma}^{i} \boldsymbol{q}^{\nu}\} w_{i}^{\sigma}$$

Scalar propagators $D_i(\mathbf{q}) = (\mathbf{q} + p_i)^2 - m_i^2$

Universal building block \times subtree(s)

Dress chain of segments recursively \rightarrow Close loop by contracting β_0 and β_N

$$\begin{split} \mathcal{N}_{N}(q) \ &= \ \mathcal{N}_{N-1}(q)S_{N}(q) \ &= \ \prod_{i=1}^{N}S_{i}(q) \ &= \ \underbrace{\bigcup_{\beta_{0}} \dots \bigcup_{D_{1}} \dots \bigcup_{D_{2}} \dots \bigcup_{D_{3}} \dots \bigcup_{D_{N-1}} \dots \bigcup_{D_{0}} \dots \bigcup_{\beta_{N}} \dots \bigcup_{\beta_{N$$

Recursion steps $\mathcal{N}_n(\mathbf{q}) = \mathcal{N}_{n-1}(\mathbf{q})S_n(\mathbf{q})$ at the level of tensor coefficients $\mathcal{N}_{\mu_1...\mu_r}^{(n)}$

Completely general and highly efficient algorithm

Born-loop interference

Scattering probability density from interference of one-loop diagrams Γ with full Born

$$\mathcal{W}_{01,\Gamma} = \sum_{h,\text{col}}^{\Sigma} 2 \operatorname{Re} \left[\bar{\mathcal{M}}_0^* \mathbf{R} \bar{\mathcal{M}}_{1,\Gamma} \right] \quad \Rightarrow \quad \mathcal{W}_{01} = \sum_{\Gamma} \mathcal{W}_{01,\Gamma}$$

Consider colour-helicity summed numerator \Rightarrow nested sums of helicities h_i of individual segments

$$\mathcal{U}(q,0) = \sum_{h} 2\left(\sum_{\text{col}} \mathcal{M}_{0}^{*}(h)C_{1,\Gamma}\right) \mathcal{N}(q,h) = \sum_{h_{N}} \left[\dots \sum_{h_{2}} \left[\sum_{h_{1}} \mathcal{U}_{0}(h)S_{1}(q,h_{1})\right] S_{2}(q,h_{2}) \cdots \right] S_{n}(q,h_{N})$$
$$= \mathcal{U}_{0}(h)$$

On-the-fly helicity summation [Buccioni, Pozzorini, M.Z.]

$$\mathcal{U}_{n}(q, \overset{\bullet}{h}_{n}) = \sum_{h_{n}} \mathcal{U}_{n-1}(q, \overset{\bullet}{h}_{n-1}) S_{n}(q, h_{n}) = \sum_{\substack{h_{1} \dots h_{n} \text{ col}}} \sum_{\substack{w_{n} \dots w_{n} \\ w_{1} \dots w_{n}}} X \overset{w_{n}}{\underset{w_{1} \dots w_{n}}{}} \times \overset{w_{n}}{\underset{w_{1} \dots w_{n}}{}} X$$

$$\mathcal{U}_{n}(q,\check{h}_{n}) = \sum_{r=0}^{n} \mathcal{U}_{\mu_{1}\dots\mu_{r}}^{(n)} q^{\mu_{1}} \dots q^{\mu_{r}} \text{ depends on helicity } \check{h}_{n} = \sum_{k=n+1}^{N} h_{k} \text{ of undressed segments}$$

Implemented at the level of tensor integral coefficients $\mathcal{U}_{\mu_{1}...\mu_{r}}^{(n)}$

Huge gain in CPU efficiency, especially for high-multiplicity processes

One-loop rational terms

Amputated one-loop diagram γ (1Pl)

$$\bar{\mathcal{M}}_{1,\gamma} = \underbrace{C_{1,\gamma}}_{\text{colour factor}} \int \mathrm{d}\bar{q}_1 \frac{\mathcal{N}(q_1) + \tilde{\mathcal{N}}(\bar{q}_1)}{\mathcal{D}(\bar{q}_1)} = \underbrace{\mathcal{N}_{0}(\bar{q}_1)}_{D_1} \Rightarrow \delta \mathcal{R}_{1,\gamma} = C_{1,\gamma} \int \mathrm{d}\bar{q}_1 \frac{\tilde{\mathcal{N}}(\bar{q}_1)}{\mathcal{D}(\bar{q}_1)}$$

The ε -dim numerator parts $\tilde{\mathcal{N}}(\bar{q}_1) = \bar{\mathcal{N}}(\bar{q}_1) - \mathcal{N}(q_1)$ contribute only via interaction with $\frac{1}{\varepsilon}$ UV poles \Rightarrow Can be restored through rational counterterm $\delta \mathcal{R}_{1,\gamma}$ [Ossola, Papadopoulos, Pittau]

$$\Rightarrow \underbrace{\mathbf{R}\,\overline{\mathcal{M}}_{1,\gamma}}_{D-\text{dim, renormalised}} = \underbrace{\mathcal{M}_{1,\gamma}}_{4-\text{dim numerator}} + \underbrace{\delta Z_{1,\gamma} + \delta \mathcal{R}_{1,\gamma}}_{\text{UV and rational counterterm}}$$

Generic one-loop diagram Γ factorises into 1PI subdiagram γ and external subtrees w_i (4-dim):

$$\bar{\mathcal{M}}_{1,\Gamma} = \underbrace{\left[\bar{\mathcal{M}}_{1,\gamma}\right]^{\sigma_1...\sigma_N}}_{w_1} \underbrace{\prod_{i=1}^{w_1} [w_i]_{\sigma_i}}_{i=1} \Rightarrow \begin{bmatrix} \bar{\mathcal{M}}_{1,\Gamma} - \mathcal{M}_{1,\Gamma} + \left(\delta Z_{1,\gamma} + \delta \mathcal{R}_{1,\gamma}\right) \\ \underbrace{\prod_{i=1}^{N} w_i}_{\text{tree diagram}} \end{bmatrix}$$

Finite set of process-independent rational terms in renormalisable models computed from UV divergent vertex functions

II. Two-loop amplitudes

Steps of the calculation

- Construction of tensor coefficients
- Reduction and evaluation of tensor integrals
- Restoration of $\tilde{\mathcal{N}}(\bar{q}_1, \bar{q}_2) = \bar{\mathcal{N}}(\bar{q}_1, \bar{q}_2) \mathcal{N}(q_1, q_2)$
- $\leftarrow \text{ Now fully implemented}$
- $\leftarrow \text{ Not yet automated}$
- ← Two-loop rational terms
 [Lang, Pozzorini, Zhang, M.Z.]

Two-loop rational terms

Start from renormalisation procedure for (1PI) diagram Γ in *D*-dim

Sum over all subdiagrams γ of Γ . Numerator dimension $D_n = D$.

Extension from single diagrams to full vertex functions Γ due to linearity of ${\boldsymbol{\mathsf{R}}}$

Goal: Computation from amplitudes with numerator dimension $D_n = 4$

- Split numerator $\bar{\mathcal{N}}(\bar{q}_1, \bar{q}_2) = \mathcal{N}(q_1, q_2) + \tilde{\mathcal{N}}(\bar{q}_1, \bar{q}_2)$
- Compute amplitudes on the with $\mathcal{N}(q_1, q_2) = \bar{\mathcal{N}}(\bar{q}_1, \bar{q}_2) \Big|_{\bar{q}\bar{\mu}\bar{\nu} \to q^{\mu\nu}, \ \bar{\gamma}\bar{\mu} \to \gamma^{\mu}, \ \bar{q}_i \to q_i}$
- Restore $\tilde{\mathcal{N}}$ -terms (from subdiagrams and a remaining global one) through additional counterterms

Two-loop rational terms

Renormalised *D*-dim amplitudes from amplitudes with 4-dim numerator [Pozzorini, Zhang, M.Z.]

$$\mathbf{R}\,\bar{\mathcal{M}}_{2,\Gamma} = \mathcal{M}_{2,\Gamma} + \sum_{\gamma} \left(\underbrace{\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma}}_{\text{subtract}} + \underbrace{\delta \mathcal{R}_{1,\gamma}}_{\text{restore}\,\tilde{\mathcal{N}}\text{-terms}} \right) \cdot \mathcal{M}_{1,\Gamma/\gamma} + \left(\underbrace{\delta Z_{2,\Gamma}}_{\text{subtract remaining}} + \underbrace{\delta \mathcal{R}_{2,\Gamma}}_{\text{restore remaining}} \right)$$

$$\frac{\delta \mathcal{R}_{2,\Gamma}}{\delta \mathcal{R}_{2,\Gamma}} = \left[\underbrace{\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma}}_{\text{subtract}} + \underbrace{\delta \mathcal{R}_{1,\gamma}}_{\text{subtract}} + \underbrace{\delta \mathcal{R}_{2,\Gamma}}_{\text{subtract}} \right]_{4\text{-dim}}$$

- Divergences from subdiagrams γ and remaining global one subtracted by usual UV counterterms $\delta Z_{1,\gamma}, \delta Z_{2,\Gamma}$. Additional UV counterterm $\delta \tilde{Z}_{1,\gamma} \propto \frac{\tilde{q_1}^2}{\varepsilon}$ for subdiagrams with mass dimension 2.
- $\delta \mathcal{R}_{2,\Gamma}$ is a two-loop rational term stemming from the interplay of \tilde{N} with UV poles
- External subtrees factorise and do not generate rational terms (see one-loop case)
- Extension from single diagrams to full vertex functions due to linearity of ${\bf R}$
- \Rightarrow Finite set of process-independent rational terms for UV divergent vertex functions

numerators

Two-loop rational terms

Renormalised *D*-dim amplitudes can be computed from amplitudes with 4-dim numerators and a **finite set of universal UV and rational counterterms** inserted lower-loop amplitudes

$$\mathbf{R}\,\bar{\mathcal{M}}_{2,\Gamma} = \mathcal{M}_{2,\Gamma} + \sum_{\gamma} \left(\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma} + \delta \mathcal{R}_{1,\gamma} \right) \cdot \mathcal{M}_{1,\Gamma/\gamma} + \left(\delta Z_{2,\Gamma} + \delta \mathcal{R}_{2,\Gamma} \right)$$

Status of two-loop rational terms

- General method for the computation of rational counterterms of UV origin from simple tadpole integrals in any renormalisable model [Pozzorini, Zhang, M.Z.,2020]
- Complete renormalisation scheme dependence [Lang, Pozzorini, Zhang, M.Z., 2020]
- Rational Terms for Spontaneously Broken Theories [Lang, Pozzorini, Zhang, M.Z., 2021]
- Full set of two-loop rational terms for QED and QCD corrections to the SM [Pozzorini, Zhang, M.Z.,2020] [Lang, Pozzorini, Zhang, M.Z.,2020] [Lang, Pozzorini, Zhang, M.Z.,2021]
- Rational terms of IR origin currently under investigation

Reducible two-loop diagrams

Reducible diagram Γ factorises into one-loop diagrams and a tree-like bridge P (or quartic vertex)

$$\mathcal{M}_{2,\Gamma} = \underbrace{\mathcal{M}_{1}^{(i)}}_{\substack{D_{1}^{(i)}\\ \overline{q_{i}}\\ \end{array}}^{D_{1}^{(i)}}}_{\substack{D_{N_{i-1}}^{(i)}\\ \overline{q_{i}}\\ \end{array}} = C_{2,\Gamma} P_{\alpha_{1}\alpha_{2}} \prod_{i=1}^{2} \int d\bar{q}_{i} \frac{\left[\mathcal{N}^{(i)}(q_{i})\right]^{\alpha_{i}}}{\mathcal{D}^{(i)}(\bar{q}_{i})}$$

with $\mathcal{D}^{(i)}(\bar{q}_{i}) = D_{0}^{(i)}(\bar{q}_{i}) \cdots D_{N_{i}-1}^{(i)}(\bar{q}_{i}), \quad D_{a}^{(i)}(\bar{q}_{i}) = (\bar{q}_{i} + p_{ia})^{2} - m_{ia}^{2}$
Loop numerators factorise into segments $S_{a}^{(i)}(q_{i}, h_{a}^{(i)}) = \underbrace{\mathcal{M}_{a}^{(i)}}_{\beta_{a}^{(i)}} = \underbrace{\left\{Y_{\sigma}^{a}(k_{ia}, p_{ia}) + Z_{\nu;\sigma}^{i} q_{i}^{\nu}\right\}}_{\overline{\rho}_{a}^{(i)}} \underbrace{\left[w_{a}^{(i)}(h_{a}^{(i)})\right]^{\sigma}}_{\beta_{a}^{(i)}}$

Feynman rule of loop vertex and propagator external subtree with helicity configuration $h_a^{(i)}$

- Cut-open both loops and dress first one
- Close and integrate first loop, attach bridge
- Use first loop + bridge as "subtree" for second loop
- \Rightarrow Extension of the tree and one-loop algorithm

New algorithm to construct two-loop tensor coefficients

Amplitude of irreducible two-loop diagram Γ (1PI on amputation of all external subtrees):

Exploit factorisation of numerator $\mathcal{N}(q_1, q_2) = \prod_{i=1}^{3} \mathcal{N}^{(i)}(q_i) \prod_{j=0}^{1} \mathcal{V}_j(q_1, q_2)$

- Three chains, each depending on a single loop momentum q_i (i = 1, 2, 3)with chain numerators factorising into loop segments $\mathcal{N}^{(i)}(q_i) = S_0^{(i)}(q_i) \cdots S_{N_i-1}^{(i)}(q_i)$ \rightarrow Same structure as one-loop chain
- \bullet Two connecting vertices $\mathcal{V}_0, \mathcal{V}_1$
- Chain denominators $\mathcal{D}^{(i)}(q_i) = D_0^{(i)}(q_i) \cdots D_{N_i-1}^{(i)}(q_i)$ where $D_a^{(i)}(q_i) = (q_i + p_{ia})^2 m_{ia}^2$ (External momenta p_{ia} and masses m_{ia} along *i*-th chain)

General structure of a recursive two-loop algorithm

Final result: Helicity and colour–summed Born–loop interference $\mathcal{U}(q_1, q_2)$ $=\sum_{\boldsymbol{h}} \mathcal{U}_{0}(\boldsymbol{h}) \left\{ \prod_{i=1}^{3} \left[\prod_{k=0}^{N_{i}-1} S_{k}^{(i)}(\boldsymbol{q}_{i},\boldsymbol{h}_{k}^{(i)}) \right]_{\beta_{0}^{(i)}}^{\beta_{N_{i}}^{(i)}} \right\} \left[\mathcal{V}_{0}(\boldsymbol{q}_{1},\boldsymbol{q}_{2},\boldsymbol{h}_{0}^{(V)}) \right]^{\beta_{0}^{(1)}\beta_{0}^{(2)}\beta_{0}^{(3)}} \left[\mathcal{V}_{1}(\boldsymbol{q}_{1},\boldsymbol{q}_{2},\boldsymbol{h}_{1}^{(V)}) \right]_{\beta_{N_{i}}^{(1)}\beta_{N_{0}}^{(2)}\beta_{N_{0}}^{(3)}}$ chain $\mathcal{N}^{(i)}$ connecting vertices (quartic vertices with external subtrees $w_a^{(V)}$) with Born-colour factor $\mathcal{U}_0(\mathbf{h}) = 2 \Big(\sum_{n=1}^{\infty} \mathcal{M}_0^*(\mathbf{h}) C_{2,\Gamma} \Big)$ Algorithm with recursion steps $\begin{vmatrix} \hat{\mathcal{U}}_n = \hat{\mathcal{U}}_{n-1} \cdot \mathcal{K}_n \end{vmatrix} = \sum_{r=0}^{R_1} \sum_{s=0}^{R_2} \hat{\mathcal{U}}_{\mu_1}^{(n)} \cdots \mu_r \nu_1 \cdots \nu_s q_1^{\mu_1} \cdots q_1^{\mu_r} q_2^{\nu_1} \cdots q_2^{\nu_s}$ with partially dressed numerators $\hat{\mathcal{U}}_n$ and building blocks $\mathcal{K}_n \in \{\mathcal{U}_0, S_k^{(i)}, \mathcal{V}_j, \mathcal{N}^{(i)}\}$. • Each step increases the rank in a q_i by 0 or 1 • Segment $S_k^{(i)}$, \mathcal{V}_i depend on helicities of external subtrees Number of tensor components R_2 3 \Rightarrow global helicity $h = \sum_{i=1}^{3} \sum_{k=0}^{N_i-1} h_k^{(i)} + h_0^{(V)} + h_1^{(V)}$ 35 5 25 15 75 35 175 70 350 1 2 3 4 75 175 225 525 • High complexity in steps connecting \mathcal{V}_j due to dependence 525 1225 1050 2450 on q_1, q_2 and three open Lorentz/spinor indices $eta_k^{(i)}$ 126 630 1890 4410

• Number of tensor coefficients grows exponentially with ranks R_1, R_2

General structure of a recursive two-loop algorithm

Final result: Helicity and colour–summed Born–loop interference $\mathcal{U}(q_1, q_2)$ $=\sum_{h} \mathcal{U}_{0}(h) \left\{ \prod_{i=1}^{3} \left[\prod_{k=0}^{N_{i}-1} S_{k}^{(i)}(q_{i}, h_{k}^{(i)}) \right]_{\beta_{0}^{(i)}}^{\beta_{N_{i}}^{(i)}} \right\} \left[\mathcal{V}_{0}(q_{1}, q_{2}, h_{0}^{(V)}) \right]^{\beta_{0}^{(1)}\beta_{0}^{(2)}\beta_{0}^{(3)}} \left[\mathcal{V}_{1}(q_{1}, q_{2}, h_{1}^{(V)}) \right]_{\beta_{N_{1}}^{(1)}\beta_{N_{2}}^{(2)}\beta_{N_{2}}^{(3)}}$ chain $\mathcal{N}^{(i)}$ connecting vertices (quartic vertices with external subtrees $w_a^{(V)}$) with Born-colour factor $\mathcal{U}_0(\mathbf{h}) = 2 \Big(\sum_{\alpha > 1} \mathcal{M}_0^*(\mathbf{h}) C_{2,\Gamma} \Big)$ Algorithm with recursion steps $\begin{vmatrix} \hat{\mathcal{U}}_n = \hat{\mathcal{U}}_{n-1} \cdot \mathcal{K}_n \end{vmatrix} = \sum_{r=0}^{R_1} \sum_{s=0}^{R_2} \hat{\mathcal{U}}_{\mu_1 \cdots \mu_r \nu_1 \cdots \nu_s}^{(n)} q_1^{\mu_1} \dots q_1^{\mu_r} q_2^{\nu_1} \dots q_2^{\nu_s}$ with partially dressed numerators $\hat{\mathcal{U}}_n$ and building blocks $\mathcal{K}_n \in \{\mathcal{U}_0, S_k^{(i)}, \mathcal{V}_j, \mathcal{N}^{(i)}\}$. **CPU cost of** *n***-th step** \sim number of (#) multiplications \rightarrow depends on type of \mathcal{K}_n and # components of $\hat{\mathcal{U}}_n = (\# \text{ tensor components in } q_1, q_2) \times (\# \text{ active helicities}) \times 4^{(\# \text{ open indices } \beta_a^{(i)})}$ \Rightarrow Most efficient algorithm found through cost simulation

of possible candidates for a wide range of QED and QCD Feynman diagrams

• Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type

Order of chains and of two-loop vertices $\mathcal{V}_0, \mathcal{V}_1$ has major impact on efficiency

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)

 $\mathcal{N}_{n}^{(3)}(\mathbf{q}_{3}, \hat{\mathbf{h}}_{n}^{(3)}) = \mathcal{N}_{n-1}^{(3)}(\mathbf{q}_{3}, \hat{\mathbf{h}}_{n-1}^{(3)}) \cdot S_{n}^{(3)}(\mathbf{q}_{3}, \mathbf{h}_{n}^{(3)}) \qquad \text{with initial condition } \mathcal{N}_{-1}^{(3)} = \mathbb{1}$

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)

 $\mathcal{N}_{n}^{(3)}(q_{3},\hat{h}_{n}^{(3)}) = \mathcal{N}_{n-1}^{(3)}(q_{3},\hat{h}_{n-1}^{(3)}) \cdot S_{n}^{(3)}(q_{3},h_{n}^{(3)}) \qquad \text{with initial condition } \mathcal{N}_{-1}^{(3)} = \mathbb{1}$

• Shortest chain \Rightarrow Low number of helicity d.o.f. $\hat{h}_n^{(3)} = \hat{h}_{n-1}^{(3)} + h_n^{(3)}$ and low rank in q_3 • Partial chains $\mathcal{N}_n^{(3)}$ computed only once for multiple diagrams

\Rightarrow Only a small number of low-complexity steps for the full process

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)

$$\mathcal{U}_{n}^{(1)}(\underline{q}_{1}, \underline{\check{h}}_{n}^{(1)}) = \sum_{\underline{h}_{n}^{(1)}} \mathcal{U}_{n-1}^{(1)}(\underline{q}_{1}, \underline{\check{h}}_{n-1}^{(1)}) \cdot S_{n}^{(1)}(\underline{q}_{1}, \underline{h}_{n}^{(1)}) \qquad \text{with} \quad \mathcal{U}_{-1}^{(1)}(\underline{h}) = 2\left(\sum_{\mathrm{col}} \underbrace{\mathcal{M}_{0}^{*}(\underline{h})}_{\mathrm{Born}} \underbrace{C_{2,\Gamma}}_{\mathrm{colour}}\right)$$

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)

$$\mathcal{U}_{n}^{(1)}(\boldsymbol{q}_{1}, \boldsymbol{\check{h}}_{n}^{(1)}) = \sum_{\boldsymbol{h}_{n}^{(1)}} \mathcal{U}_{n-1}^{(1)}(\boldsymbol{q}_{1}, \boldsymbol{\check{h}}_{n-1}^{(1)}) \cdot S_{n}^{(1)}(\boldsymbol{q}_{1}, \boldsymbol{h}_{n}^{(1)}) \qquad \text{with} \quad \mathcal{U}_{-1}^{(1)}(\boldsymbol{h}) = 2 \Big(\sum_{\mathrm{col}} \underbrace{\mathcal{M}_{0}^{*}(\boldsymbol{h})}_{\mathrm{Born}} \underbrace{C_{2,\Gamma}}_{\mathrm{colour}} \Big)$$

On-the-fly summation of segment helicities $h_n^{(1)}$

 \Rightarrow Partial chains depend on remaining helicities of the diagram $\check{h}_n^{(1)} = h - \sum_{k=1}^n h_k^{(1)}$

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)

$$\mathcal{U}_{n}^{(1)}(\boldsymbol{q}_{1}, \boldsymbol{\check{h}}_{n}^{(1)}) = \sum_{\boldsymbol{h}_{n}^{(1)}} \mathcal{U}_{n-1}^{(1)}(\boldsymbol{q}_{1}, \boldsymbol{\check{h}}_{n-1}^{(1)}) \cdot S_{n}^{(1)}(\boldsymbol{q}_{1}, \boldsymbol{h}_{n}^{(1)}) \qquad \text{with} \quad \mathcal{U}_{-1}^{(1)}(\boldsymbol{h}) = 2\left(\sum_{\mathrm{col}} \underbrace{\mathcal{M}_{0}^{*}(\boldsymbol{h})}_{\mathrm{Born}} \underbrace{C_{2,\Gamma}}_{\mathrm{colour}}\right)$$

On-the-fly summation of segment helicities $h_n^{(1)}$

 \Rightarrow Partial chains depend on remaining helicities of the diagram $\check{h}_n^{(1)} = h - \sum_{k=1}^n h_k^{(1)}$

Example: n = 3• Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type q_3 • Dress $\mathcal{N}^{(3)}$ (shortest chain) • Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_0^* \mathcal{N}^{(1)}$ (longest chain) ${\mathcal V}_1$ $\mathcal{U}_{n}^{(1)}(\boldsymbol{q}_{1}, \check{\boldsymbol{h}}_{n}^{(1)}) = \sum_{\boldsymbol{h}^{(1)}} \mathcal{U}_{n-1}^{(1)}(\boldsymbol{q}_{1}, \check{\boldsymbol{h}}_{n-1}^{(1)}) \cdot S_{n}^{(1)}(\boldsymbol{q}_{1}, \boldsymbol{h}_{n}^{(1)}) \qquad \text{with} \quad \mathcal{U}_{-1}^{(1)}(\boldsymbol{h}) = 2\left(\sum_{col} \mathcal{M}_{0}^{*}(\boldsymbol{h}) + C_{2,\Gamma}\right)$

On-the-fly summation of segment helicities $h_n^{(1)}$

 \Rightarrow Partial chains depend on remaining helicities of the diagram $\check{h}_n^{(1)} = h - \sum_{k=1}^n h_k^{(1)}$

\Rightarrow Large portion of helicity d.o.f already summed over during dressing of longest chain

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)
- \bullet Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$

$$\mathcal{U}_{1}^{(13)}(q_{1}, q_{3}, h^{(2)} + h_{0}^{(V)}) = \sum_{h^{(3)}} \sum_{h_{1}^{(V)}} \mathcal{U}^{(1)}(q_{1}, \check{h}_{N_{1}-1}^{(1)}) \mathcal{N}^{(3)}(q_{3}, h^{(3)}) \mathcal{V}_{1}(q_{1}, q_{3}, h_{1}^{(V)})$$

 \circ On-the-fly summation of chain helicity $h^{(3)}$ (and potential subtree helicity at \mathcal{V}_1)

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_0 and map $q_3 \rightarrow -(q_1 + q_2)$

$$\circ$$
 Partial diagram depends on undressed chain helicity $h^{(2)}$ and two open indices

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- \bullet Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)
- \bullet Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_0 and map $q_3 \rightarrow -(q_1+q_2)$
- \bullet Connect segments of $\mathcal{N}^{(2)}$

$$\mathcal{U}_{n}^{(123)}(q_{1}, q_{2}, \tilde{h}_{n}^{(2)}) = \sum_{h_{n}^{(2)}} \mathcal{U}_{n-1}^{(123)}(q_{1}, q_{2}, \tilde{h}_{n-1}^{(2)}) S_{n}^{(2)}(q_{2}, h_{n}^{(2)})$$

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- \bullet Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)
- \bullet Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_0 and map $q_3 \rightarrow -(q_1+q_2)$
- \bullet Connect segments of $\mathcal{N}^{(2)}$

$$\mathcal{U}_{n}^{(123)}(q_{1}, q_{2}, \tilde{h}_{n}^{(2)}) = \sum_{h_{n}^{(2)}} \mathcal{U}_{n-1}^{(123)}(q_{1}, q_{2}, \tilde{h}_{n-1}^{(2)}) S_{n}^{(2)}(q_{2}, h_{n}^{(2)})$$

On-the-fly summation of segment helicities $\tilde{h}_n^{(2)} = \sum_{k=n+1}^{N_2-1} h_k^{(2)}$

 \Rightarrow Partial diagram depends only on helicities of remaining undressed segments

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- \bullet Dress ${\cal U}^{(1)} \propto {\cal M}_0^* {\cal N}^{(1)}$ (longest chain)
- \bullet Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_0 and map $q_3 \rightarrow -(q_1+q_2)$
- \bullet Connect segments of $\mathcal{N}^{(2)}$

$$\mathcal{U}_{n}^{(123)}(q_{1}, q_{2}, \tilde{h}_{n}^{(2)}) = \sum_{h_{n}^{(2)}} \mathcal{U}_{n-1}^{(123)}(q_{1}, q_{2}, \tilde{h}_{n-1}^{(2)}) S_{n}^{(2)}(q_{2}, h_{n}^{(2)})$$

On-the-fly summation of segment helicities $\tilde{h}_n^{(2)} = \sum_{k=n+1}^{N_2-1} h_k^{(2)}$

 \Rightarrow Partial diagram depends only on helicities of remaining undressed segments

\Rightarrow Lowest complexity in helicities for steps with highest rank in loop momenta

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- \bullet Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_0^* \mathcal{N}^{(1)}$ (longest chain)
- \bullet Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_0 and map $q_3 \rightarrow -(q_1+q_2)$
- \bullet Connect segments of $\mathcal{N}^{(2)}$

Exploit diagram factorisation for full process:

$$\mathcal{U}_A + \mathcal{U}_B = \left(\mathcal{U}_{A,n} \cdot S_{n+1} \cdots S_N \right) + \left(\mathcal{U}_{B,n} \cdot S_{n+1} \cdots S_N \right) = \left(\mathcal{U}_{A,n} + \mathcal{U}_{B,n} \right) \cdot S_{n+1} \cdots S_N$$

Merge partially dressed diagrams with same topology and subsequent recursion steps

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_1 \ge N_2 \ge N_3$ Choose order of $\mathcal{V}_0, \mathcal{V}_1$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- \bullet Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_0^* \mathcal{N}^{(1)}$ (longest chain)
- \bullet Connect \mathcal{V}_1 with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_0 and map $q_3 \rightarrow -(q_1+q_2)$
- \bullet Connect segments of $\mathcal{N}^{(2)}$

Exploit diagram factorisation for full process:

 $\mathcal{U}_A + \mathcal{U}_B = \left(\mathcal{U}_{A,n} \cdot S_{n+1} \cdots S_N \right) + \left(\mathcal{U}_{B,n} \cdot S_{n+1} \cdots S_N \right) = \left(\mathcal{U}_{A,n} + \mathcal{U}_{B,n} \right) \cdot S_{n+1} \cdots S_N$

Merge partially dressed diagrams with same topology and subsequent recursion steps

Highly efficient and completely general algorithm for two-loop tensor coefficients Fully implemented for QED and QCD corrections to the SM

Numerical stability

Pseudo-tree test

- Cut-open diagram at two propagators
- Saturate indices with random wavefunctions e_1, \ldots, e_4
- Evaluate integrand constructed with new two-loop algorithm at fixed values for q_1, q_2 $\Rightarrow \widehat{\mathcal{W}}_{02,\Gamma}^{(2L)} = \frac{U(q_1,q_2)}{\mathcal{D}(q_1,q_2)} \Rightarrow \widehat{\mathcal{W}}_{02}^{(2L)} = \sum_{\Gamma} \widehat{\mathcal{W}}_{02,\Gamma}^{(2L)}$

• Compute the same object with the OPENLOOPS tree-level algorithm for fixed $q_1, q_2 \Rightarrow \widehat{W}_{02}^{(t)}$ Compute relative numerical uncertainty in double (DP) and quadruple (QP) precision

$$\mathcal{A}^{(t)} := \log_{10} \left(\frac{|\widehat{\mathcal{W}}_{02}^{(t)} - \widehat{\mathcal{W}}_{02}^{(2L)}|}{\mathsf{Min}(|\widehat{\mathcal{W}}_{02}^{(t)}|, |\widehat{\mathcal{W}}_{02}^{(2L)}|)} \right)$$

 \Rightarrow Implementation validated for wide range of processes (10⁵ uniform random points)

Typical accuracy around 10^{-15} in DP and 10^{-30} in QP, and always much better than 10^{-17} in QP \Rightarrow **QP calculation as benchmark for numerical accuracy of DP calculation**

Numerical stability

Numerical instability of double (DP) wrt quad precision (QP) calculation:

$$\mathcal{A}_{\mathrm{DP}} \,=\, \log_{10} \left(\frac{|\widehat{\mathcal{W}}_{02}^{(\mathrm{2L},\mathrm{DP})} - \widehat{\mathcal{W}}_{02}^{(\mathrm{2L},\mathrm{QP})}|}{\mathsf{Min}(|\widehat{\mathcal{W}}_{02}^{(\mathrm{2L},\mathrm{DP})}|, |\widehat{\mathcal{W}}_{02}^{(\mathrm{2L},\mathrm{QP})}|)} \right)$$

Fraction of points with $A_{DP} > A_{min}$ as a function of A_{min} for 10^5 uniform random points

Excellent numerical stability

⇒ Important for full calculation (tensor integral reduction will be main source of instabilities)

Timings for two-loop tensor coefficients

 $2 \rightarrow 2$ process: 10 - 300 ms/psp $2 \rightarrow 3 \text{ process: } 65 - 9200 \text{ ms/psp}$ (on a laptop)

Runtime \propto number of diagrams time/psp/diagram $\sim 150 \mu s$

Constant ratios between virtualvirtual (VV) and real-virtual (RV) with and without 1-loop integrals • tensor coefficients: $\frac{t_{\rm VV}}{t_{\rm RV}} \sim 9$ • full RV: $\frac{t_{\rm VV}}{t_{\rm RV}} \sim 4$

Strong CPU performance, comparable to real-virtual corrections in OPENLOOPS

III. OPENLOOPS features at 1 and 2 loops

General algorithm: Any model can be implemented and any process can be generated automatically (provided the tensor/master integrals are available)

Program structure is the same at 1 and 2 loops:

- Process generator (Mathematica) \rightarrow process libraries (Fortran)
- OPENLOOPS program (Fortran) with process-independent routines and user interfaces
 → Simple extension of interfaces and same input parameters as at 1 loop

\Rightarrow Many <code>OpenLoops</code> features transfered from 1 to 2 loops

- Wide selection of diagram filters
- Polarisation selection for external particles
- Fully automated and flexible power counting in any number of coupling constants
 - \rightarrow Selection of all contributions of order $\alpha^n \alpha_s^m$ to $\mathcal{W} \sim |\mathcal{M}|^2$ in a fully automated way
 - \rightarrow Selection of specific powers in charges, e.g. QED corrections to $e^+e^- \rightarrow \mu^+\mu^-$ split into electronic, muonic and mixed corrections (power counting in $Q_e, Q_\mu \rightarrow 1$)
 - \rightarrow better control over numerical stability

• Massive QED and separation of EW corrections:

- Process libraries with any configuration of active lepton generations
- massive e, μ, τ
- pure QED (1 and 2 loops), pure weak (1 loop) and full EW (1 loop) corrections available

Recently applied e.g. to Møller and Bhabha scattering at NNLO QED [Banerjee, Engel, Schalch, Signer, Ulrich] with OPENLOOPS and MCMULE [Banerjee, Engel, Signer, Ulrich]

- Fully automated efficient generation of scattering processes factorising into a hard process and any number of factorised subtrees, e.g.
 - QCD corrections to

$$e^+e^- \rightarrow \bar{q}q + X$$
 factorised into $\underbrace{e^+e^- \rightarrow V^*}_{\text{subtree}}$ and $\underbrace{V^* \rightarrow \bar{q}q + X}_{\text{hard process}}$ with $V = \gamma, Z$
Factorisation of $W \rightarrow l\nu_l$ and $Z \rightarrow l^+l^-$ decays

Input schemes, parameters and renormalisation

Three EW schemes implemented:								
	ew_scheme	input parameters	value of $1/lpha$					
$\alpha(0)$ -scheme	0	$\alpha(0)$, M_W , M_Z , M_H + fermion masses	≈ 137					
G_{μ} -scheme	1 (default)	G_{μ} , M_W , M_Z , M_H + fermion masses	≈ 132					
$\alpha(M_Z)$ -scheme	2	$lpha(M_Z)$, M_W , M_Z , M_H + fermion masses	≈ 128					

- Consistent treatment of resonances with **complex mass scheme** at 1-loop [Denner, Dittmaier] \rightarrow complex mass $\mu_p^2 = M_p^2 - i M_p \Gamma_p$ from real physical mass M_p and width Γ_p as input
- Different Renormalisation schemes implemented, e.g. on-shell or \overline{MS} for quark masses; different flavour schemes for α_S
- External photons in process $A \to B + n$ $\underbrace{\gamma}_{\text{on-shell}} + n_* \underbrace{\gamma}_{\text{off-shell}}^* (+ \underbrace{\gamma}_{\text{real emission}})$ \Rightarrow rescale with ratios of input α and $\alpha_{\text{on}} = \alpha(0)$, $\alpha_{\text{off}} = \begin{cases} \alpha|_{G_{\mu}} & \text{if } \alpha = \alpha(0), \\ \alpha & \text{if } \alpha = \alpha|_{G_{\mu}} \text{ or } \alpha = \alpha(M_Z) \end{cases}$ $\Rightarrow \mathcal{W} \to \left[\frac{\alpha_{\text{on}}}{\alpha}\right]^n \left[\frac{\alpha_{\text{off}}}{\alpha}\right]^{n_*} \mathcal{W}$ (No rescaling for real emission)

Optimal scale choice for external on-shell, off-shell and real-emission photons

IV. Summary and Outlook

One and two-loop calculations can be split into construction of tensor coefficients, reduction and evaluation of tensor integrals, and restoration of (D-4)-dim numerator parts

Status of the **OPENLOOPS** framework **@ 2 loops**:

- Numerical calculation of two-loop tensor coefficients
 - Completely general recursive algorithm exploiting the factorisation of diagrams
 - Fully implemented for NNLO QCD and NNLO QED corrections in the SM
 - Strong numerical precision and CPU performance comparable to RV contributions
- Method to restore (D − 4)-dim numerator parts through universal Rational counterterms of UV origin @ 2 loops → Full set computed for QED and QCD corrections to the SM → currently being implemented in the OPENLOOPS framework
- Many OPENLOOPS features transferable to 2 loops, such as power counting, renormalisation schemes, polarisation selection, input schemes, user interfaces

Short-term and mid-term projects:

- Rational terms of IR origin \rightarrow currently under investigation
- Tensor integral reduction and evaluation (analytical or numerical, in-house framework or external tool → possible mixture thereof)

Backup

Two-loop diagrams

Two-loop diagrams consist of loop chains C_i , each depending on a single loop momentum q_i . **Types of diagrams:**

- **Reducible diagrams:** Two factorised loop integrals
 - **Red2:** Two loop chains C_1, C_2 connected by a tree-like bridge P.
 - Red1: Two loop chains $\mathcal{C}_1, \mathcal{C}_2$ connected by a single quartic vertex \mathcal{V}_4
- Irreducible diagrams: Three loop chains C_1, C_2, C_3 with loop momenta $q_1, q_2, q_3 = -(q_1 + q_2)$ and two connecting vertices $\mathcal{V}_0, \mathcal{V}_1$

Processes considered in performance tests

corrections	process type	massless fermions	massive fermions	process
QED	$2 \rightarrow 2$	e		$e^+e^- \rightarrow e^+e^-$
	$2 \rightarrow 3$	e		$e^+e^- \rightarrow e^+e^-\gamma$
QCD	$2 \rightarrow 2$	u	_	$gg \rightarrow u\bar{u}$
		u,d	—	$d\bar{d} ightarrow u\bar{u}$
		u	—	$gg \to gg$
		u	t	$u\bar{u} \to t\bar{t}g$
		u	t	$gg \to t\bar{t}$
		u	t	$gg \to t\bar{t}g$
	$2 \rightarrow 3$	u, d	_	$d\bar{d} ightarrow u\bar{u}g$
		u	—	$gg \to ggg$
		u, d	—	$u\bar{d} \to W^+ gg$
		u, d	—	$u\bar{u} \to W^+W^-g$
		u	t	$u\bar{u} \to t\bar{t}H$
		u	t	$gg \to t\bar{t}H$

Memory usage of the two-loop algorithm

	virtual–virtual	real–virtual [MB]		
hard process	segment-by-segment	diagram-by-diagram	coefficients	full
$e^+e^- \to e^+e^-$	18	8	6	23
$e^+e^- \rightarrow e^+e^-\gamma$	154	25	22	54
$gg \rightarrow u\bar{u}$	75	31	10	26
$gg \to t\bar{t}$	94	35	15	34
$gg \to t\bar{t}g$	2000	441	152	213
$u\bar{d} \to W^+ gg$	563	143	54	90
$u\bar{u} \to W^+W^-g$	264	67	36	67
$u\bar{u} \to t\bar{t}H$	82	28	14	40
$gg \to t\bar{t}H$	604	145	50	90
$u\bar{u} \to t\bar{t}g$	323	83	41	74
$gg \to gg$	271	94	41	55
$d\bar{d} \to u\bar{u}$	18	10	9	20
$d\bar{d} \to u\bar{u}g$	288	85	39	68
$gg \rightarrow ggg$	6299	1597	623	683

Power counting: Nontrivial QCD-EW interplay at 1 loop

In general (e.g. $pp \to X + \text{jets}$): $\mathcal{O}(\alpha_S^n \alpha^m) + \mathcal{O}(\alpha_S^{n-1} \alpha^{m+1}) + \ldots + \mathcal{O}(\alpha_S^{n-k} \alpha^{m+k})$

NLO EW corrections of $\mathcal{O}(\alpha_S^2\alpha^1)$ for $q\bar{q}\to q\bar{q}$:

EW corrections to QCD Born

 \rightarrow only full $\mathcal{O}(\alpha_S^2\alpha^1)$ IR finite

 $\rightarrow \mathcal{O}(\alpha) \text{ corrections can involve} \\ \text{emissions of } \gamma \text{ and } g,q,\bar{q} \\ \end{cases}$

 \Rightarrow Mixed $\alpha \alpha_S$ power counting with non-trivial interference contributions

 \Rightarrow OpenLoops provides any desired order $\mathcal{O}(\alpha_S^n\alpha^m)$ in a fully automated way