OpenLoops @ 2 loops

M. F. Zoller
based on
JHEP 05 (2022) 161 [arXiv:2201.11615]
in collaboration with
S. Pozzorini and N. Schär

CERN workshop "Precision calculations for future $e^{+} e^{-}$colliders: targets and tools", 13th May 2022

Scattering amplitudes in perturbation theory

Hard scattering amplitudes for Monte Carlo simulations are computed in perturbation theory from matrix elements

$$
\overline{\mathcal{M}}=\overline{\mathcal{M}}_{0}+\overline{\mathcal{M}}_{1}+\overline{\mathcal{M}}_{2}+\ldots
$$

with $\overline{\mathcal{M}}_{0}=$

Partonic cross sections

$$
\hat{\sigma}=\underbrace{\int \mathrm{d} \Phi_{N}}_{\begin{array}{c}
N-\text { particle phase space } \\
\text { integration, flux factor }
\end{array}} \mathcal{W}+\sum_{X} \underbrace{\int \mathrm{~d} \Phi_{N+X} \mathcal{W}^{(X)}}_{\begin{array}{c}
\text { contribution with } X \text { extra } \\
\text { unresolved particles }
\end{array}}
$$

computed from colour- and helicity-summed scattering probability density

$$
\mathcal{W}=\underbrace{\sum_{h, \mathrm{col}}}_{\begin{array}{l}
\text { colour and helicity sum with } \\
\text { average and symmetry factor }
\end{array}}\left|\mathbf{R} \overline{\mathcal{M}}^{2}\right|^{-}=\sum_{h, \mathrm{col}}^{\bar{\sum}}\{\underbrace{\left|\overline{\mathcal{M}}_{0}\right|^{2}}_{\mathbf{L O}}+\underbrace{2 \operatorname{Re}\left[\overline{\mathcal{M}}_{0}^{*} \mathbf{R} \overline{\mathcal{M}}_{1}\right]}_{\mathbf{N L O} \text { virtual }}+\underbrace{\left|\mathbf{R} \overline{\mathcal{M}}_{1}\right|^{2}+2 \operatorname{Re}\left[\overline{\mathcal{M}}_{0}^{*} \mathbf{R} \overline{\mathcal{M}}_{2}\right]}_{\mathbf{N N L O} \text { virtual-virtual }}+\ldots\}
$$

with UV divergences subtracted by the renormalisation procedure $\mathbf{R} \overline{\mathcal{M}}=\overline{\mathcal{M}}_{0}+\mathbf{R} \overline{\mathcal{M}}_{1}+\mathbf{R} \overline{\mathcal{M}}_{2}+\ldots$

OpenLoops

OPENLOOPS [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, M.Z.] is a fully automated numerical tool for the computation of scattering probability densities from tree and one-loop amplitudes

$$
\mathcal{W}_{00}=\sum_{h, \mathrm{col}}^{-}\left|\overline{\mathcal{M}}_{0}\right|^{2}, \quad \mathcal{W}_{01}=\sum_{h, \mathrm{col}}^{-} 2 \operatorname{Re}\left[\overline{\mathcal{M}}_{0}^{*} \mathbf{R} \overline{\mathcal{M}}_{1}\right], \quad \mathcal{W}_{11}=\sum_{h, \mathrm{col}}^{-}\left|\mathbf{R} \overline{\mathcal{M}}_{1}\right|^{2}
$$

Download from https://gitlab.com/openloops/OpenLoops.git

- Full NLO QCD and NLO EW corrections available
- Excellent CPU performance and numerical stability \leftarrow Crucial for real-virtual contributions

Real-emission contributions up to NNLO available in OpenLoops

$$
\mathcal{W}_{00}^{(1)}=\sum_{h, \mathrm{col}}^{\bar{M}}\left|\overline{\mathcal{M}}_{0}^{(1)}\right|^{2}, \quad \mathcal{W}_{01}^{(1)}=\sum_{h, \mathrm{col}}^{\overline{2}} 2 \operatorname{Re}\left[\overline{\mathcal{M}}_{0}^{(1) *} \mathbf{R} \overline{\mathcal{M}}_{1}^{(1)}\right], \quad \mathcal{W}_{00}^{(2)}=\sum_{h, \mathrm{col}}^{\bar{\sum}}\left|\overline{\mathcal{M}}_{0}^{(2)}\right|^{2}
$$

$$
\left.\mathcal{W}_{02}=\sum_{h, \text { col }}^{\overline{ }} 2 \operatorname{Re}\left[\overline{\mathcal{M}}_{0}^{*} \mathbf{R} \overline{\mathcal{M}}_{2}\right]\right] \begin{aligned}
& \text { required for NNLO, but no fully automated tool available } \\
& \Rightarrow \text { OPENLOOPS for two-loop amplitudes highly desirable }
\end{aligned}
$$

Outline

I. One-loop amplitudes
\rightarrow OpenLoops algorithm for tree and one-loop amplitudes
II. Two-loop amplitudes
\rightarrow New algorithm for two-loop integrands
\rightarrow Numerical stability and CPU efficiency
III. OpenLoops features @ 1 loop and 2 loop
V. Summary and Outlook

I. One-loop amplitudes

One-loop diagram Γ in $D=4-2 \varepsilon$ dimensions

$$
\overline{\mathcal{M}}_{1, \Gamma}=\underbrace{C_{1, \Gamma}}_{\text {colour factor }} \int \mathrm{d} \bar{q}_{1} \frac{\overline{\mathcal{N}}\left(\bar{q}_{1}\right)}{\mathcal{D}\left(\bar{q}_{1}\right)}=D_{0} \underbrace{q_{1}}_{D_{1}}
$$

$$
\begin{aligned}
& \mathcal{D}\left(\bar{q}_{1}\right)={ }_{i=0}^{N-1} D_{k}\left(\bar{q}_{1}\right) \\
& D_{k}\left(\bar{q}_{1}\right)=\left(\bar{q}_{1}+p_{k}\right)^{2}-m_{k}^{2} \\
& \int \mathrm{~d} \bar{q}_{1}=\mu^{2 \varepsilon} \int \frac{\mathrm{~d}^{D} \bar{q}_{1}}{(2 \pi)^{D}}
\end{aligned}
$$

Numerical tools, such as OpenLoops [Buccioni et al], Recola [Actis et al], MadLoop [Hirschi et al], construct the numerator in 4 dimensions (D-dim quantities with bar, 4 -dim without)

$$
\underbrace{\mathcal{N}\left(q_{1}\right)}_{4-\operatorname{dim}}=\left.\underbrace{\overline{\mathcal{N}}\left(\bar{q}_{1}\right)}_{D-\operatorname{dim}}\right|_{\substack{\bar{q}_{i} \rightarrow q_{i} \\ \overline{\bar{g}}^{\mu \bar{\mu}} \rightarrow \gamma^{\mu} \\ \gamma^{\mu \mu \nu}}} \Rightarrow \mathcal{M}_{1, \Gamma}=C_{1, \Gamma} \sum_{r=0}^{R_{1}} \underbrace{\mathcal{N}_{\mu_{1} \cdots \mu_{r}}}_{\text {tensor coefficient }} \underbrace{\int \mathrm{d} \bar{q}_{1} \frac{q_{1}^{\mu_{1}} \cdots q_{1}^{\mu_{r_{1}}}}{\mathcal{D}\left(\bar{q}_{1}\right)}}_{\text {tensor integral }}
$$

Steps of the calculation

- Construction of tensor coefficients
- Reduction of tensor integrals and evaluation of master integrals
- Restoration of ε-dim numerator parts $\tilde{\mathcal{N}}\left(\bar{q}_{1}\right)=\overline{\mathcal{N}}\left(\bar{q}_{1}\right)-\mathcal{N}\left(q_{1}\right)$
\leftarrow OpenLoops algorithm [van Hameren; Cascioli, Maierhöfer, Pozzorini; Buccioni, Lang, Lindert, Pozzorini, Zhang, M.Z.]
\leftarrow On-the-fly reduction [Buccioni, Pozzorini, M.Z.] and COLLIER [Denner, Dittmaier, Hofer], OnELOOP [van Hameren]
\leftarrow Rational counterterms [Ossola, Papadopoulos, Pittau]

The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

Example: $\quad \mathcal{M}_{0}=$

Numerical recursion step:

$$
=\underbrace{\frac{X_{\beta \gamma}^{\alpha}\left(k_{b}, k_{c}\right)}{k_{a}^{2}-m_{a}^{2}}}_{\begin{array}{c}
\text { universal building block } \\
\text { from Feynman rules }
\end{array}} w_{b}^{\beta} w_{c}^{\gamma}
$$

Generic depiction:
 (k_{i} external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams

The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)
Example: $\quad \mathcal{M}_{0}=$

$+.$.
\rightarrow split into subtrees

Numerical recursion step:

$$
=\underbrace{\frac{X_{\beta \gamma}^{\alpha}\left(k_{b}, k_{c}\right)}{k_{a}^{2}-m_{a}^{2}}}_{\text {universal building block }} w_{b}^{\beta} w_{c}^{\gamma}
$$ from Feynman rules

Generic depiction:
 (k_{i} external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams

The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)
Example: $\quad \mathcal{M}_{0}=$

$+\ldots$
\rightarrow connect subtrees

Numerical recursion step:

$=\underbrace{\frac{X_{\beta \gamma}^{\alpha}\left(k_{b}, k_{c}\right)}{k_{a}^{2}-m_{a}^{2}} w_{b}^{\beta} w_{c}^{\gamma}}_{\text {universal building block }}$ from Feynman rules

Generic depiction:
 (k_{i} external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams

The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

Example: $\quad \mathcal{M}_{0}=$

$+$.
\rightarrow connect subtrees

Numerical recursion step:

$$
=\underbrace{\frac{X_{\beta \gamma}^{\alpha}\left(k_{b}, k_{c}\right)}{k_{a}^{2}-m_{a}^{2}}}_{\text {universal building block }} w_{b}^{\beta} w_{c}^{\gamma}
$$ from Feynman rules

Generic depiction:
 (k_{i} external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams

The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

Example: $\quad \mathcal{M}_{0}=$

\rightarrow connect subtrees

Numerical recursion step:

$$
=\underbrace{\frac{X_{\beta \gamma}^{\alpha}\left(k_{b}, k_{c}\right)}{k_{a}^{2}-m_{a}^{2}} w_{b}^{\beta} w_{c}^{\gamma}}_{\text {universal building block }}
$$ from Feynman rules

Generic depiction:
 (k_{i} external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams

The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from subtrees (starting from external lines)

Example: $\quad \mathcal{M}_{0}=$

\rightarrow connect diagram

Numerical recursion step:

$$
=\underbrace{\frac{X_{\beta \gamma}^{\alpha}\left(k_{b}, k_{c}\right)}{k_{a}^{2}-m_{a}^{2}}}_{\text {universal building block }} w_{b}^{\beta} w_{c}^{\gamma}
$$ from Feynman rules

Generic depiction:
 (k_{i} external momenta)

Highly efficient: Subtrees constructed only once for multiple tree and loop diagrams

The OpenLoops algorithm at one loop

High complexity in loop diagram Γ due to analytical structure in loop momentum q

Scalar propagators $D_{i}(q)=\left(q+p_{i}\right)^{2}-m_{i}^{2}$

Factorisation into colour factor $\mathcal{C}_{1, \Gamma}$ and loop segments
$S_{i}(q) \underset{\beta_{i-1}}{\frac{w_{i}}{\psi^{\downarrow} k_{i}}}=\left\{Y_{\sigma}^{i}\left(k_{i}, p_{i}\right)+Z_{\nu ; \sigma}^{i} q^{\nu}\right\} w_{i}^{\sigma}$
Universal building block \times subtree(s)

Cut-open loop at D_{0}

$\mathcal{N}(q)=\mathbb{1}$

Open loop is a matrix with two Lorentz/spinor indices β_{0}, β_{N}

The OpenLoops algorithm at one loop

High complexity in loop diagram Γ due to analytical structure in loop momentum q

Scalar propagators $D_{i}(q)=\left(q+p_{i}\right)^{2}-m_{i}^{2}$

Factorisation into colour factor $\mathcal{C}_{1, \Gamma}$ and loop segments
$S_{i}(q)=\underset{\beta_{i-1}}{\frac{w_{i}}{w^{2} k_{i}}}=\left\{Y_{\sigma}^{i}\left(k_{i}, p_{i}\right)+Z_{\nu ; \sigma}^{i} q^{\nu}\right\} w_{i}^{\sigma}$
Universal building block \times subtree(s)

Dress chain of segments (open loop) recursively

$\mathcal{N}_{1}(q)$	$=\mathcal{N}_{0}(q) S_{1}(q)=S_{1}(q)$
	$=\mathcal{N}^{(1)}+\mathcal{N}_{\mu_{1}}^{(1)} q^{\mu_{1}}$

Recursion steps can increase the rank in q by 1 .

The OpenLoops algorithm at one loop

High complexity in loop diagram Γ due to analytical structure in loop momentum q

Scalar propagators $D_{i}(q)=\left(q+p_{i}\right)^{2}-m_{i}^{2}$

Factorisation into colour factor $\mathcal{C}_{1, \Gamma}$ and loop segments

Universal building block \times subtree(s)

Dress chain of segments (open loop) recursively

$$
\begin{aligned}
\mathcal{N}_{2}(q) & =\mathcal{N}_{1}(q) S_{2}(q)=\prod_{i=1}^{2} S_{i}(q) \\
& =\mathcal{N}(2)+\mathcal{N}_{\mu 1}^{(2)} q^{\mu_{1}}+\mathcal{N}_{\mu_{1} \mu_{2} q^{\mu}}^{(2)} q^{\mu}
\end{aligned}
$$

Recursion steps are matrix multiplications: $\left[\mathcal{N}_{n}(q)\right]_{\beta_{0}}^{\beta_{n}}=\left[\mathcal{N}_{n-1}(q)\right]_{\beta_{0}}^{\beta_{n-1}}\left[S_{n}(q)\right]_{\beta_{n-1}}^{\beta_{n}}$

The OpenLoops algorithm at one loop

High complexity in loop diagram Γ due to analytical structure in loop momentum q

Scalar propagators $D_{i}(q)=\left(q+p_{i}\right)^{2}-m_{i}^{2}$

Factorisation into colour factor $\mathcal{C}_{1, \Gamma}$ and loop segments
$S_{i}(q)=\underset{\beta_{i_{i-1}}}{w_{w_{i}}^{\downarrow^{k_{i}}}}=\left\{Y_{\sigma}^{i}\left(k_{i}, p_{i}\right)+Z_{\nu ; \sigma}^{i} q^{\nu}\right\} w_{i}^{\sigma}$
Universal building block \times subtree(s)

Dress chain of segments recursively \rightarrow Close loop by contracting β_{0} and β_{N}

$$
\begin{aligned}
\mathcal{N}_{N}(q) & =\mathcal{N}_{N-1}(q) S_{N}(q)=\prod_{i=1}^{N} S_{i}(q)= \\
& =\sum_{r=0}^{N} \mathcal{N}_{\mu_{1} \cdots \mu_{r}}^{(N)} q^{\mu_{1}} \ldots q^{\mu_{r}} \quad \underbrace{D_{1}}_{\text {dressed segments }} D_{D_{2}}^{w_{1}} w_{D_{1}}^{w_{N-1}}
\end{aligned}
$$

Recursion steps $\mathcal{N}_{n}(q)=\mathcal{N}_{n-1}(q) S_{n}(q)$ at the level of tensor coefficients $\mathcal{N}_{\mu_{1} \ldots \mu_{r}}^{(n)}$
Completely general and highly efficient algorithm

Born-loop interference

Scattering probability density from interference of one-loop diagrams Γ with full Born

$$
\mathcal{W}_{01, \Gamma}=\sum_{h, \mathrm{col}} 2 \operatorname{Re}\left[\overline{\mathcal{M}}_{0}^{*} \mathbf{R} \overline{\mathcal{M}}_{1, \Gamma}\right] \Rightarrow \mathcal{W}_{01}=\sum_{\Gamma} \mathcal{W}_{01, \Gamma}
$$

Consider colour-helicity summed numerator \Rightarrow nested sums of helicities h_{i} of individual segments

$$
\mathcal{U}(q, 0)=\sum_{h} 2 \underbrace{\left(\sum_{\text {col }} \mathcal{M}_{0}^{*}(h) C_{1, \Gamma}\right)}_{=\mathcal{U}_{0}(h)} \mathcal{N}(q, h)=\sum_{h_{N}}\left[\cdots \sum_{h_{2}}\left[\sum_{h_{1}} \mathcal{U}_{0}(h) S_{1}\left(q, h_{1}\right)\right] S_{2}\left(q, h_{2}\right) \cdots\right] S_{n}\left(q, h_{N}\right)
$$

On-the-fly helicity summation [Buccioni, Pozzorini, M.Z.]

$$
\mathcal{U}_{n}\left(q, \check{h}_{n}\right)=\sum_{h_{n}} \mathcal{U}_{n-1}\left(q, \check{h}_{n-1}\right) S_{n}\left(q, h_{n}\right)=\sum_{h_{1} \ldots h_{n}} \sum_{\text {col }}
$$

$\mathcal{U}_{n}\left(q, \check{h}_{n}\right)=\sum_{r=0}^{n} \mathcal{U}_{\mu_{1} \ldots \mu_{r}}^{(n)} q^{\mu_{1}} \ldots q^{\mu_{r}}$ depends on helicity $\check{h}_{n}=\sum_{k=n+1}^{N} h_{k}$ of undressed segments
Implemented at the level of tensor integral coefficients $\mathcal{U}_{\mu_{1} \ldots \mu_{r}}^{(n)}$
Huge gain in CPU efficiency, especially for high-multiplicity processes

One-loop rational terms

Amputated one-loop diagram γ (1PI)

$$
\overline{\mathcal{M}}_{1, \gamma}=\underbrace{C_{1, \gamma}}_{\text {colour factor }} \int \mathrm{d} \bar{q}_{1} \frac{\mathcal{N}\left(q_{1}\right)+\tilde{\mathcal{N}}\left(\bar{q}_{1}\right)}{\mathcal{D}\left(\bar{q}_{1}\right)}=\underbrace{\left(q_{1}\right.}_{D_{0}} \underbrace{D_{N-1}}_{D_{1}} \Rightarrow \delta \mathcal{R}_{1, \gamma}=C_{1, \gamma} \int \mathrm{~d} \overline{q_{1}} \frac{\tilde{\mathcal{N}}\left(\bar{q}_{1}\right)}{\mathcal{D}\left(\bar{q}_{1}\right)}
$$

The ε-dim numerator parts $\tilde{\mathcal{N}}\left(\bar{q}_{1}\right)=\overline{\mathcal{N}}\left(\bar{q}_{1}\right)-\mathcal{N}\left(q_{1}\right)$ contribute only via interaction with $\frac{1}{\varepsilon}$ UV poles
\Rightarrow Can be restored through rational counterterm $\delta \mathcal{R}_{1, \gamma}$ [Ossola, Papadopoulos, Pittau]
$\Rightarrow \underbrace{\mathbf{R} \overline{\mathcal{M}}_{1, \gamma}}_{D \text {-dim, renormalised }}=\underbrace{\mathcal{M}_{1, \gamma}}_{\text {4-dim numerator }}+\underbrace{\delta Z_{1, \gamma}+\delta \mathcal{R}_{1, \gamma}}_{\text {UV and rational counterterm }}$
Generic one-loop diagram Γ factorises into 1 PI subdiagram γ and external subtrees w_{i} (4-dim):

Finite set of process-independent rational terms in renormalisable models computed from UV divergent vertex functions

II. Two-loop amplitudes

Two-loop diagram Γ in $D=4-2 \varepsilon$ dimensions

Numerical construction requires $\underbrace{\mathcal{N}\left(q_{1}, q_{2}\right)}_{4-\operatorname{dim}}=\left.\underbrace{\overline{\mathcal{N}}\left(\bar{q}_{1}, \bar{q}_{2}\right)}_{D-\operatorname{dim}}\right|_{\bar{q}_{i}} \rightarrow q_{i}, \bar{\gamma}^{\bar{\mu}} \rightarrow \gamma^{\mu}, \bar{g}^{\bar{\mu} \bar{\nu}} \rightarrow g^{\mu \nu}$

$$
\Rightarrow \mathcal{M}_{2, \Gamma}=\underbrace{\mathcal{C}_{2, \Gamma}}_{\text {colour }} \sum_{r_{1}=0}^{\sum_{1}} \sum_{r_{2}=0}^{R_{2}} \underbrace{\mathcal{N}_{\mu_{1} \cdots \mu_{r_{1}} \nu_{1} \cdots \nu_{r_{2}}}}_{\text {tensor coefficient }} \underbrace{\int \mathrm{d}^{D} q_{1} / \mathrm{d}^{D} q_{2} \frac{q_{1}^{\mu_{1}} \cdots q_{1}^{\mu_{r_{1}}} q_{2}^{\nu_{1}} \cdots q_{2}^{\nu_{r_{2}}}}{\mathcal{D}\left(q_{1}, q_{2}\right)}}_{\text {tensor integral }}
$$

Steps of the calculation

- Construction of tensor coefficients
- Reduction and evaluation of tensor integrals
- Restoration of $\tilde{\mathcal{N}}\left(\bar{q}_{1}, \bar{q}_{2}\right)=\overline{\mathcal{N}}\left(\bar{q}_{1}, \bar{q}_{2}\right)-\mathcal{N}\left(q_{1}, q_{2}\right)$
\leftarrow Now fully implemented
\leftarrow Not yet automated
\leftarrow Two-loop rational terms
[Lang, Pozzorini, Zhang, M.Z.]

Two-loop rational terms

Start from renormalisation procedure for (1PI) diagram Γ in D-dim

Sum over all subdiagrams γ of Γ. Numerator dimension $D_{\mathrm{n}}=D$.
Example: $\mathbf{R}[m<\}]_{D_{\mathrm{n}}=D}=[m<\}+m \lll<Z_{1, \gamma}+m \otimes Z_{D_{\mathrm{n}}=D}$
Extension from single diagrams to full vertex functions Γ due to linearity of \mathbf{R}
Goal: Computation from amplitudes with numerator dimension $D_{\mathrm{n}}=4$

- Split numerator $\overline{\mathcal{N}}\left(\bar{q}_{1}, \bar{q}_{2}\right)=\mathcal{N}\left(q_{1}, q_{2}\right)+\tilde{\mathcal{N}}\left(\bar{q}_{1}, \bar{q}_{2}\right)$
- Compute amplitudes on Ihs with $\mathcal{N}\left(q_{1}, q_{2}\right)=\left.\overline{\mathcal{N}}\left(\bar{q}_{1}, \bar{q}_{2}\right)\right|_{\bar{g}^{\bar{\mu} \bar{\nu}} \rightarrow g^{\mu \nu}, \bar{\gamma}^{\bar{\mu}} \rightarrow \gamma^{\mu}, \bar{q}_{i} \rightarrow q_{i}}$
- Restore $\tilde{\mathcal{N}}$-terms (from subdiagrams and a remaining global one) through additional counterterms

Two-loop rational terms

Renormalised D-dim amplitudes from amplitudes with 4-dim numerator [Pozzorini, Zhang, M.Z.]

$$
\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\Sigma_{\gamma}(\underbrace{\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}}_{\begin{array}{c}
\text { subtract } \\
\text { subdivergences }
\end{array}}+\underbrace{\delta \mathcal{R}_{1, \gamma}}_{\begin{array}{c}
\text { erstore } \mathcal{\mathcal { N }} \text {-terms } \\
\text { from subdiagrams }
\end{array}}) \cdot \mathcal{M}_{1, \Gamma / \gamma}+(\underbrace{\delta Z_{2, \Gamma}}_{\begin{array}{c}
\text { subtract remaining } \\
\text { local divergence }
\end{array}}+\underbrace{\delta \mathcal{R}_{2, \Gamma}}_{\begin{array}{c}
\text { restore remaining } \\
\mathcal{N} \text {-term }
\end{array}})
$$

Example:

- Divergences from subdiagrams γ and remaining global one subtracted by usual UV counterterms $\delta Z_{1, \gamma}, \delta Z_{2, \Gamma}$. Additional UV counterterm $\delta \tilde{Z}_{1, \gamma} \propto \frac{\tilde{q}_{1}^{2}}{\varepsilon}$ for subdiagrams with mass dimension 2.
- $\delta \mathcal{R}_{2, \Gamma}$ is a two-loop rational term stemming from the interplay of \tilde{N} with UV poles
- External subtrees factorise and do not generate rational terms (see one-loop case)
- Extension from single diagrams to full vertex functions due to linearity of \mathbf{R}
\Rightarrow Finite set of process-independent rational terms for UV divergent vertex functions

Two-loop rational terms

Renormalised D-dim amplitudes can be computed from amplitudes with 4-dim numerators and a finite set of universal UV and rational counterterms inserted lower-loop amplitudes

$$
\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\sum_{\gamma}\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta \mathcal{R}_{1, \gamma}\right) \cdot \mathcal{M}_{1, \Gamma / \gamma}+\left(\delta Z_{2, \Gamma}+\delta \mathcal{R}_{2, \Gamma}\right)
$$

Status of two-loop rational terms

- General method for the computation of rational counterterms of UV origin from simple tadpole integrals in any renormalisable model [Pozzorini, Zhang, M.Z.,2020]
- Complete renormalisation scheme dependence [Lang, Pozzorini, Zhang, M. Z., 2020]
- Rational Terms for Spontaneously Broken Theories [Lang, Pozzorini, Zhang, M. Z.,2021]
- Full set of two-loop rational terms for QED and QCD corrections to the SM [Pozzorini, Zhang, M.Z., 2020] [Lang, Pozzorini, Zhang, M.Z.,2020] [Lang, Pozzorini, Zhang, M.Z.,2021]
- Rational terms of IR origin currently under investigation

Reducible two-loop diagrams

Reducible diagram Γ factorises into one-loop diagrams and a tree-like bridge P (or quartic vertex)

with $\mathcal{D}^{(i)}\left(\bar{q}_{i}\right)=D_{0}^{(i)}\left(\bar{q}_{i}\right) \cdots D_{N_{i}-1}^{(i)}\left(\bar{q}_{i}\right), \quad D_{a}^{(i)}\left(\bar{q}_{i}\right)=\left(\bar{q}_{i}+p_{i a}\right)^{2}-m_{i a}^{2}$
Loop numerators factorise into segments

$$
S_{a}^{(i)}\left(q_{i}, h_{a}^{(i)}\right)=\underbrace{w^{(i a}}_{\beta_{a-1}^{(i)}-w_{a}^{(i)}} \beta_{\beta_{a}^{(i)}}=\underbrace{\left\{Y_{\sigma}^{a}\left(k_{i a}, p_{i a}\right)+Z_{\nu ; \sigma}^{i} q_{i}^{\nu}\right\}}_{\begin{array}{c}
\text { Feynman rule of loop } \\
\text { vertex and propagator }
\end{array}} \underbrace{\left[w_{a}^{(i)}\left(h_{a}^{(i)}\right)\right]^{\sigma}}_{\begin{array}{c}
\text { external subtree with } \\
\text { helicity configuration } h_{a}^{(i)}
\end{array}}
$$

- Cut-open both loops and dress first one
- Close and integrate first loop, attach bridge
- Use first loop + bridge as "subtree" for second loop
\Rightarrow Extension of the tree and one-loop algorithm

Fully implemented for QED and QCD corrections to the SM

New algorithm to construct two-loop tensor coefficients

Amplitude of irreducible two-loop diagram Γ (1PI on amputation of all external subtrees):

Exploit factorisation of numerator $\mathcal{N}\left(q_{1}, q_{2}\right)=\prod_{i=1}^{3} \mathcal{N}^{(i)}\left(q_{i}\right){ }_{j=0}^{1} \mathcal{V}_{j}\left(q_{1}, q_{2}\right)$

- Three chains, each depending on a single loop momentum $q_{i}(i=1,2,3)$ with chain numerators factorising into loop segments $\mathcal{N}^{(i)}\left(q_{i}\right)=S_{0}^{(i)}\left(q_{i}\right) \cdots S_{N_{i}-1}^{(i)}\left(q_{i}\right)$
\rightarrow Same structure as one-loop chain
- Two connecting vertices $\mathcal{V}_{0}, \mathcal{V}_{1}$
- Chain denominators $\mathcal{D}^{(i)}\left(q_{i}\right)=D_{0}^{(i)}\left(q_{i}\right) \cdots D_{N_{i}-1}^{(i)}\left(q_{i}\right)$ where $\quad D_{a}^{(i)}\left(q_{i}\right)=\left(q_{i}+p_{i a}\right)^{2}-m_{i a}^{2}$ (External momenta $p_{i a}$ and masses $m_{i a}$ along i-th chain)

General structure of a recursive two-loop algorithm

Final result: Helicity and colour-summed Born-loop interference $\mathcal{U}\left(q_{1}, q_{2}\right)$
with Born-colour factor $\mathcal{U}_{0}(h)=2\left(\underset{\operatorname{col}}{\sum} \mathcal{M}_{0}^{*}(h) C_{2, \Gamma}\right)$
Algorithm with recursion steps $\hat{\mathcal{U}}_{n}=\hat{\mathcal{U}}_{n-1} \cdot \mathcal{K}_{n}=\sum_{r=0}^{R_{1}} \sum_{s=0}^{R_{2}} \hat{\mathcal{U}}_{\mu_{1} \cdots \mu_{r} \nu_{1} \cdots \nu_{s}}^{(n)} q_{1}^{\mu_{1}} \ldots q_{1}^{\mu_{r}} q_{2}^{\nu_{1}} \ldots q_{2}^{\nu_{s}}$ with partially dressed numerators $\hat{\mathcal{U}}_{n}$ and building blocks $\mathcal{K}_{n} \in\left\{\mathcal{U}_{0}, S_{k}^{(i)}, \mathcal{V}_{j}, \mathcal{N}^{(i)}\right\}$.

- Each step increases the rank in a q_{i} by 0 or 1
- Segment $S_{k}^{(i)}, \mathcal{V}_{j}$ depend on helicities of external subtrees \Rightarrow global helicity $h=\sum_{i=1}^{3} N_{k=0}^{N_{i}-1} h_{k}^{(i)}+h_{0}^{(V)}+h_{1}^{(V)}$
- High complexity in steps connecting \mathcal{V}_{j} due to dependence on q_{1}, q_{2} and three open Lorentz/spinor indices $\beta_{k}^{(i)}$

Number of tensor components				
R_{2}	0	1	2	3
R_{1}	0	5	15	35
0	1	5	75	175
1	5	25	75	
2	15	75	225	525
3	35	175	525	1225
4	70	350	1050	2450
5	126	630	1890	4410

- Number of tensor coefficients grows exponentially with ranks R_{1}, R_{2}

General structure of a recursive two-loop algorithm

Final result: Helicity and colour-summed Born-loop interference $\mathcal{U}\left(q_{1}, q_{2}\right)$
with Born-colour factor $\mathcal{U}_{0}(h)=2\left(\underset{\text { col }}{\sum_{0}} \mathcal{M}_{0}^{*}(h) C_{2, \Gamma}\right)$

with partially dressed numerators $\hat{\mathcal{U}}_{n}$ and building blocks $\mathcal{K}_{n} \in\left\{\mathcal{U}_{0}, S_{k}^{(i)}, \mathcal{V}_{j}, \mathcal{N}^{(i)}\right\}$.
CPU cost of n-th step \sim number of $(\#)$ multiplications \rightarrow depends on type of \mathcal{K}_{n} and $\#$ components of $\hat{\mathcal{U}}_{n}=\left(\#\right.$ tensor components in $\left.q_{1}, q_{2}\right) \times(\#$ active helicities $) \times 4\left(\#\right.$ open indices $\left.\beta_{a}^{(i)}\right)$
\Rightarrow Most efficient algorithm found through cost simulation of possible candidates for a wide range of QED and QCD Feynman diagrams

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type

Example:

Order of chains and of two-loop vertices $\mathcal{V}_{0}, \mathcal{V}_{1}$ has major impact on efficiency

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)

$$
\mathcal{N}_{n}^{(3)}\left(q_{3}, \hat{h}_{n}^{(3)}\right)=\mathcal{N}_{n-1}^{(3)}\left(q_{3}, \hat{h}_{n-1}^{(3)}\right) \cdot S_{n}^{(3)}\left(q_{3}, h_{n}^{(3)}\right) \quad \text { with initial condition } \mathcal{N}_{-1}^{(3)}=\mathbb{1}
$$

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)

$$
\mathcal{N}_{n}^{(3)}\left(q_{3}, \hat{h}_{n}^{(3)}\right)=\mathcal{N}_{n-1}^{(3)}\left(q_{3}, \hat{h}_{n-1}^{(3)}\right) \cdot S_{n}^{(3)}\left(q_{3}, h_{n}^{(3)}\right) \quad \text { with initial condition } \mathcal{N}_{-1}^{(3)}=\mathbb{1}
$$

- Shortest chain \Rightarrow Low number of helicity d.o.f. $\hat{h}_{n}^{(3)}=\hat{h}_{n-1}^{(3)}+h_{n}^{(3)}$ and low rank in q_{3}
- Partial chains $\mathcal{N}_{n}^{(3)}$ computed only once for multiple diagrams
\Rightarrow Only a small number of low-complexity steps for the full process

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)

$$
\mathcal{U}_{n}^{(1)}\left(q_{1}, \check{h}_{n}^{(1)}\right)=\sum_{h_{n}^{(1)}} \mathcal{U}_{n-1}^{(1)}\left(q_{1}, \check{h}_{n-1}^{(1)}\right) \cdot S_{n}^{(1)}\left(q_{1}, h_{n}^{(1)}\right) \quad \text { with } \quad \mathcal{U}_{-1}^{(1)}(h)=2(\sum_{\text {col }}^{\mathcal{M}_{0}^{*}(h)} \underbrace{\mathcal{M}_{\text {colour }}}_{\text {Born }} C_{2, \Gamma})
$$

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)

$$
\mathcal{U}_{n}^{(1)}\left(q_{1}, \check{h}_{n}^{(1)}\right)=\sum_{h_{n}^{(1)}} \mathcal{U}_{n-1}^{(1)}\left(q_{1}, \check{h}_{n-1}^{(1)}\right) \cdot S_{n}^{(1)}\left(q_{1}, h_{n}^{(1)}\right) \quad \text { with } \quad \mathcal{U}_{-1}^{(1)}(h)=2(\sum_{\text {col }}^{\sum_{\text {Born }} \mathcal{M}_{0}^{*}(h)} \underbrace{C_{2, \Gamma}}_{\text {colour }})
$$

On-the-fly summation of segment helicities $h_{n}^{(1)}$
\Rightarrow Partial chains depend on remaining helicities of the diagram $\check{h}_{n}^{(1)}=h-\sum_{k=1}^{n} h_{k}^{(1)}$

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)

$$
\mathcal{U}_{n}^{(1)}\left(q_{1}, \check{h}_{n}^{(1)}\right)=\sum_{h_{n}^{(1)}} \mathcal{U}_{n-1}^{(1)}\left(q_{1}, \check{h}_{n-1}^{(1)}\right) \cdot S_{n}^{(1)}\left(q_{1}, h_{n}^{(1)}\right) \quad \text { with } \quad \mathcal{U}_{-1}^{(1)}(h)=2(\sum_{\text {col }}^{\sum_{\text {Born }} \mathcal{M}_{0}^{*}(h)} \underbrace{C_{2, \Gamma}}_{\text {colour }})
$$

On-the-fly summation of segment helicities $h_{n}^{(1)}$
\Rightarrow Partial chains depend on remaining helicities of the diagram $\check{h}_{n}^{(1)}=h-\sum_{k=1}^{n} h_{k}^{(1)}$

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)

$$
\mathcal{U}_{n}^{(1)}\left(q_{1}, \check{h}_{n}^{(1)}\right)=\sum_{h_{n}^{(1)}} \mathcal{U}_{n-1}^{(1)}\left(q_{1}, \check{h}_{n-1}^{(1)}\right) \cdot S_{n}^{(1)}\left(q_{1}, h_{n}^{(1)}\right) \quad \text { with } \quad \mathcal{U}_{-1}^{(1)}(h)=2(\sum_{\text {col }}^{\sum_{\text {Born }} \mathcal{M}_{0}^{*}(h)} \underbrace{C_{2, \Gamma}}_{\text {colour }})
$$

On-the-fly summation of segment helicities $h_{n}^{(1)}$
\Rightarrow Partial chains depend on remaining helicities of the diagram $\check{h}_{n}^{(1)}=h-\sum_{k=1}^{n} h_{k}^{(1)}$
\Rightarrow Large portion of helicity d.o.f already summed over during dressing of longest chain

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$

Example:

$$
\mathcal{U}_{1}^{(13)}\left(q_{1}, q_{3}, h^{(2)}+h_{0}^{(V)}\right)=\sum_{h^{(3)}} \sum_{h_{1}^{(V)}} \mathcal{U}^{(1)}\left(q_{1}, \check{h}_{N_{1}-1}^{(1)}\right) \mathcal{N}^{(3)}\left(q_{3}, h^{(3)}\right) \mathcal{V}_{1}\left(q_{1}, q_{3}, h_{1}^{(V)}\right)
$$

- On-the-fly summation of chain helicity $h^{(3)}$ (and potential subtree helicity at \mathcal{V}_{1})

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_{0} and map $q_{3} \rightarrow-\left(q_{1}+q_{2}\right)$

Example:

$$
\mathcal{U}_{-1}^{(123)}\left(q_{1}, q_{2}, h^{(2)}\right)=\left.\sum_{h_{0}^{(V)}} \mathcal{U}_{1}^{(13)}\left(q_{1}, q_{3}, h^{(2)}+h_{0}^{(V)}\right) \mathcal{V}_{0}\left(q_{1}, q_{1}, h_{0}^{(V)}\right)\right|_{q_{3} \rightarrow-\left(q_{1}+q_{2}\right)}
$$

- Partial diagram depends on undressed chain helicity $h^{(2)}$ and two open indices

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_{0} and map $q_{3} \rightarrow-\left(q_{1}+q_{2}\right)$
- Connect segments of $\mathcal{N}^{(2)}$

$$
\mathcal{U}_{n}^{(123)}\left(q_{1}, q_{2}, \tilde{h}_{n}^{(2)}\right)=\sum_{h_{n}^{(2)}} \mathcal{U}_{n-1}^{(123)}\left(q_{1}, q_{2}, \tilde{h}_{n-1}^{(2)}\right) S_{n}^{(2)}\left(q_{2}, h_{n}^{(2)}\right)
$$

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_{0} and map $q_{3} \rightarrow-\left(q_{1}+q_{2}\right)$
- Connect segments of $\mathcal{N}^{(2)}$

$$
\mathcal{U}_{n}^{(123)}\left(q_{1}, q_{2}, \tilde{h}_{n}^{(2)}\right)=\sum_{h_{n}^{(2)}} \mathcal{U}_{n-1}^{(123)}\left(q_{1}, q_{2}, \tilde{h}_{n-1}^{(2)}\right) S_{n}^{(2)}\left(q_{2}, h_{n}^{(2)}\right)
$$

On-the-fly summation of segment helicities $\tilde{h}_{n}^{(2)}=\underset{k=n+1}{N_{2}-1} h_{k}^{(2)}$
\Rightarrow Partial diagram depends only on helicities of remaining undressed segments

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_{0} and map $q_{3} \rightarrow-\left(q_{1}+q_{2}\right)$
- Connect segments of $\mathcal{N}^{(2)}$

Example:

$$
n=2
$$

$$
\mathcal{U}_{n}^{(123)}\left(q_{1}, q_{2}, \tilde{h}_{n}^{(2)}\right)=\sum_{h_{n}^{(2)}} \mathcal{U}_{n-1}^{(123)}\left(q_{1}, q_{2}, \tilde{h}_{n-1}^{(2)}\right) S_{n}^{(2)}\left(q_{2}, h_{n}^{(2)}\right)
$$

On-the-fly summation of segment helicities $\tilde{h}_{n}^{(2)}=\underset{k=n+1}{N_{2}-1} h_{k}^{(2)}$
\Rightarrow Partial diagram depends only on helicities of remaining undressed segments
\Rightarrow Lowest complexity in helicities for steps with highest rank in loop momenta

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_{0} and map $q_{3} \rightarrow-\left(q_{1}+q_{2}\right)$
- Connect segments of $\mathcal{N}^{(2)}$

Example:

Exploit diagram factorisation for full process:

$$
\mathcal{U}_{A}+\mathcal{U}_{B}=\left(\mathcal{U}_{A, n} \cdot S_{n+1} \cdots S_{N}\right)+\left(\mathcal{U}_{B, n} \cdot S_{n+1} \cdots S_{N}\right)=\left(\mathcal{U}_{A, n}+\mathcal{U}_{B, n}\right) \cdot S_{n+1} \cdots S_{N}
$$

Merge partially dressed diagrams with same topology and subsequent recursion steps

Two-loop algorithm for irreducible diagrams

- Sort chains by length: $N_{1} \geq N_{2} \geq N_{3}$ Choose order of $\mathcal{V}_{0}, \mathcal{V}_{1}$ by vertex type
- Dress $\mathcal{N}^{(3)}$ (shortest chain)
- Dress $\mathcal{U}^{(1)} \propto \mathcal{M}_{0}^{*} \mathcal{N}^{(1)}$ (longest chain)
- Connect \mathcal{V}_{1} with $\mathcal{U}^{(1)}$ and $\mathcal{N}^{(3)}$
- Connect \mathcal{V}_{0} and map $q_{3} \rightarrow-\left(q_{1}+q_{2}\right)$
- Connect segments of $\mathcal{N}^{(2)}$

Example:

Exploit diagram factorisation for full process:

$$
\mathcal{U}_{A}+\mathcal{U}_{B}=\left(\mathcal{U}_{A, n} \cdot S_{n+1} \cdots S_{N}\right)+\left(\mathcal{U}_{B, n} \cdot S_{n+1} \cdots S_{N}\right)=\left(\mathcal{U}_{A, n}+\mathcal{U}_{B, n}\right) \cdot S_{n+1} \cdots S_{N}
$$

Merge partially dressed diagrams with same topology and subsequent recursion steps
Highly efficient and completely general algorithm for two-loop tensor coefficients
Fully implemented for QED and QCD corrections to the SM

Numerical stability

Pseudo-tree test

- Cut-open diagram at two propagators
- Saturate indices with random wavefunctions e_{1}, \ldots, e_{4}
- Evaluate integrand constructed with new two-loop algorithm at fixed values for q_{1}, q_{2}

$$
\Rightarrow \widehat{\mathcal{W}}_{02, \Gamma}^{(2 \mathrm{~L})}=\frac{U\left(q_{1}, q_{2}\right)}{\mathcal{D}\left(q_{1}, q_{2}\right)} \quad \Rightarrow \quad \widehat{\mathcal{W}}_{02}^{(2 \mathrm{~L})}=\sum_{\Gamma} \widehat{\mathcal{W}}_{02, \Gamma}^{(2 \mathrm{~L})}
$$

- Compute the same object with the OpenLoops tree-level algorithm for fixed $q_{1}, q_{2} \Rightarrow \widehat{\mathcal{W}}_{02}^{(\mathrm{t})}$ Compute relative numerical uncertainty in double (DP) and quadruple (QP) precision

$$
\mathcal{A}^{(\mathrm{t})}:=\log _{10}\left(\frac{\left|\widehat{\mathcal{W}}_{02}^{(\mathrm{t})}-\widehat{\mathcal{W}}_{02}^{(2 \mathrm{~L})}\right|}{\operatorname{Min}\left(\left|\widehat{\mathcal{W}}_{02}^{(\mathrm{t})}\right|,\left|\widehat{\mathcal{W}}_{02}^{(2 \mathrm{~L})}\right|\right)}\right)
$$

\Rightarrow Implementation validated for wide range of processes (10^{5} uniform random points)
Typical accuracy around 10^{-15} in DP and 10^{-30} in QP, and always much better than 10^{-17} in QP \Rightarrow QP calculation as benchmark for numerical accuracy of DP calculation

Numerical stability

Numerical instability of double (DP) wrt quad precision (QP) calculation:

$$
\mathcal{A}_{\mathrm{DP}}=\log _{10}\left(\frac{\left|\widehat{\mathcal{W}}_{02}^{(2 \mathrm{~L}, \mathrm{DP})}-\widehat{\mathcal{W}}_{02}^{(2 \mathrm{~L}, \mathrm{QP})}\right|}{\operatorname{Min}\left(\left|\widehat{\mathcal{W}}_{02}^{(2 \mathrm{~L}, \mathrm{DP})}\right|,\left|\widehat{\mathcal{W}}_{02}^{(2 \mathrm{~L}, \mathrm{QP})}\right|\right)}\right)
$$

Fraction of points with $\mathcal{A}_{\mathrm{DP}}>A_{\min }$ as a function of $A_{\min }$ for 10^{5} uniform random points

$g g \rightarrow \bar{t} t$

$$
d \bar{d} \rightarrow u \bar{u} g
$$

Excellent numerical stability

\Rightarrow Important for full calculation (tensor integral reduction will be main source of instabilities)

Timings for two-loop tensor coefficients

QED, QCD and SM (NNLO QCD) processes (single Intel i7-6600U @ $2.6 \mathrm{GHz}, 16 \mathrm{~GB}$ RAM, 10^{3} points)

$$
2 \rightarrow 2 \text { process: } 10-300 \mathrm{~ms} / \mathrm{psp}
$$

$$
2 \rightarrow 3 \text { process: } 65-9200 \mathrm{~ms} / \mathrm{psp}
$$

(on a laptop)

Runtime \propto number of diagrams time/psp/diagram $\sim 150 \mu s$

Constant ratios between virtualvirtual (VV) and real-virtual (RV) with and without 1-loop integrals

- tensor coefficients: $\frac{t_{\mathrm{VV}}}{t_{\mathrm{RV}}} \sim 9$
- full RV: $\quad \frac{t_{\mathrm{vV}}}{t_{\mathrm{RV}}^{\text {full }}} \sim 4$

Strong CPU performance, comparable to real-virtual corrections in OpenLoops

III. OpenLoops features at 1 and 2 loops

General algorithm: Any model can be implemented and any process can be generated automatically (provided the tensor/master integrals are available)

Program structure is the same at 1 and 2 loops:

- Process generator (Mathematica) \rightarrow process libraries (Fortran)
- OpenLoops program (Fortran) with process-independent routines and user interfaces \rightarrow Simple extension of interfaces and same input parameters as at 1 loop
\Rightarrow Many OpenLoops features transfered from 1 to 2 loops
- Wide selection of diagram filters
- Polarisation selection for external particles
- Fully automated and flexible power counting in any number of coupling constants \rightarrow Selection of all contributions of order $\alpha^{n} \alpha_{s}^{m}$ to $\mathcal{W} \sim|\mathcal{M}|^{2}$ in a fully automated way \rightarrow Selection of specific powers in charges, e.g. QED corrections to $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$split into electronic, muonic and mixed corrections (power counting in $Q_{e}, Q_{\mu} \rightarrow 1$) \rightarrow better control over numerical stability

New OpenLoops features at 1 and 2 loops

- Massive QED and separation of EW corrections:
- Process libraries with any configuration of active lepton generations
- massive e, μ, τ
- pure QED (1 and 2 loops), pure weak (1 loop) and full EW (1 loop) corrections available

Recently applied e.g. to Møller and Bhabha scattering at NNLO QED
[Banerjee, Engel, Schalch, Signer, Ulrich] with OpenLoops and MCMULE [Banerjee, Engel, Signer, Ulrich]

- Fully automated efficient generation of scattering processes factorising into a hard process and any number of factorised subtrees, e.g.
- QCD corrections to

$$
e^{+} e^{-} \rightarrow \bar{q} q+X \quad \text { factorised into } \underbrace{e^{+} e^{-} \rightarrow V^{*}}_{\text {subtree }} \text { and } \underbrace{V^{*} \rightarrow \bar{q} q+X}_{\text {hard process }} \text { with } V=\gamma, Z
$$

- Factorisation of $W \rightarrow l \nu_{l}$ and $Z \rightarrow l^{+} l^{-}$decays

Input schemes, parameters and renormalisation

- Three EW schemes implemented:

	ew_scheme	input parameters	value of $1 / \alpha$	
$\alpha(0)$-scheme	0	$\alpha(0)$,	$M_{W}, M_{Z}, M_{H}+$ fermion masses	≈ 137
G_{μ}-scheme	1 (default $)$	G_{μ},	$M_{W}, M_{Z}, M_{H}+$ fermion masses	≈ 132
$\alpha\left(M_{Z}\right)$-scheme	2	$\alpha\left(M_{Z}\right), M_{W}, M_{Z}, M_{H}+$ fermion masses	≈ 128	

- Consistent treatment of resonances with complex mass scheme at 1-loop [Denner, Dittmaier] \rightarrow complex mass $\mu_{p}^{2}=M_{p}^{2}-i M_{p} \Gamma_{p}$ from real physical mass M_{p} and width Γ_{p} as input
- Different Renormalisation schemes implemented, e.g. on-shell or $\overline{M S}$ for quark masses; different flavour schemes for α_{S}
- External photons in process $A \rightarrow B+n \underset{\text { on-shell }}{\gamma}+n_{*} \underbrace{\gamma^{*}}_{\text {off-shell }}(+\underbrace{\gamma}_{\text {real emission }})$
\Rightarrow rescale with ratios of input α and $\alpha_{\text {on }}=\alpha(0), \alpha_{\text {off }}=\left\{\begin{array}{ll}\left.\alpha\right|_{G_{\mu}} & \text { if } \alpha=\alpha(0), \\ \alpha & \text { if } \alpha=\left.\alpha\right|_{G_{\mu}}\end{array}\right.$ or $\alpha=\alpha\left(M_{Z}\right)$

$$
\Rightarrow \quad \mathcal{W} \rightarrow\left[\frac{\alpha_{\mathrm{on}}}{\alpha}\right]^{n}\left[\frac{\alpha_{\text {off }}}{\alpha}\right]^{n_{*}} \mathcal{W} \quad \text { (No rescaling for real emission) }
$$

Optimal scale choice for external on-shell, off-shell and real-emission photons

IV. Summary and Outlook

One and two-loop calculations can be split into construction of tensor coefficients, reduction and evaluation of tensor integrals, and restoration of ($D-4$)-dim numerator parts

Status of the OpenLoops framework © 2 loops:

- Numerical calculation of two-loop tensor coefficients
- Completely general recursive algorithm exploiting the factorisation of diagrams
- Fully implemented for NNLO QCD and NNLO QED corrections in the SM
- Strong numerical precision and CPU performance comparable to RV contributions
- Method to restore $(D-4)$-dim numerator parts through universal Rational counterterms of UV origin © 2 loops \rightarrow Full set computed for QED and QCD corrections to the SM \rightarrow currently being implemented in the OpenLoops framework
- Many OpenLoops features transferable to 2 loops, such as power counting, renormalisation schemes, polarisation selection, input schemes, user interfaces

Short-term and mid-term projects:

- Rational terms of IR origin \rightarrow currently under investigation
- Tensor integral reduction and evaluation (analytical or numerical, in-house framework or external tool \rightarrow possible mixture thereof)

Backup

Two-loop diagrams

(Red2)

(Red1)

Two-loop diagrams consist of loop chains \mathcal{C}_{i}, each depending on a single loop momentum q_{i}.
Types of diagrams:

- Reducible diagrams: Two factorised loop integrals
- Red2: Two loop chains $\mathcal{C}_{1}, \mathcal{C}_{2}$ connected by a tree-like bridge P.
- Red1: Two loop chains $\mathcal{C}_{1}, \mathcal{C}_{2}$ connected by a single quartic vertex \mathcal{V}_{4}
- Irreducible diagrams: Three loop chains $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ with loop momenta $q_{1}, q_{2}, q_{3}=-\left(q_{1}+q_{2}\right)$ and two connecting vertices $\mathcal{V}_{0}, \mathcal{V}_{1}$

Processes considered in performance tests

corrections	process type	massless fermions	massive fermions	process
QED	$2 \rightarrow 2$	e	-	$e^{+} e^{-} \rightarrow e^{+} e^{-}$
	$2 \rightarrow 3$	e	-	$e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma$
QCD	$2 \rightarrow 2$	u	-	$g g \rightarrow u \bar{u}$
		u, d	-	$d \bar{d} \rightarrow u \bar{u}$
	u	-	$g g \rightarrow g g$	
	u	t	$u \bar{u} \rightarrow t \bar{t} g$	
		u	t	$g g \rightarrow t \bar{t}$
		u	t	$g g \rightarrow t \bar{t} g$
		u, d	-	$d d \rightarrow u \bar{u} g$
		u	-	$g g \rightarrow g g g$
		u, d	-	$u \bar{d} \rightarrow W^{+} g g$
		u	-	$u \bar{u} \rightarrow W^{+} W^{-} g$
		u	t	$u \bar{u} \rightarrow t \bar{t} H$
			$t \bar{t} H$	

Memory usage of the two-loop algorithm

	virtual-virtual memory [MB]		real-virtual [MB]	
hard process	segment-by-segment	diagram-by-diagram	coefficients	full
$e^{+} e^{-} \rightarrow e^{+} e^{-}$	18	8	6	23
$e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma$	154	25	22	54
$g g \rightarrow u \bar{u}$	75	31	10	26
$g g \rightarrow t \bar{t}$	94	35	15	34
$g g \rightarrow t \bar{t} g$	2000	441	152	213
$u \bar{d} \rightarrow W^{+} g g$	563	143	54	90
$u \bar{u} \rightarrow W^{+} W^{-} g$	264	67	36	67
$u \bar{u} \rightarrow t \bar{t} H$	82	28	14	40
$g g \rightarrow t \bar{t} H$	604	145	50	90
$u \bar{u} \rightarrow t \bar{t} g$	323	83	41	74
$g g \rightarrow g g$	271	94	41	55
$d \bar{d} \rightarrow u \bar{u}$	18	10	9	20
$d \bar{d} \rightarrow u \bar{u} g$	288	85	39	68
$g g \rightarrow g g g$	6299	1597	623	683

Power counting: Nontrivial QCD-EW interplay at 1 loop

Simple example: $q \bar{q} \rightarrow q \bar{q}$ cross section at Born level: $\underbrace{\mathcal{O}\left(\alpha_{S}^{2}\right)}_{\text {QCD }}+\underbrace{\mathcal{O}\left(\alpha_{S}^{1} \alpha^{1}\right)}_{\text {EW-QCD interf. }}+\underbrace{\mathcal{O}\left(\alpha^{2}\right)}_{\text {EW }}$
In general (e.g. $p p \rightarrow X+$ jets): $\mathcal{O}\left(\alpha_{S}^{n} \alpha^{m}\right)+\mathcal{O}\left(\alpha_{S}^{n-1} \alpha^{m+1}\right)+\ldots+\mathcal{O}\left(\alpha_{S}^{n-k} \alpha^{m+k}\right)$
NLO EW corrections of $\mathcal{O}\left(\alpha_{S}^{2} \alpha^{1}\right)$ for $q \bar{q} \rightarrow q \bar{q}$:

- EW corrections to QCD Born

\rightarrow only full $\mathcal{O}\left(\alpha_{S}^{2} \alpha^{1}\right)$ IR finite
$\rightarrow \mathcal{O}(\alpha)$ corrections can involve emissions of γ and g, q, \bar{q}

\Rightarrow Mixed $\alpha \alpha_{S}$ power counting with non-trivial interference contributions
\Rightarrow OpenLoops provides any desired order $\mathcal{O}\left(\alpha_{S}^{n} \alpha^{m}\right)$ in a fully automated way

