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The challenge of QCD two-loop 
amplitudes for processes with 
many particles in the final state.  

• A dream that is tangible. 


• Significant efforts and amazing 
new results.


• Challenge: “master” integrals 
with many scales in 
dimensional regularisation. 


• Even more powerful methods 
are needed (Wjj, diboson+jet, 
WWZ, ttH, … )


• Understand  the singularity 
structure

Channel H
(1)[0]

H
(1)[1]

H
(2)[0]

H
(2)[1]

H
(2)[2]

gg ! ggg 16.135254222 0.19163044752 464.47846208 �58.116292408 0.60077232705

q̄q ! ggg 9.5879406141 �3.0604943308 184.44415807 �61.765802987 6.3615768297

q̄g ! q̄gg 26.908169290 �3.6373308269 867.25232363 �230.76277359 12.598811302

gg ! qq̄g 24.495592766 �2.5939909248 745.87682394 �166.84486839 6.1899943330

q̄q ! QQ̄g 10.460907919 �4.2060557725 212.42454564 �80.136400792 8.2094005806

q̄Q ! Qq̄g 27.104747640 �4.0829938180 705.58902507 �209.42216177 12.483148067

q̄Q̄ ! q̄Q̄g 42.313652168 �8.0064067852 1628.2933493 �562.78735847 44.198947852

q̄g ! q̄QQ̄ 28.068256507 �6.3593609865 935.81439233 �324.32790785 29.070926975

q̄q ! qq̄g 20.846053179 �4.1292696285 520.14108472 �160.80597165 10.876062192

q̄q̄ ! q̄q̄g 42.259655399 �7.9918854619 1624.7163564 �561.33769564 44.056509019

q̄g ! q̄qq̄ 28.497167934 �6.2611415380 947.84964732 �322.54996102 28.093290494

Table 2: Reference values for the evaluation of squared finite remainders at each power of

Nf , as defined in eqs. (2.24) and (2.25) on the phase-space point given in eq. (B.1).

B Reference Evaluations of Squared Finite Remainders

In order to facilitate the comparison with our results, we present in table 2 reference values

for the evaluation of squared finite remainders at each power of Nf , as defined in eqs. (2.24)

and (2.25), at the randomly chosen phase-space point

s12 = 1.322500000, s23 = �0.994109498, s34 = 0.264471591,

s45 = 0.267126049, s15 = �0.883795230, µ = 1.
(B.1)

The results are obtained with our C++ library.
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Figure 1: Characteristic Feynman diagrams which contribute to A
(2)[j] for representative

channels with no external quark lines, a single quark line and two external quark lines, for

j = 0 (left column), j = 1 (middle column) and j = 2 (right column).

where "(·, ·, ·, ·) is the fully anti-symmetric Levi-Civita tensor, whose sign is fixed such

that Im(tr5) > 0 corresponds to the choice of the basis helicity amplitudes in ref. [24].

The action of � on quantities that depend on momenta is inherited from the action on

momentum labels. For instance, the action on the Mandelstam invariants sij = (pi+pj)2 is

given by �(sij) = s�i�j , and on the parity-odd invariant in eq. (2.10) by �(tr5) = sgn(�) tr5.

We work in the leading-color approximation where the number of colors Nc is large

and the ratio Nf/Nc is kept fixed, where Nf denotes the number of massless quark flavors.

In this limit, each of the A
(i) (h,p) can be further decomposed in powers of Nf . We write

A
(i) (h,p) =

iX

j=0

✓
Nf

Nc

◆
j

A
(i)[j] (h,p) . (2.11)

In fig. 1 we depict characteristic diagrams that contribute to A
(2)[j] for representative

channels with no external quark lines, a single external quark line or two external quark

lines.

The renormalized amplitudes MR are obtained from the bare amplitudes M by con-

sidering an expansion in powers of the renormalized coupling ↵s(µ). In the MS-scheme,

the later is related to the bare coupling ↵
0
s through

↵0µ
2✏
0 S✏ = ↵s(µ)µ2✏

 
1 �
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↵s(µ)
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+
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�
2
0

✏2
�

�1
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◆✓
↵s(µ)
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◆2

+ O
�
↵
3
s(µ)

�
!

, (2.12)

where S✏ = (4⇡)✏e�✏�E , and µ0 and µ are the dimensional regularization and renormaliza-

tion scales respectively, which from now on we assume to be equal. We will also suppress

the µ dependence in the coupling and write ↵s ⌘ ↵s(µ). The �i are the coe�cients of the
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Abreu, Cordero, Ita, Page, Sotnikov



Singularities of scattering 
amplitudes

• The poles can lie inside the 
domain of integration. 


• If we can deform the path of 
integration away from the 
poles, then they lead to no 
singularities

∫
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dE…

⋯
E2 − ω2 + iδ

= ∫
∞
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⋯
ω ( 1

E − ω + iδ
−

1
E + ω − iδ )

ω → ω − iδ with δ → 0
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Soft massless particles

ReE

ImE

∫
∞

−∞
dE…

⋯
(E + iδ) (E − iδ)

• Poles due to soft massless 
particles.


• These singularities pinch the 
integration path from both 
sides. 


• Condition for a TRUE INFINITY



Collinear massless particles

ReE

ImE

particle 1

particle 2

p
(1 − x) ⋅ p

x ⋅ p
• A second source of infinities due 

to massless collinear particles. 


• A singularity of one particle in 
the lower half-plane lines up with 
the singularity of a collinear 
particle in the higher half-pane.


• The singularities pinch the 
integration path from both sides. 


• We cannot deform the path, a 
condition for a TRUE INFINITY!



Pinch singularities
• To know if a singularity develops, we need 

to study the behaviour of the integral in 
the vicinity of the pinch surface.


• We can calculate a degree of divergence. 


• Scale variables which are perpendicular to 
the pinched surface with a small 
parameter and calculate the scaling of the 
integrand as the parameter is driven to 
zero. 

Soft

Collinear

kμ ∼ δQ, d4k ∼ δ4

k = xp + αη + βp⊥, x ∼ δ0, α ∼ δ, β ∼ δ
1
2 d4k ∼ δ2

Integrand: d4kℐ(k) ∼ δn Divergent:

Convergent: n > 0

n ≤ 0

Int
eg

rat
ion

 Dom
ain

pinch 
surface

T → δ ⋅ T, δ ∼ 0

Libby,  
Sterman



Removing singularities
• Once a pinch surface which 

yields a singularity is identified, 
then we can remove the 
singularity with a subtraction. 

Int
eg

rat
ion

 Dom
ain

pinch 
surface

A = ∫ [dk]ℱ(k)



Removing singularities
• Once a pinch surface which 

yields a singularity is identified, 
then we can remove the 
singularity with a subtraction. 

Int
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rat
ion
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surface

A = ∫ [dk] ℱ(k)

→ ∫ [dk] [ℱ(k) − tℱ(k)]

no singularity

approximation 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singular surface

integrand



Removing singularities
• Once a pinch surface which 

yields a singularity is identified, 
then we can remove the 
singularity with a subtraction. 

Int
eg

rat
ion

 Dom
ain

pinch 
surface

A = ∫ [dk] ℱ(k)

= ∫ [dk] [ℱ(k) − tℱ(k)]

no singularity

+∫ [dk] tℱ(k)

…hard

…soft or jet



• Singular regions are 
interconnected. How can we 
create systematically an 
approximation of the loop 
integrals in all singular regions?  


• Order the singular regions by 
their “volume”


• Subtract an approximation of the 
integrand in the smallest volume


• Then, proceed to the next 
volume and repeat until there are 
no more singularities to remove.  

Ma; Erdogan, Sterman; Collins;  
Collins, Soper, Sterman

Nested subtractions



Nested subtractions
• Singular regions are 

interconnected. How can we 
create systematically an 
approximation of the loop 
integrals in all singular regions?  


• Order the singular regions by 
their “volume”


• Subtract an approximation of the 
integrand in the smallest volume


• Then, proceed to the next 
volume and repeat until there are 
no more singularities to remove.  

Ma; Erdogan, Sterman; Collins;  
Collins, Soper, Sterman



Nested subtractions

14

of Eq. (21), namely that the divergences from PS ⇢ are equal for �(n) and t⇢�(n),

�(n)
��
div n̂[⇢]

� t⇢�
(n)

��
divn̂[⇢]

=
Y

I

Z
d⌧ (I)

Z
dD�1z(I)

Z
d⌘(I)

Z
dD�1y(I) ⇥(n̂[⇢])

⇥
h
S(⇢)

{µI}(z
(I)) J (⇢)µI⌫I

I
(z(I), y(I)) H(⇢)

{⌫I}(y
(I))

� S(⇢)

{µI}(⌧
(I)) �µI

I
�̄I,µ

0
I

J
(⇢)µ

0
I⌫

0
I

I
(z(I), ⌘(I)) �̄I,⌫

0
I
�⌫I

I
H(⇢)

{⌫I}(y
(I))

i ���
div n̂[⇢]

= 0 , (28)

where ⇥(n̂[⇢]) restricts the integration to the reduced neighborhood n̂[⇢] [Eq. (25)]. This integral over the reduced

neighborhood converges because of the accuracy of the soft-collinear and hard-collinear approximations in the entire

reduced neighborhood n̂[⇢]. The PSs internal to the original neighborhoods n[⇢] have been removed by construction.

Equation (28) is the main result we will use for applications in the following sections, treating the neighborhood of

each PS separately. As a more general result, however, we will show that all divergent contributions to amplitudes

can be written without restriction to specific regions, in terms of a construction based on nested subtractions [7],

which we now discuss.

D. Nested subtractions

The quantities t⇢� [Eq. (20)] can also be thought of as counterterms for ultraviolet divergences associated with the

limits x2

I
! 0 in the partonic matrix elements [Eq. (2)] and with multieikonal amplitudes [Eq. (4)]. We will denote an

arbitrary n-loop diagram that is one-particle irreducible in the xI channel as �(n). Following the momentum-space

procedure of Ref. [7], we define a regulated version of �(n) by

R(n) �(n) = �(n) +
X

N2N [�(n)]

Y

⇢2N

�
� t⇢

�
�(n) , (29)

where N [�] is the set of all nonempty nestings for diagram �. We will refer to R(n) as the subtraction operator at

nth order. We may then write for the full nth-order xI -irreducible partonic amplitude (5), Ḡ(n) =
P

�(n),

Ḡ(n) =
X

�(n)

2

4�
X

N2N [�(n)]

Y

⇢2N

�
� t⇢

�
�(n) + R(n) �(n)

3

5 . (30)

The products in Eqs. (29) and (30) are ordered with the larger PSs to the right of smaller PSs. Thus, the first

approximation operators t⇢ to act on �(n) involve the fewest points on the light cones or at short distances. As in Eq.

(20), the approximation operators act on the diagram over the full integration region, and are not restricted to the

neighborhood of the corresponding pinch surface.

Among the approximation operators that appear in R(n)�(n), we may identify the smallest, ⇢� , for which all vertices

approach the origin, that is, for which H(��) = �(n). Now because ⇢� is the smallest PS, it nests with every other

pinch surface. Its approximation operator, which we denote by tuv for any diagram, always appears to the left of

every other operator in Eq. (30). Operator tuv acts only on the external propagators that attach to �(n). We can

thus separate it in the sum over nestings, and we find

Ḡ(n) =
X

�(n)

8
<

:tuv�(n) + (1 � tuv)

2

4�
X

N2NP [�(n)]

Y

⇢2N

�
� t⇢

�
�(n) + R(n)

P
�(n)

3

5

9
=

; , (31)
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• Subtract an approximation of the 
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• The procedure of nested 
subtractions has a solution for 
the finite remainder at any loop 
order as a Forest formula 
(similarly to BPHZ of UV 
renormalzation)


• It is valid term by term in an 
amplitude or a Feynman diagram. 


• This forest formula structure 
combined with gauge symmetry, 
gives rise to the factorization of 
gauge theory amplitudes in terms 
of Jets, Soft and Hard fucntions.  

Ma; Erdogan, Sterman; Collins;  
Collins, Soper, Sterman



A concept that can bring further progress 
INFRARED FACTORIZATION

• UV Renormalized scattering amplitudes for well-
separated final-states take a simple factorized form 
                     

  

  - “soft” and “jet”  functions contain all divergences. 


• These are  universal functions. For any new process 
we should need to compute only the “hard” function. 


• So far, we do not have a way to compute the “hard” 
function directly  
 
                         
                     

Amplitude = hard ⋅ soft ⋅ ∏
i

jeti .
HARD

JET

JETJE
T

JE
T

SOFT

Ma; Erdogan, Sterman; Schwartz;  
Collins

An  
all-orders 
theorem



How would we like to use 
factorization?

Amplitude = ∑
j

cj Masterj = ∑
k

dkPolylogsk(momenta) = Numbers

= ∫ [dk] 𝒜(k) = ∫ 𝒮 ⋅ ∫ ∏
i

𝒥i ⋅ ∫ [dk] 𝒜(k) ⋅ 𝒮−1(k) ⋅ ∏
i

𝒥−1
i (k)

Analytic Integration Numerical 
process-dependent 
integrationUniversal

From factorisation we could identify, remove and integrate separately the singular parts of amplitudes order by order in 
perturbation theory:

integrand 
of hard function

This procedure is universal…can be applied to any process, irrespectively of the complexity of its final state.

ℋ(0) = 𝒜(0) ℋ(1) = 𝒜(1) − 𝒥(1)ℋ(0) − 𝒮(1)ℋ(0) ℋ(2) = 𝒜(2) − 𝒥(1)ℋ(1) − 𝒮(1)ℋ(1) − 𝒥(2)ℋ(0) − 𝒮(2)ℋ(0) + 𝒥(1)𝒮(1)ℋ(0) …



How would we like to use 
factorization?

Amplitude = ∫ [dk] 𝒜(k) = (∫ 𝒮 ⋅ ∫ ∏
i

𝒥i) ⋅ ∫ [dk] 𝒜(k) ⋅ 𝒮−1(k) ⋅ ∏
i

𝒥−1
i (k)

This approach is not unique in its design…

Amplitude = ∫ [dk] 𝒜(k) = (∫ 𝒮 ⋅ ∫ ∏
i

𝒥i) ⋅ ∫ [dk] 𝒜(k) ⋅ 𝒮−1(k) ⋅ ∏
i

𝒥i
−1(k)

Use Amplitudes of simpler processes in lieu of soft and jet functions 

Amplitude = ∫ [dk] 𝒜(k) = (∫ ∏𝒜IR−approx.) ⋅ ∫ [dk] 𝒜(k) ⋅ ∏𝒜−1
IR−approx.(k)



How would we like to use 
factorization?

Goal:

∫ [dk] 𝒜(k) ⋅ ∏𝒜−1
IR−approx.(k)

(∫ ∏𝒜IR−approx.) The analytic integration over the infrared 
approximation of the amplitude should be feasible 

Goal:

The integration of the hard amplitude  
remainder should be possible in exactly D=4, 
numerically. 
 
The integrand must be free of infrared and  
ultraviolet divergences locally. 
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Factorization and subtraction 
of soft singularities

k → 0
igs2 (p1 ⋅ p2) Tq ⋅ Tq̄

k2(−k ⋅ p2)(k ⋅ p1)
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− Finite

Drawbacks: - Introduces novel ultraviolet singularities that need  
to be taken care with further subtractions 
-  Changes the denominator structure (linearised propagators),  
which need to be taken into account in treating integrable singularities.  
- Subtracting strict soft and collinear limits leads to a proliferation of  
subtraction terms at two-loops



A Form factor subtraction
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Generalised form factor at 
two-loops
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A main result of this work 
q + q̄ → any set of heavy colourless particles

ℋ1−loop(k) = 𝒜1−loop − ℱ(1) [𝒜0]
ℋ2−loop(k, l) = 𝒜2−loop − ℱ(2) [𝒜0] − ℱ(1) [ℋ1−loop]

Free of ALL soft and collinear singularities LOCALLY!  

∫ ℋ(R)
2−loop(k, l) Integrable in D=4 dimensions with 

numerical methods.



A main result of this work 
q + q̄ → any set of heavy colourless particles

ℋ2−loop(k, l) = 𝒜2−loop − ℱ(2) [𝒜0] − ℱ(1) [ℋ1−loop]
 Due to factorisation, collinear singularities also  
get subtracted by the form-factor subtractions.  
But this is not a straightforward  “out-of-the-box“ result.  
 
We must first write a suitable representation of the two-loop  
amplitude and form-factor integrands which render factorisation 
manifest locally.    
 



Collinear singularities
Collinear singularities  longitudinally polarised gluons→
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Fate of longitudinal gluons

Gauge symmetry: Ward identities at play, lead to cancellations  
and factorisation
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Cancellation of collinear 
singularities at one-loop
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Cancellation of collinear 
singularities at two-loops

- Ward identities leave remnants which cancel with shifts of momenta


- Collinear gluons emerging from one-loop triangle subgraphs are not  
purely longitudinal. Their polarisation can be random (loop polarisation).


- Self-eergy corrections lead to power rather than logarithmic singularities.  
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Loop Momentum routing which is necessary for factorising the  singularity k ∥ p2

Incompatible for factorising the  singularity k ∥ p1
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SOLUTION: We symmetrise the two-loop  
amplitude in the momenta of the virtual gluons

𝒜(2)(k, l) =
1
2

𝒜(2)(k, l) +
1
2

𝒜(2)(l, k)

+

+ + + +

Loop momenta symmetrisation
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Non-local cancellations 
requiring loop momenta shifts
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Localising shift cancellations 
with non-abelian planar copies

Add a suitably engineered “zero” to the amplitude

𝒜(2) → 𝒜(2) + f(k, l)

 with ∫ ddkddl f(k, l)



Localising shift cancellations 
with non-abelian planar copies
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Eliminating local power  
singularities







































































Self energy diagrams
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Vacuum polarization diagrams contain  
a “doubled” propagator.  This leads to  
power singularities: 
 

d4k

(k2)2(k + p1)2

k = x p1 + δ βη + δk⊥ 1
δ









































































Self energy diagrams
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IR singlularity structure becomes identical to the one of the one-loop amplitude. 

We can replace vacuum polarisation integrands with equivalent (tensor reduced)  
integrands.  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Self energy diagrams
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Eliminating local power  
singularities

Self-energy corrections on quark lines adjacent  
to external legs exhibit power singularities too.  
We treat it in the same way replacing the integrand 
with an equivalent term (tensor reduction).

IR singlularity structure simplifi  


k ∥ p1
k ∥ p2



Have we spoiled 
factorisation in another way?
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Factorization in this limit is not local. We have been already in trouble, even 
before changing the integrand of self-energies. 

Self-energy  correction to  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Factorization in this limit is not local. We have been already in trouble, even 
before changing the integrand of self-energies. 

MODIFIED ?
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The diagrams with one-loop vertex corrections have their own problems too.  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Collinear singularities from gluons 
emitted off one-loop vertices

Collinear singularities  longitudinally  and “loop” polarised gluons→
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Eliminating Loop 
polarisations
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A main result of this work 
q + q̄ → any set of heavy colourless particles

ℋ1−loop(k) = 𝒜1−loop − ℱ(1) [𝒜0]
ℋ2−loop(k, l) = 𝒜2−loop − ℱ(2) [𝒜0] − ℱ(1) [ℋ1−loop]

Free of ALL soft and collinear singularities LOCALLY!  

∫ ℋ(R)
2−loop(k, l) Integrable in D=4 dimensions with 

numerical methods.



Check 
q + q̄ → W+W−

- Generation of amplitudes with QGRAF


- Automated application of Feynman rules


- Automated cloning of planar diagrams,  
proper routing of momenta and introduction of 
counterterms for  loop polarisations. 


- Automated  numerical evaluation of  amplitude  
with exact arithmetics at all infrared singular limits. 



Ultraviolet Counterterms
• Ultraviolet divergences can be 

subtracted locally with a usual BPHZ-
type of procedure. 


• Constructing approximations of the 
integrand has a simple step, which is 
power counting


• And a conceptual complication 
beyond one-loop… mixed UV and IR 
singularities… we want to subtract UV 
singularities without spoiling IR 
factorization.

ℳ1 = ℳ1−finite + Tl→∞ℳ1

ℳ2 = ℳ2−finite + Tk→∞ℳ2 + Tl→∞ℳ2

+Tk,l→∞ℳ2 − Tk,l→∞ (Tk→∞ℳ2 + Tl→∞ℳ2)
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Figure 17: Illustration of UV sub-divergence counterterms, as defined in Eq. (3.40)

and (3.41), for one-loop vertex and bubbles sandwiched between final-state photon

emission vertices (as opposed to type I and type II diagrams).

On the contrary, constructing “single-UV” approximations (Tl!1M1PI, Tl!1M1PI)

present subtle challenges. When one loop momentum, for example k, is taken to an

infinite value, the second loop-momentum l is unrestricted and it can assume values

which give rise to infrared (soft and collinear) singularities. For such loop-momentum

configurations, simultaneous subtractions are required for both ultraviolet and soft

or collinear singularities. However, a naive introduction of ultraviolet counterterms

could spoil the factorization of collinear singularities. The challenge is to find ultra-

violet counterterms which are compatible with factorization. Anticipating this com-

plication, in Section 3 we introduced local ultraviolet counterterms for the one-loop

electron propagator and the one-loop electron-electron-photon vertex which respect

the QED Ward identity. These counterterms, i.e. Eq. (3.40) and (3.41), are used for

one-loop vertex or bubble diagrams that are sandwiched between final-state photon

emission verices, illustrated in Fig. 17.

Sets of diagrams in which the ultraviolet behaviour is approximated by these

counterterms exhibit the analogous cancellations of non-factorizing contributions in

collinear limits as they occur for their unappoximated forms, as illustrated in Fig. 18.

This ensures that collinar singularities associated with the non-UV loop remain in

a factorized form which is precisely canceled by the form factor IR counterterms in

– 50 –



Numerical integration
• Can such subtractions be used for 

evaluating loop amplitudes 
numerically? 


• They are an important ingredient! 
They remove “pinch” singularities.  


• Other singularities which can be 
avoided with appropriate contour-
deformations are equally important. 

Z 1

�1
dxI[x]

 integrand with large variance

ReE

ImE

−ω
+ω



• A breakthrough in numerical integration 
has been achieved recently 


• First integrate over the energy 
component of all loop momenta using 
Cauchy’s theorem [Loop-Tree duality] 


• This reduces the number of integrations.  


• Then devise an algorithm to move the 
contour of remaining integrations 
away from non-pinched singularities. 

Numerical integration

ReE

ImE

particle 1

particle 2

Cauchy

∫ d4k → ∫
d3 ⃗k

| ⃗k |
= ∫ d4kδ(k2)Θ(k0)

Catani,Gleisberg,Krauss,Rodrigo, Winter; Bierenbaum, Catani, Draggiotis, Rodrigo; 
Capatti,Hirschi, Kermanschah, Ruijl; Aguilera-Verdugo, Driencourt-Mangin,  
Plenter, Ramırez-Uribe, Rodrigo, Sborlini,Torres Bobadilla, Tracz; Runkel, Szőr,  
Vesga, Weinzierl;…

Capatti, Hirschi, Kermanschah, Ruijl



Numerical integration
• A breakthrough in numerical integration 

has been achieved recently 


• First integrate over the energy 
component of all loop momenta using 
Cauchy [Loop-Tree duality] 


• This reduces the number of integrations.  


• Then devise an algorithm to move the 
contour of remaining integrations away 
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Integrated Hard Functions  for 
: the termsqq̄ → WWZ β0−

Dario Kermanschah, Zeno Capatti  
interfacing/adapting the framework of “Local Unitarity”

Capatti, Hirschi, Kermanschah, Pelloni, Ruijl

Preliminary

Preliminary



Local subtractions may be 
complementary to other approaches

• Analytic integration 


• Feynman parameter integration (removing the need for 
sector decomposition) 


• Helping to set D=4 exactly in reductions to master integrals


• Extracting logarithms (small fermion masses)



Example: two-loop 
cross-box
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Figure 9. The two-loop cross-box

For convenience below, and as for the planar box, we introduce the integral with an

arbitrary numerator N , and define

Xbox [N ] ⌘

Z
d

d
k2

i⇡
d
2

d
d
k5

i⇡
d
2

N(k2, k5)

A1A2A3A4A5A6A7
, (3.72)

with Ai = k
2
i
+ i0. The internal momenta can be chosen as:

k1 = k, k2 = k + p1, k3 = k + p12, k4 = �l � p12,

k5 = �l + p4, k6 = k � l, k7 = k � l + p4. (3.73)

We are interested in removing the infrared singularities of Xbox[1], which was com-

puted analytically for the first time in Ref. [50]. We follow the same procedure as for

the planar double-box and previous examples. Namely, we remove the singularities

iteratively, following the order: double-soft, soft-collinear, two-collinear pairs/two-

loop-collinear, single-soft and single-collinear.

Of the sixteen distinguishable double-soft regions of the crossed box, two have

the property that three lines are forced to zero momentum. In the spirit of our

discussion for the planar box, we can label these zero-dimensional pinch surfaces by

any two of the three lines that are coupled at a three-point vertex and have vanishing

momentum. We will call them S1S7 and S3S6, where we understand that these two

configurations imply as well that S5 and S4 carry vanishing momentum, respectively.

The region S1S7 is illustrated in Fig. 10a.

At configurations of the cross-box like this, we encounter an additional com-

plication, due to the presence of power-like (rather than logarithmic) double-soft

– 32 –

In either of the above limits, A2 ⇠ � and only one of A1 or A3 tend to the Mandelstam

variable s. We can therefore modify our counterterm as follows:

N4 = N3 +
A2(A2 + s � A13)

tu
(3.85)

The integral Xbox[N4] is now free of all double-soft singularities. We also find that is

free of all soft-collinear singularities, as confirmed by explicit integration.

We therefore proceed with the subtraction of two-collinear pairs/two-loop-collinear

types of singularities. These singular limits do not pose any special challenges and

they are subtracted along the lines of our planar double-box example. We find that

the integral Xbox [N5] with numerator

N5 =

✓
1 �

A13

s

◆2

+
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tu
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u
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t
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(t � u)2

s2

A1A3

tu
(3.86)

is free of all singularities associated with two independent loop momenta pinched in

a special kinematic configuration (soft or collinear).

Finally, we need to remove the singularities due to single-soft and single-collinear

limits. After these final subtractions, we find that the following integrand is free of

all singularities:

FXbox = F
(2)
Xbox

+ F
(1s)
Xbox

+ F
(1c)
Xbox

, (3.87)

where, following the notation of the planar double box,

F
(2)
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=
N5

A1A2A3A4A5A6A7
, (3.88)

F
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. (3.90)
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single 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limits

In either of the above limits, A2 ⇠ � and only one of A1 or A3 tend to the Mandelstam

variable s. We can therefore modify our counterterm as follows:
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The integral Xbox[N4] is now free of all double-soft singularities. We also find that is

free of all soft-collinear singularities, as confirmed by explicit integration.

We therefore proceed with the subtraction of two-collinear pairs/two-loop-collinear

types of singularities. These singular limits do not pose any special challenges and

they are subtracted along the lines of our planar double-box example. We find that
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is free of all singularities associated with two independent loop momenta pinched in

a special kinematic configuration (soft or collinear).

Finally, we need to remove the singularities due to single-soft and single-collinear

limits. After these final subtractions, we find that the following integrand is free of
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Figure 9. The two-loop cross-box

For convenience below, and as for the planar box, we introduce the integral with an

arbitrary numerator N , and define

Xbox [N ] ⌘

Z
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d
k2

i⇡
d
2

d
d
k5

i⇡
d
2

N(k2, k5)

A1A2A3A4A5A6A7
, (3.72)

with Ai = k
2
i
+ i0. The internal momenta can be chosen as:

k1 = k, k2 = k + p1, k3 = k + p12, k4 = �l � p12,

k5 = �l + p4, k6 = k � l, k7 = k � l + p4. (3.73)

We are interested in removing the infrared singularities of Xbox[1], which was com-

puted analytically for the first time in Ref. [50]. We follow the same procedure as for

the planar double-box and previous examples. Namely, we remove the singularities

iteratively, following the order: double-soft, soft-collinear, two-collinear pairs/two-

loop-collinear, single-soft and single-collinear.

Of the sixteen distinguishable double-soft regions of the crossed box, two have

the property that three lines are forced to zero momentum. In the spirit of our

discussion for the planar box, we can label these zero-dimensional pinch surfaces by

any two of the three lines that are coupled at a three-point vertex and have vanishing

momentum. We will call them S1S7 and S3S6, where we understand that these two

configurations imply as well that S5 and S4 carry vanishing momentum, respectively.

The region S1S7 is illustrated in Fig. 10a.

At configurations of the cross-box like this, we encounter an additional com-

plication, due to the presence of power-like (rather than logarithmic) double-soft
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In the above, Bi = Ai � µ
2. Upon direct analytic integration, using the integration

techniques described in the previous section for the counterterms, and the analytic
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The integration of the counterterms was performed using the same techniques as

in the case of the planar double-box. A notable di↵erence occurred in the integra-

tion of the collinear counterterms. In the case of the crossed double-box, integrals
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3
⇡

2 log(1 � y) �
8

3
log(y) ⇡

2

�8 S12(y) � 4 ⇣3 +
2

3
log(y)3

� 4 log(y)2 log(1 � y) +
2

3
log(1 � y)3

, (3.96)

and

GI(y) = �4 Li2(y) +
10

3
⇡

2 + 4 log(y)2
� 8 log(y) log(1 � y) + 2 log(1 � y)2

.

(3.97)

The integration of the counterterms was performed using the same techniques as

in the case of the planar double-box. A notable di↵erence occurred in the integra-

tion of the collinear counterterms. In the case of the crossed double-box, integrals
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Chapter 3

Tests and results

In this chapter we will look at some examples.

3.1 One-loop tests

3.1.1 The IR finite one-loop box

We want to compute the finite remainder of the loop integral associated to the diagram in fig.
1.2, after the removal of soft and collinear divergences with local counterterms, presented in
[4]. The external momenta are taken to be incoming and massless and fulfill

p2
i = 0, p1234 = 0, s = (p1 + p2)

2, t = (p2 + p3)
2. (3.1)

we define

Aj := k2
j + id , j = 1, . . . , 4 (3.2)

kj+1 = kj + pj , (3.3)

with k4 = k0 and we use the shorthand notation A0...n = A0 + · · ·+ An. The original integral
is

Box =
Z dkD

ipD/2
1

A1 A2A3 A4
. (3.4)

We combine the original integrand and the counterterms of [4] under a common denomina-
tor, to obtain the finite remainder BoxR in D = 4 after the removal of IR divergences,

BoxR =
Z dkD

ipD/2
1 � A24

t � A13
s

A1 A2 A3 A4
. (3.5)

We Feynman parametrize as described in Sec. 2.2 and we arrive at

BoxR = �2
s + t

st

Z

[0,1]4
dx0dx1dx2dx3

d(1 � x0123)
sx1x3 + tx2x0 + id

. (3.6)

After the evaluation of the Dirac delta

BoxR = �2
s + t

st

Z

[0,1]3\{x1+x2+x31}
dx1dx2dx3

1
sx1x3 + tx2(1 � x1 � x2 � x3) + id

. (3.7)
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3. Tests and results

In order to perform the evaluation with Monte Carlo, we need the integration region to be
[0, 1]3, so we recall the change of variables needed for the mapping to the hypercube

x1 7! x
x2 7! b(1 � x) (3.8)
x3 7! a(1 � x)(1 � b)

BoxR = �2
s + t

st

Z

[0,1]3
dxdadb

1 � x
sxa + t(1 � a)(1 � x)b + id

. (3.9)

We will define for convenience

I :=
Z

[0,1]3
dxdadb

1 � x
sxa + t(1 � a)(1 � x)b + id

. (3.10)

The expected result from analytic computation performed in [4] is:

I =
1

2(s + t)

h
p2 + log2

⇣ s
t

⌘i
. (3.11)

First deformation attempt Just for the sake of experimenting, we want to see what would
happen if we increased l at will without root checking procedure. We recall the change of
variables needed for the contour deformation

x 7! x + ilx(1 � x)
∂Q
∂x

,

a 7! a + ila(1 � a)
∂Q
∂a

, (3.12)

b 7! b + ilb(1 � b)
∂Q
∂b

,

where Q(x, a, b) = sxa � t(1 � a)(1 � x)b. l is a constant that is chosen at the beginning of
the procedure. We can check how the integral’s result changes depending on l.

When the deformation would not be needed We can look at the integration an Euclidean
phase space point, some values of I obtained via numerical integration are represented
in Table 3.1. The table clearly shows that we encounter a point where the result of the

l <(I) c2 (df) =(I) c2 (df)
1 5.5104 ± 0.0019 3.2 (43 ) 0.0001 ± 0.0005 3.7 (43 )
10 5.5104 ± 0.0019 2.5 (43 ) -0.001 ± 0.006 3.6 (43 )
15 5.51 ± 0.010 1.7 (43 ) -0.002 ± 0.011 2.4 (43 )
35 8.13 ± 0.07 5.7 (43 ) 0.24 ± 0.06 10.3 (43 )
55 21.6 ± 0.2 11.7 (43 ) -1.63 ± 0.16 8.3(43 )

Table 3.1: When s = 0.5, t = 0.4 the expected result is I = 5.5107. Without a root-checking procedure the

integration will fail starting from some value of l.

integration changes completely, as a consequence of not checking for complex poles as new
zeros of the denominator after the change of variables.

When the deformation is needed We can look at the same integrand for a non-Euclidean
phase space point. In this situation, before the deformation, Q(x, a, b) = 0 has solutions on
the real axis, and those are avoided by a proper contour deformation. It is worth noticing
the structure of the Taylor expansion of Q(x + ildx, a + ilda, b + ildb):

Q(xc, ac, bc) = Q(x, a, b)� l2Q2(x, a, b) + il(Q1(x, a, b)� l2Q3(x, a, b)) . (3.13)
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3. Tests and results

linitial <(I) c2 (df) =(I) c2 (df)
10.5 1.618 ± 0.005 1.8 (47 ) -6.319 ± 0.006 4.5 (47 )
50.0 1.619 ±0.005 2.7 (445 ) -6.319 ± 0.005 12.8 (445 )
90.0 1.619 ±0.009 7.0 (527 ) -6.3177 ± 0.0010 15.5 (527 )
150.5 1.620 ±0.014 56.3 (1877 ) -6.316 ± 0.016 56.9 (1877 )

Table 3.3: Taking s = 1.0, t = �0.2 the expected result is I = 1.6189 � i6.3202.

3.1.2 The IR finite one-loop five point amplitude in N = 4 SYM

As our next example we will consider a one-loop five point amplitude in N = 4 SYM. This
choice is convenient because we can focus on the removal of IR divergences only, being the
theory free of UV divergences. The analysis carried out in [18] for the normalized leading

p2 p5

p4p3

p1

k + p1

k + p12

k + p123

k + p1234

k

(a) Scalar pentagon diagram.

(b) Five point scalar box where two external legs merge in

one vertex.

Figure 3.5: The five point amplitude presented in [18] has these two di↵erent types of contributing diagrams, arranged

in a linear combination with coe�cients that depend on sij.

color five point one-loop amplitude leads to the following expression, after the introduction of
counterterms for the soft and collinear limits, for the IR-finite part of the amplitude

M(1-loop)
5 |IR-finite =

Z dkD

ipD/2
N (k)

A1A2A3A4A5
(3.16)

with

Aj := k2
j + id , j = 1, . . . , 5 , kj+1 = kj + pj , p2

i = 0, p12345 = 0, sij = (pi + pj)
2.

with k5 = k0,

N (k) = �[(k + p1234)
2b5 + (k + p123)

2b4 + (k + p123)
2(k + p1234)

2a5

+(k)2(k + p1234)
2a1 + (k + p12)

2(k + p123)
2a4 + (k + p12)

2b3+

(k + p1)
2b2 + (k)2(k + p1)

2a2 + (k + p1)
2(k + p12)

2a3 + (k)2b1] + o
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3.1. One-loop tests

with the coefficients:

b1 := s23s34

✓
s23s34 + s12(�s23 + s51) + s45(�s34 + s51)

R
� 1

2

◆
(3.17)

b2 := s34s45

✓
s34s45 � s23s34 � s45s51 + s12(s23 + s51)

R
� 1

2

◆
(3.18)

b3 := s45s51

✓
s23s34 + s12(s23 � s51) + s45(�s34 + s51)

R
� 1

2

◆
(3.19)

b4 := s51s12

✓
s23s34 + s45(s34 � s51) + s12(�s23 + s51)

R
� 1

2

◆
(3.20)

b5 := s12s23

✓
s45(s34 + s51)� s23s34 + s12(s23 � s51)

R
� 1

2

◆
(3.21)

a1 := s23 (3.22)
a2 := s34 (3.23)
a3 := s45 (3.24)
a4 := s51 (3.25)
a5 := s12 (3.26)

o :=
2s12s23s34s45s51

R
. (3.27)

After the integration over the loop momentum (using 2.14) we obtain:

M(1�loop)
5 |IR-finite = (�1)5

Z 1

0
dx1dx2dx3dx4dx5d(1 � x12345)[

2
(�L)3 (o � b5a � b1b � b2g

� b3d � b4w � s12wa � s34bg � s45dg � s51dw � s23ba)

� 2
(�L)2 (�b5 � b1 � b2 � b3 � b4 � s12(w + a + c1)� s34(g + b + c2)

� s51(d + w + c3)� s23(a + b + c4)� s45(g + d + c5))

+
3

(�L)
(�s12 � s23 � s34 � s45 � s51)]

with :

a := (P � p1234)
2 = (s51x2 + s34x3)� L

b := (P)2 = (s12x3 + s45x4)� L

g := (P � p1)
2 = (s23x4 + s51x5)� L

L := (P � p1 � p2)
2 = (s12x1 + s34x5)� L

w := (P � p1 � p2 � p3)
2 = (s45x1 + s23x2)� L

c1 := (�p5 � P) · (p1 + p2 + p3 � P) =
s45x1 + s23x2 + s51x2 + s34x3

2
� L

c2 := (�P) · (p1 � P) =
s12x3 + s23x4 + s45x4 + s51x5

2
� L

c3 := (p1 + p2 � P) · (p1 + p2 + p3 � P) =
s12x1 + s45x1 + s23x2 + s34x5

2
� L

c4 := (�P) · (�p5 � P) =
s51x2 + s12x3 + s34x3 + s45x4

2
� L

c5 := (p1 � P) · (p1 + p2 � P) =
s12x1 + s23x4 + s34x5 + s51x5

2
� L

with Pµ, L defined in sec. 2.2.1, and here

L = x1x3s12 + x1x4s45 + x2x4s23 + x2x5s51 + x3x5s34 . (3.28)
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3. Tests and results

linitial <(I) c2 (df) =(I) c2 (df)
1.5 5.510 ± 0.002 2.8 (38 ) -0.0001 ± 0.0009 2.9 (38 )

10.5 5.5106 ± 0.0016 4.7 (518 ) -0.0002 ± 0.0018 5.6 (518 )
90 5.513 ± 0.026 12.2 (445 ) -0.010 ± 0.02 22.7 (445 )

150.5 5.51 ± 0.05 97.5 (1877 ) -0.00 ± 0.04 177.5 (1877 )

Table 3.4: Some results for the one-loop box for s = 0.5, t = 0.4 varying linitial .The expected result is 5.5107.

linitial <(I) c2 (df) =(I) c2 (df)
10.5 3.12 ± 0.16 676.5 (601 ) -6.2533 ± 0.0019 175.5 (601 )
110.5 -0.95 ± 0.18 632.9 (630 ) -6.18± 0.05 478.7 (630 )

Table 3.5: Some results for the one-loop box for s = �1.0, t = 0.2 varying l0. Expected result: 1.6189 � i6.3202.
When we solve only the equation <[Q(x̄)](l) = 0 in order to determine l(x, a, b), we do not obtain the correct

results.

l <(I) c2 (df) =(I) c2 (df)
1 -8.819 ± 0.009 8.1 (71) 0.002 ± 0.009 12.5 (71)
2 -8.82 ± 0.02 4.9 (119) 0.00 ± 0.02 6.9 (119)
3 -8.82 ± 0.05 10.0 (222) 0.03 ± 0.05 13.2 (222)
5 -8.7 ± 0.5 17.3 (184) -0.04 ± 0.5 20.0 (184)

Table 3.6: Results for the five-point function in N = 4 SYM for the phase space point with s23 = 4, s34 = 2, s45 =
6, s51 = 3. Results obtained with Vegas. The expected result obtained with pySecDec [11] is �8.8229.

l <(I) c2 (df) =(I) c2 (df)
0.6 -8.838 ± 0.006 4.5 (112386) 4.184 ± 0.004 5.3 (112386)
1 -8.827 ± 0.007 2.2 (50361) 4.159 ± 0.003 8.3 (50361)

1.8 -8.824 ± 0.014 1.9 (54050) 4.156 ± 0.008 1.5 (54050)
2.5 -8.87 ± 0.03 0.9 (87396) 4.17 ± 0.02 0.9 (87396)

Table 3.7: Results for the five-point function in N = 4 SYM for the phase space point s23 = 4., s34 = 2., s45 =
6., s51 = �3. Results obtained with Cuhre. The expected result obtained with pySecDec [11] is �8.8229 + 4.1463i

l <(I) c2 (df) =(I) c2 (df)
0.5 2.693 ± 0.002 0.4 (43) -3.141 ± 0.002 0.9 (43)
1.0 2.6931 ± 0.0011 0.4 (43) -3.1414 ± 0.0009 1.1 (43)
14 2.69± 0.03 0.01(43) -3.14 ± 0.04 0.09 (43)
20 2.69 ± 0.08 0.02 (43) -3.14 ± 0.11 0.06 (43)

Table 3.8: Results for the one-loop bubble obtained with s = 0.5 using Vegas. The expected result is 2.69315 �
3.14159i

l <(I) c2 (df) =(I) c2 (df)
0.5 2.6931 ± 0.0008 0.5 (43) 0.00003 ± 0.0003 0.3 (43)
1 2.6931 ± 0.0008 0.5 (43) 0.0001 ± 0.0007 0.3 (43)
20 2.69 ± 0.15 0.006 (43) 0.006 ± 0.07 0.1 (43)

Table 3.9: Results for the one-loop bubble obtained with s = �0.5 using Vegas.

l <(I) c2 (df) =(I) c2 (df)
0.7 0.022452 ± 4·10�6 8.0 (33 ) -4·10�6 ± 4·10�5 6.5 (33 df)

0.11 0.02193 ± 1.4 · 10�5 66.2 (374 ) 0.002339 ± 8·10�6 51.2 (374 df)

Table 3.10: Results for the two-loop example with mapping and numerical root finding procedure in the contour

deformation for the Euclidean phase space point (s = 98.0, t = 40.0, m1 = 32.0, m2 = 14.0). The expected result

is (�0.022492 ± 0.000013) + (3.4 · 10�7 ± 0.000014)

30



Small mass expansions

GR(y) = �12 Li2(y) log(y) + 12 Li3(y) +
2

3
⇡

2 log(1 � y) �
8

3
log(y) ⇡

2

�8 S12(y) � 4 ⇣3 +
2

3
log(y)3

� 4 log(y)2 log(1 � y) +
2

3
log(1 � y)3

, (3.96)

and

GI(y) = �4 Li2(y) +
10

3
⇡

2 + 4 log(y)2
� 8 log(y) log(1 � y) + 2 log(1 � y)2

.

(3.97)

The integration of the counterterms was performed using the same techniques as

in the case of the planar double-box. A notable di↵erence occurred in the integra-

tion of the collinear counterterms. In the case of the crossed double-box, integrals

which do not have a representation in terms of Nielsen polylogarithms with a simple

argument Snp(y) emerge 2. However, we have observed that the linear combination

which is required in the collinear counterterm can be expressed in terms of Nielsen

polylogarithms in our simple basis Snp(y). Specifically, we find that
Z 1

0

dx

x


S12

✓
(x � y)(xy � 1)

y(x � 1)2

◆
� 2Li2

✓
(x � y)(xy � 1)

y(x � 1)2

◆
log(1 � x) � ⇣3

�

= �
1

24
log(y)4

� 2 Li2(y)2 +
13

45
⇡

4
� Li2(y) log(y)2 + 4 Li3(y) log(y)

�4 ⇣3 log(y) �
4

3
⇡

2 Li2(y) � 8 Li4(y) + 8 S22(y). (3.98)

4 Small mass expansions

In the previous section, we rendered finite integrals that were computed in dimen-

sional regularisation. Dimensional regularisation, however, is not an essential el-

ement; our method is in principle applicable to any infrared regulator. Infrared

divergences can also be regulated by a small mass parameter. With mass regularisa-

tion, the integration over the mass-divergent regions yields logarithms that become

infinite in the massless limit. The mass regulator can be artificial or physical. For

example, the physical mass of the bottom-quark in processes for the production of

Higgs bosons acts as a regulator for some of the infrared divergences. The loga-

rithmic dependence of the corresponding amplitudes is of a high phenomenological

interest. In this section, we will use the method of nested subtractions in order to

derive simply the asymptotic behavior of certain Feynman integrals in a small-mass

limit.

Consider a loop integral, represented schematically as

I[fm] =

Z
dki f(ki, m) , (4.1)

2We thank F. Dulat, F. Moriello and A. Schweitzer for providing useful confirmation of this
point.
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which depends on a small mass-parameter m, appearing in denominators of the

standard form, k
2
i
�m

2 + i0. If we take the zero-mass limit, the integral develops new

infrared divergences, which are not present for finite values of the mass. In general,

these appear as logarithmic corrections in the mass, which result from regions where

the values of denominators are actually larger than the mass: m
2

 k
2
i

 Q, with

Q some scale fixed by the invariants. For our discussion, all invariants are of the

same order. For fixed-angle scattering this is the case, and logarithmic integrals can

be identified by the simple power-counting rules described in Sec. 2. At the same

time, the integral can receive finite contributions from regions where for one or more

denominators k
2
i

= O(m2). We would like to find a systematic method to isolate

both the logarithmic mass dependence, and contributions that are finite for small,

but nonzero mass.

To this end, we follow the method of nested subtractions, and construct an ap-

proximation fapprox(ki, m) of the integrand in all the limits that become singular as

m ! 0. As indicated above, these limits can be identified using power counting tech-

niques. Then, we can use these approximations to construct counterterms, keeping

those mass-dependent terms that dominate each denominator in the region for which

the counterterm is designed to approximate the full integral. Thus, in general, our

counterterms retain mass dependence,

I[fm] =

Z
fapprox(ki, m) +

Z
[f(ki, m) � fapprox(ki, m)] . (4.2)

The leading mass singularities are now found from the integral over the approximated

integrand in the first term of the right-hand side of this relation. Because we keep

all leading mass dependence, finite terms associated with momenta of the order of

the mass may remain in one or more of the counterterms included in fapprox.

The second term in Eq. (4.2) is well-defined in the m = 0 limit, and additional

finite terms, including important kinematic dependence, appear in general in

I[fm] =

Z
fapprox(ki, m) +

Z
[f(ki, m) � fapprox(ki, m)]

m!0 + O(m) . (4.3)

It is important to note that a naive Taylor expansion of the second term in Eq. (4.2)

beyond the leading order will not account for terms of O(m1), which vanish as a

power, but may be multiplied by logarithms. Because we drop terms that are non-

leading of order in O(m) in denominators, we can only ensure the cancellation of the

leading power of m in the second term, and will in general miss contributions of the

form m log(m). In the following, using these ideas, we will show how this approach

can be used to derive the small-mass dependence of one- and two-loop integrals.

4.1 One-loop massive triangle

Consider as our first example the scalar one-loop massive triangle of Fig. 11, taken

with two light-like external lines, p1 and p2 here. This is a rather simple integral,
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Small mass expansions
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Figure 13. The two-loop diagonal box with two o↵-shell legs. Thick double lines denote

massive propagators.

case of the previous subsection, using dimensional regularization to control ultraviolet

divergences that appear in intermediate steps of the calculation.

The integral we study is,

Dbox ⌘

Z
d

d
k

i⇡
d
2

d
d
l

i⇡
d
2

1

B1B2B3B4A5
, (4.27)

which di↵ers from the diagonal box integral, Eq. (3.1) only by the introduction of

mass m for the “outside” lines of the box,

Bi = Ai � m
2 + i0, Ai = k

2
i
+ i0, i = 1 . . . 4 . (4.28)

The momentum assignments, ki, of the propagators are depicted in Fig. 4. One can

choose, for example,

k1 = l + p1, k2 = l + p12, k3 = k + p123, k4 = k, k5 = k � l . (4.29)

The kinematics of the external momenta pi are given by

p
2
2 = p

2
4 = 0, p

2
1 = m

2
1, p

2
3 = m

2
3,

4X

i=1

pi = 0, p
2
12 = p

2
34 = s, p

2
23 = p

2
14 = t . (4.30)

Eq. (4.27) is a master integral for the production of one or two Higgs bosons at hadron

colliders. We have studied the infrared singularities of the massless diagonal-box in

section 3.1, which becomes divergent in the double-collinear C1||2C4||4 limit and in

the two single-collinear limits, C1||2 and C4||4. In the massive diagonal-box that we

consider here, these singularities are screened for finite values of the mass and emerge
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only as we take the limit m ! 0. Upon integration, these limits are responsible for

generating the logarithmic mass singularities logn(m), n = 1, 2. Following steps anal-

ogous to those for the massless diagonal box in section 3.1, we construct counterterms

that remove the mass singularities. Up to corrections that vanish with the mass, the

fully subtracted integral is equated to its dimensionally-regulated massless limit,

Dbox

��
R

=

Z
d

d
k1

i⇡
d
2

d
d
k4

i⇡
d
2

(
1

B1B2B3B4A5
�

1

B1B2


1

A3A4A5

�

k1=�x2p2

�
1

B3B4


1

A1A2A5

�

k4=x4p4

+
1

B1B2B3B4


1

A5

�

k4=x4p4,

k1=�x2p2

)

=

Z
d

d
k1

i⇡
d
2

d
d
k4

i⇡
d
2

(
1

A1A2A3A4A5
�

1

A1A2


1

A3A4A5

�

k1=�x2p2

�
1

A3A4


1

A1A2A5

�

k4=x4p4

+
1

A1A2A3A4


1

A5

�

k4=x4p4,

k1=�x2p2

)
+ O

�
m

2
�

.

(4.31)

All integrals in the second equality are evaluated with massless propagators and all

terms except the first integrate to zero within dimensional regularisation. We can

then solve the above equation for the required massive diagonal-box (up to O(m2)).

We obtain
Z

d
d
k1

i⇡
d
2

d
d
k4

i⇡
d
2

1

B1B2B3B4A5

=

Z
d

d
k1

i⇡
d
2

d
d
k4

i⇡
d
2

(
1

A1A2A3A4A5
+

1

B1B2


1

A3A4A5

�

k1=�x2p2

+
1

B3B4


1

A1A2A5

�

k4=x4p4

�
1

B1B2B3B4


1

A5

�

k4=x4p4,

k1=�x2p2

)
. (4.32)

Let us now compare the right-hand side of Eq. (4.32) and Eq. (3.16). We observe

that if we set the artificial scale µ to the physical mass µ = m in (3.16), the two

expressions di↵er by terms that integrate to zero within dimensional regularisation.

We therefore arrive at the following result for the massive diagonal-box,

Dbox = Dbox|fin (m) + O
�
m

2
�

, (4.33)

where Dbox|fin (m) is given by Eq. (3.29). We have checked this result against nu-

merical evaluations in the Euclidean region of results in Ref. [58] after setting p
2
1 = 0

in our expression. We have also checked the coe�cients of the logarithmic expansion
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Therefore, integrands of the form of Eq. (3.21) can be expanded as a Taylor series in ✏,

whose coe�cients can be integrated either analytically or, alternatively, numerically.

Having discussed the integration of the divergent counterterms, we return to the

evaluation of the finite remainder of Eq. (3.16), which in this case can be performed

in exactly four dimensions. We envisage that finite remainders of two-loop integrals

after the application of nested subtractions are integrated numerically in momentum

space, after appropriate contour deformations away from non-pinched singularities

are applied. We emphasize again that the development of an e�cient numerical

method requires further study, a problem that we will not address here. A method

that achieves this purpose for generic multi-loop integrals has been presented in

Ref [48].

For the full finite part, including the original diagram, we have from the above,

Dbox|fin = �
�(1 + ✏)2

✏2

Z 1

0

dxdy

A(x, y)


�(1 + 2✏)�(1 � ✏)3

�(1 + e)2�(1 � 3✏)
A(x, y)�2✏

�2
�(1 � ✏)2

�(1 � 2✏)2

�
µ

2
A(x, y)

��✏
+

�
µ

2
��2✏

�

=

Z 1

0

dxdy

log2
⇣
�

A(x,y)
µ2

⌘

A(x, y)
+ O(✏) , (3.28)

with A(x, y) given in Eq. (3.13). The first term in brackets on the right of the first

equality is the full diagram, the second term is the result of single-collinear subtrac-

tions, and the third term is from the double-collinear subtraction. This expression is

manifestly finite in d = 4 dimensions and can also be easily integrated analytically in

terms of logarithms and polylogarithms (see, for example, Appendix D of Ref. [54]).

The analytic result for the finite remainder of the diagonal-box integral reads

u Dbox|fin (µ) = 2Li4(v1) + 2Li4(v3) � 2Li4(vs) � 2Li4(vt)

�2Li3(v1)Lµ(m2
1) � 2Li3(v3)Lµ(m2

3) + 2Li3(vs)Lµ(s) + 2Li3(vt)Lµ(t)

+Li2(v1)L
2
µ
(m2

1) + Li2(v3)L
2
µ
(m2

3) � Li2(vs)L
2
µ
(s) � Li2(vt)L

2
µ
(t)

+
1

3
ln(1 � v1)L

3
µ
(m2

1) +
1

3
ln(1 � v3)L

3
µ
(m2

3) �
1

3
ln(1 � vs)L

3
µ
(s)

�
1

3
ln(1 � vt)L

3
µ
(t) . (3.29)

The limit of m1, m2 ! 0 can be taken smoothly in Eq. (3.29). We have checked that

in that limit the above result, when combined with the integrated counterterms,

agrees with the analytical results of Refs. [55, 56] for m1 = m3 = 0. Finally, we

would like to comment that the terms proportional to log3(µ) in Eq. (3.29), log2(µ) in

Eq. (3.25) and log(µ) in Eq. (3.27) all cancel. This is in accordance with expectations,

since the strongest singularity is due to two-collinear pairs capable of producing at

most 1/✏2 poles and consequently at most log2(µ) terms in the finite part of the

integral.
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Conclusions
• We have witnessed rapid progress in perturbative QCD, matching the precision of 

the LHC experiments. So far! 


• Can we keep up? A need to keep reinventing our field and understanding 
perturbation theory at deeper levels. 


• Infrared factorization  has been crucial historically. This property can be exploited 
further.  


• Achieved a form for a class of two-loop amplitude integrands in which 
factorisation furnishes local subtractions for the removal of infrared singularities, 
also consistently with a BPHZ subtraction of UV singularities. 


• Next challenge: Extend to colourful final states. 


• And numerical integration in D=4 exactly.  A lot of progress achieved already in the 
framework of Loop-Tree-Duality. 



An one-loop example 
“Ghost-terms” in triple gluon vertex get annihilated for physical (on-shell)  
external states.
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An one-loop example 
q(p1) + q̄(p2) → Q(p3) + Q̄(p4)
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An one-loop example 
Soft singularities

on-shell 
propagators

off-shell 
propagator

~

Soft approximation

Soft approximation is a “form-factor” one-loop  amplitude for the scattering of two partons off a composite external 
current which corresponds to the tree amplitude
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An one-loop example: 
removing the soft singularities
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Ultraviolet Counterterms
• Ultraviolet divergences can be 

subtracted locally with a usual BPHZ-
type of procedure. 


• Constructing approximations of the 
integrand has a simple step, which is 
power counting


• And a conceptual complication 
beyond one-loop… mixed UV and IR 
singularities… we want to subtract UV 
singularities without spoiling IR 
factorization.

ℳ1 = ℳ1−finite + Tl→∞ℳ1

ℳ2 = ℳ2−finite + Tk→∞ℳ2 + Tl→∞ℳ2

+Tk,l→∞ℳ2 − Tk,l→∞ (Tk→∞ℳ2 + Tl→∞ℳ2)
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Figure 17: Illustration of UV sub-divergence counterterms, as defined in Eq. (3.40)

and (3.41), for one-loop vertex and bubbles sandwiched between final-state photon

emission vertices (as opposed to type I and type II diagrams).

On the contrary, constructing “single-UV” approximations (Tl!1M1PI, Tl!1M1PI)

present subtle challenges. When one loop momentum, for example k, is taken to an

infinite value, the second loop-momentum l is unrestricted and it can assume values

which give rise to infrared (soft and collinear) singularities. For such loop-momentum

configurations, simultaneous subtractions are required for both ultraviolet and soft

or collinear singularities. However, a naive introduction of ultraviolet counterterms

could spoil the factorization of collinear singularities. The challenge is to find ultra-

violet counterterms which are compatible with factorization. Anticipating this com-

plication, in Section 3 we introduced local ultraviolet counterterms for the one-loop

electron propagator and the one-loop electron-electron-photon vertex which respect

the QED Ward identity. These counterterms, i.e. Eq. (3.40) and (3.41), are used for

one-loop vertex or bubble diagrams that are sandwiched between final-state photon

emission verices, illustrated in Fig. 17.

Sets of diagrams in which the ultraviolet behaviour is approximated by these

counterterms exhibit the analogous cancellations of non-factorizing contributions in

collinear limits as they occur for their unappoximated forms, as illustrated in Fig. 18.

This ensures that collinar singularities associated with the non-UV loop remain in

a factorized form which is precisely canceled by the form factor IR counterterms in
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The square bracket in the above equation can be immediately identified as the tree

amplitude contracted with the external spinors v̄R(p2) and uL(p1), so the countert-

erm Eq. (3.26) is proportional to the tree amplitude even before integration! This

holds in general; in latter parts of the paper, we will sandwich one-loop amplitudes

between projectors, in order to construct certain counterterms that are manifestly

proportional to the one-loop amplitude at the integrand level. gs 12.2: Maybe the

following sentence is better to complete this paragraph. The ”conclusion” doesn’t

address the projection directly. We have also found that the “form factor” approach

will make the derivation of infrared counterterms simpler at two loops and will adopt

gs 12.2: add this approach from now on. MZ: add how projectors prevent spurious

singularities at two loop.

In conclusion, we have shown that the following remainder of the one-loop am-

plitude leads to an infrared finite integration,

M
(1)
IR-finite = M

(1)
� TIRM

(1)
. (3.35)

Although this procedure provides an integral that is everywhere integrable, to provide

a numerically-computable expression, we must subtract UV divergences at the level

of the integrand. We now turn to this process.

3.2 Ward identity-preserving Ultraviolet counterterms

The IR-finite one-loop integrand, Eq. (3.35), remains singular in the UV-limit. In

order to remove the UV-singularities through a local subtraction, we need to find

an approximating function TUVM
(1)
IR-finite that matches the singular behavior of the

integrand in the UV-limit,

TUVM
(1)
IR-finite = TUV

�
M

(1)
� TIRM

(1)
�

= TUVM
(1)

� TUVTIRM
(1)

. (3.36)

At one loop in the process under study, UV-divergences occur only in fermion self-

energies and fermion-fermion-photon Green’s functions, denoted by �(1),⌫
ee� and ⇧(1)

e ,

respectively. Following our convention for the routing of the loop momenta, these

Green’s functions have the integrands

e�(1),⌫
ee� (p, q, l) ⌘

p

p + l

p + l + q

q

l =
�
�e

3
� �µ(/p+ /l + /q)�⌫(/p+ /l)�µ

(p+ q + l)2(p+ l)2l2
(3.37)
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One-loop self-energy/vertex graphs with ultraviolet divergences 
and

⇧(1)
e (p, l) ⌘ = �e

2
�
µ(/l + /p)�µ
l2(l + p)2

, (3.38)

where p is in general o↵-shell and q can be the momentum of a real or (starting at

two loops) virtual photon. The Ward-identity for these Green’s functions takes the

form

q⌫�
(1),⌫
ee� (p, q, l) = ⇧(1)

e (p, l) � ⇧(1)
e (p+ q, l) . (3.39)

For the vertex diagram, we choose the UV counterterm

e�(1,UV ),⌫
ee� (l) ⌘

(1) q

=
�
�e

3
� �

µ/l�
⌫/l�µ

(l2 � M2)3
, (3.40)

which picks out the only term of the numerator that results in a logarithmic UV

divergence, while regulating denominators with a common mass, M , which will play

the role of a renormalization scale. We stress that in this paper, a “counterterm” is

always defined at the integrand level, even though the graphical notation above draws

the counterterm as a local vertex. Our counterterms become QFT counterterms in

the conventional sense only after loop integration is carried out.

For the fermion self-energy, we must cancel both linear and logarithmic UV

divergences, where the latter are linear in the external momentum. Again regulating

denominators with a common mass, the resulting counterterm is

⇧(1,UV )
e (p, l) ⌘ (1)

p

=
�
�e

2
�
"

�
µ/l�µ

(l2 � M2)2
�

�
µ/l/p/l�µ

(l2 � M2)3

#

= �e
2 �

µ/l�µ

(l2 � M2)2
� p⌫�

(1,UV ),⌫
ee� (l) . (3.41)

In each case, the label (1) indicates that this is the first order renormalization local

counterterm. Notice that the above counterterms satisfy the Ward identity as well,

q⌫�
(1,UV ),⌫
ee� (l) = ⇧(1,UV )

e (p, l) � ⇧(1,UV )
e (p+ q, l), (3.42)

for any values of l which are not necessarily large. Therefore, the renormalized re-

mainders of the above Green’s functions will satisfy automatically the Ward-identity
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and

⇧(1)
e (p, l) ⌘ = �e

2
�
µ(/l + /p)�µ
l2(l + p)2

, (3.38)

where p is in general o↵-shell and q can be the momentum of a real or (starting at

two loops) virtual photon. The Ward-identity for these Green’s functions takes the

form

q⌫�
(1),⌫
ee� (p, q, l) = ⇧(1)

e (p, l) � ⇧(1)
e (p+ q, l) . (3.39)

For the vertex diagram, we choose the UV counterterm

e�(1,UV ),⌫
ee� (l) ⌘

(1) q

=
�
�e

3
� �

µ/l�
⌫/l�µ

(l2 � M2)3
, (3.40)

which picks out the only term of the numerator that results in a logarithmic UV

divergence, while regulating denominators with a common mass, M , which will play

the role of a renormalization scale. We stress that in this paper, a “counterterm” is

always defined at the integrand level, even though the graphical notation above draws

the counterterm as a local vertex. Our counterterms become QFT counterterms in

the conventional sense only after loop integration is carried out.

For the fermion self-energy, we must cancel both linear and logarithmic UV

divergences, where the latter are linear in the external momentum. Again regulating

denominators with a common mass, the resulting counterterm is

⇧(1,UV )
e (p, l) ⌘ (1)

p

=
�
�e

2
�
"

�
µ/l�µ

(l2 � M2)2
�

�
µ/l/p/l�µ

(l2 � M2)3

#

= �e
2 �

µ/l�µ

(l2 � M2)2
� p⌫�

(1,UV ),⌫
ee� (l) . (3.41)

In each case, the label (1) indicates that this is the first order renormalization local

counterterm. Notice that the above counterterms satisfy the Ward identity as well,

q⌫�
(1,UV ),⌫
ee� (l) = ⇧(1,UV )

e (p, l) � ⇧(1,UV )
e (p+ q, l), (3.42)

for any values of l which are not necessarily large. Therefore, the renormalized re-

mainders of the above Green’s functions will satisfy automatically the Ward-identity
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where p is in general o↵-shell and q can be the momentum of a real or (starting at

two loops) virtual photon. The Ward-identity for these Green’s functions takes the

form

q⌫�
(1),⌫
ee� (p, q, l) = ⇧(1)

e (p, l) � ⇧(1)
e (p+ q, l) . (3.39)

For the vertex diagram, we choose the UV counterterm

e�(1,UV ),⌫
ee� (l) ⌘

(1) q

=
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�e

3
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µ/l�
⌫/l�µ

(l2 � M2)3
, (3.40)

which picks out the only term of the numerator that results in a logarithmic UV

divergence, while regulating denominators with a common mass, M , which will play

the role of a renormalization scale. We stress that in this paper, a “counterterm” is

always defined at the integrand level, even though the graphical notation above draws

the counterterm as a local vertex. Our counterterms become QFT counterterms in

the conventional sense only after loop integration is carried out.

For the fermion self-energy, we must cancel both linear and logarithmic UV

divergences, where the latter are linear in the external momentum. Again regulating

denominators with a common mass, the resulting counterterm is

⇧(1,UV )
e (p, l) ⌘ (1)
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In each case, the label (1) indicates that this is the first order renormalization local

counterterm. Notice that the above counterterms satisfy the Ward identity as well,

q⌫�
(1,UV ),⌫
ee� (l) = ⇧(1,UV )

e (p, l) � ⇧(1,UV )
e (p+ q, l), (3.42)

for any values of l which are not necessarily large. Therefore, the renormalized re-

mainders of the above Green’s functions will satisfy automatically the Ward-identity
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as well. Though not essential for the one-loop case, this will turn out to be a partic-

ularly useful property at two loops for obtaining factorized counterterms of collinear

limits in the presence of UV sub-divergences. Note that the Ward identity for the UV

counterterms Eq. (3.42) is by no means guaranteed by the Ward identity for the origi-

nal diagrams Eq. (3.39), since we always have the freedom of adjusting non-divergent

terms in the UV counterterms. For example, an alternative UV counterterm for the

bubble diagram, by Nagy and Soper [55], is

� e
2
�
µ(/l + /p)�µ

⇥
(l + p/2)2

⇤2 . (3.43)

This alternative counterterm perfectly matches the UV-divergent behavior of Eq. (3.37)

at both the linearly divergent order and logarithmically divergent order, but unfor-

tunately does not preserve the Ward identities when used in conjunction with the

vertex UV counterterm Eq. (3.40). Instead, we specifically tuned the non-divergent

terms included, to make sure that the UV counterterm for the bubble, Eq. (3.41) is

perfectly aliged with the UV counterterm for the vertex, Eq. (3.40) so that the Ward

identities are satisfied by the aforementioned counterterms.2

We are now able to write down the local UV-counterterms of the one-loop am-

plitude as

TUVM
(1) =

p1

p2

(1) 1

n

2

·
·

+

p1

p2

1

n

(1)

2

·
·

+

p1

p2

1

n

(1) 2

3

·
·

+ . . .+

p1

p2

1

(1) n

2

·
·

+ external photon permutations (3.44)

Finally, we need to find a UV approximation of the infrared counterterm, TIRM
(1)

in Eq. (3.26). We choose

TUV TIRM
(1)

⌘ v̄(p2)

2

6666664

3

7777775
u(p1)

= v̄(p2)

"
�
�ie

2
� �µ/lP1

fM (0)(p1, p2, q1, . . . , qn)P1/l�µ

(l2 � M2)3

#
u(p1) . (3.45)

2A clean way to arrive at Eqs. (3.40) and (3.41) is to perform a series expansion of Eqs. (3.37)
and (3.38) in the limit of large l, and truncate both series at the order that corresponds to a
logarithmic divergence after loop integration, before adding a mass regulator to every propagator.
The uniform truncation of the series preserve the Ward identities that relates the vertex and the
bubble, and the final step of adding an IR mass regulator again preserves the Ward identities.
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The square bracket in the above equation can be immediately identified as the tree

amplitude contracted with the external spinors v̄R(p2) and uL(p1), so the countert-

erm Eq. (3.26) is proportional to the tree amplitude even before integration! This

holds in general; in latter parts of the paper, we will sandwich one-loop amplitudes

between projectors, in order to construct certain counterterms that are manifestly

proportional to the one-loop amplitude at the integrand level. gs 12.2: Maybe the

following sentence is better to complete this paragraph. The ”conclusion” doesn’t

address the projection directly. We have also found that the “form factor” approach

will make the derivation of infrared counterterms simpler at two loops and will adopt

gs 12.2: add this approach from now on. MZ: add how projectors prevent spurious

singularities at two loop.

In conclusion, we have shown that the following remainder of the one-loop am-

plitude leads to an infrared finite integration,

M
(1)
IR-finite = M

(1)
� TIRM

(1)
. (3.35)

Although this procedure provides an integral that is everywhere integrable, to provide

a numerically-computable expression, we must subtract UV divergences at the level

of the integrand. We now turn to this process.

3.2 Ward identity-preserving Ultraviolet counterterms

The IR-finite one-loop integrand, Eq. (3.35), remains singular in the UV-limit. In

order to remove the UV-singularities through a local subtraction, we need to find

an approximating function TUVM
(1)
IR-finite that matches the singular behavior of the

integrand in the UV-limit,

TUVM
(1)
IR-finite = TUV

�
M

(1)
� TIRM

(1)
�

= TUVM
(1)

� TUVTIRM
(1)

. (3.36)

At one loop in the process under study, UV-divergences occur only in fermion self-

energies and fermion-fermion-photon Green’s functions, denoted by �(1),⌫
ee� and ⇧(1)

e ,

respectively. Following our convention for the routing of the loop momenta, these

Green’s functions have the integrands

e�(1),⌫
ee� (p, q, l) ⌘

p

p + l

p + l + q

q

l =
�
�e

3
� �µ(/p+ /l + /q)�⌫(/p+ /l)�µ

(p+ q + l)2(p+ l)2l2
(3.37)
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One-loop self-energy/vertex graphs with ultraviolet divergences 
and

⇧(1)
e (p, l) ⌘ = �e

2
�
µ(/l + /p)�µ
l2(l + p)2

, (3.38)

where p is in general o↵-shell and q can be the momentum of a real or (starting at

two loops) virtual photon. The Ward-identity for these Green’s functions takes the

form

q⌫�
(1),⌫
ee� (p, q, l) = ⇧(1)

e (p, l) � ⇧(1)
e (p+ q, l) . (3.39)

For the vertex diagram, we choose the UV counterterm

e�(1,UV ),⌫
ee� (l) ⌘

(1) q

=
�
�e

3
� �

µ/l�
⌫/l�µ

(l2 � M2)3
, (3.40)

which picks out the only term of the numerator that results in a logarithmic UV

divergence, while regulating denominators with a common mass, M , which will play

the role of a renormalization scale. We stress that in this paper, a “counterterm” is

always defined at the integrand level, even though the graphical notation above draws

the counterterm as a local vertex. Our counterterms become QFT counterterms in

the conventional sense only after loop integration is carried out.

For the fermion self-energy, we must cancel both linear and logarithmic UV

divergences, where the latter are linear in the external momentum. Again regulating

denominators with a common mass, the resulting counterterm is

⇧(1,UV )
e (p, l) ⌘ (1)

p

=
�
�e

2
�
"

�
µ/l�µ

(l2 � M2)2
�

�
µ/l/p/l�µ

(l2 � M2)3

#

= �e
2 �

µ/l�µ

(l2 � M2)2
� p⌫�

(1,UV ),⌫
ee� (l) . (3.41)

In each case, the label (1) indicates that this is the first order renormalization local

counterterm. Notice that the above counterterms satisfy the Ward identity as well,

q⌫�
(1,UV ),⌫
ee� (l) = ⇧(1,UV )

e (p, l) � ⇧(1,UV )
e (p+ q, l), (3.42)

for any values of l which are not necessarily large. Therefore, the renormalized re-

mainders of the above Green’s functions will satisfy automatically the Ward-identity
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which picks out the only term of the numerator that results in a logarithmic UV

divergence, while regulating denominators with a common mass, M , which will play

the role of a renormalization scale. We stress that in this paper, a “counterterm” is

always defined at the integrand level, even though the graphical notation above draws

the counterterm as a local vertex. Our counterterms become QFT counterterms in

the conventional sense only after loop integration is carried out.
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divergences, where the latter are linear in the external momentum. Again regulating
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In each case, the label (1) indicates that this is the first order renormalization local

counterterm. Notice that the above counterterms satisfy the Ward identity as well,

q⌫�
(1,UV ),⌫
ee� (l) = ⇧(1,UV )

e (p, l) � ⇧(1,UV )
e (p+ q, l), (3.42)

for any values of l which are not necessarily large. Therefore, the renormalized re-

mainders of the above Green’s functions will satisfy automatically the Ward-identity

– 18 –

and

⇧(1)
e (p, l) ⌘ = �e

2
�
µ(/l + /p)�µ
l2(l + p)2

, (3.38)

where p is in general o↵-shell and q can be the momentum of a real or (starting at

two loops) virtual photon. The Ward-identity for these Green’s functions takes the

form

q⌫�
(1),⌫
ee� (p, q, l) = ⇧(1)

e (p, l) � ⇧(1)
e (p+ q, l) . (3.39)

For the vertex diagram, we choose the UV counterterm

e�(1,UV ),⌫
ee� (l) ⌘

(1) q

=
�
�e

3
� �

µ/l�
⌫/l�µ

(l2 � M2)3
, (3.40)
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always defined at the integrand level, even though the graphical notation above draws
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In each case, the label (1) indicates that this is the first order renormalization local

counterterm. Notice that the above counterterms satisfy the Ward identity as well,

q⌫�
(1,UV ),⌫
ee� (l) = ⇧(1,UV )

e (p, l) � ⇧(1,UV )
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for any values of l which are not necessarily large. Therefore, the renormalized re-

mainders of the above Green’s functions will satisfy automatically the Ward-identity
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as well. Though not essential for the one-loop case, this will turn out to be a partic-

ularly useful property at two loops for obtaining factorized counterterms of collinear
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terms included, to make sure that the UV counterterm for the bubble, Eq. (3.41) is

perfectly aliged with the UV counterterm for the vertex, Eq. (3.40) so that the Ward

identities are satisfied by the aforementioned counterterms.2

We are now able to write down the local UV-counterterms of the one-loop am-

plitude as
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Finally, we need to find a UV approximation of the infrared counterterm, TIRM
(1)

in Eq. (3.26). We choose

TUV TIRM
(1)

⌘ v̄(p2)

2

6666664

3

7777775
u(p1)

= v̄(p2)

"
�
�ie

2
� �µ/lP1

fM (0)(p1, p2, q1, . . . , qn)P1/l�µ

(l2 � M2)3

#
u(p1) . (3.45)

2A clean way to arrive at Eqs. (3.40) and (3.41) is to perform a series expansion of Eqs. (3.37)
and (3.38) in the limit of large l, and truncate both series at the order that corresponds to a
logarithmic divergence after loop integration, before adding a mass regulator to every propagator.
The uniform truncation of the series preserve the Ward identities that relates the vertex and the
bubble, and the final step of adding an IR mass regulator again preserves the Ward identities.
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Recall the Ward-Identity:

and

⇧(1)
e (p, l) ⌘ = �e

2
�
µ(/l + /p)�µ
l2(l + p)2

, (3.38)

where p is in general o↵-shell and q can be the momentum of a real or (starting at

two loops) virtual photon. The Ward-identity for these Green’s functions takes the

form

q⌫�
(1),⌫
ee� (p, q, l) = ⇧(1)

e (p, l) � ⇧(1)
e (p+ q, l) . (3.39)

For the vertex diagram, we choose the UV counterterm

e�(1,UV ),⌫
ee� (l) ⌘

(1) q

=
�
�e

3
� �

µ/l�
⌫/l�µ

(l2 � M2)3
, (3.40)

which picks out the only term of the numerator that results in a logarithmic UV

divergence, while regulating denominators with a common mass, M , which will play

the role of a renormalization scale. We stress that in this paper, a “counterterm” is

always defined at the integrand level, even though the graphical notation above draws

the counterterm as a local vertex. Our counterterms become QFT counterterms in

the conventional sense only after loop integration is carried out.

For the fermion self-energy, we must cancel both linear and logarithmic UV

divergences, where the latter are linear in the external momentum. Again regulating

denominators with a common mass, the resulting counterterm is

⇧(1,UV )
e (p, l) ⌘ (1)

p

=
�
�e

2
�
"

�
µ/l�µ

(l2 � M2)2
�

�
µ/l/p/l�µ

(l2 � M2)3

#

= �e
2 �

µ/l�µ

(l2 � M2)2
� p⌫�

(1,UV ),⌫
ee� (l) . (3.41)

In each case, the label (1) indicates that this is the first order renormalization local

counterterm. Notice that the above counterterms satisfy the Ward identity as well,

q⌫�
(1,UV ),⌫
ee� (l) = ⇧(1,UV )

e (p, l) � ⇧(1,UV )
e (p+ q, l), (3.42)

for any values of l which are not necessarily large. Therefore, the renormalized re-

mainders of the above Green’s functions will satisfy automatically the Ward-identity
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It is violated by the UV  
counterterms!
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Diagrams with mixed UV and IR singularities
two-loop amplitude factorize in terms of an one-loop amplitude with hard momentum

and a universal factor, which is the same for any number of photons in the final-state

and can be approximated with an one-loop form-factor functional. The factorization

can be easily derived by using Ward identities, analogous to the one-loop case. For

example, Fig. 16 illustrates the factorization of singularities in the single-collinear

limit k k p1 in the sum of a class of diagrams. We then have,
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2

lk +
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p2
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1

2
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p2
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p1

p2

1
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l
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Figure 16: Illustration of factorization of single-collinear singularities.
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i

= F
(1)

h
P1

fM(1)
IR-finiteP1

i
(5.28)

The P1 projectors play an important role in Eq. (5.28) in preventing the intro-

duction of spurious IR singularities. In Section 3, the collinear finiteness of fM(1)
IR-finite

relied on Ward identities Eqs. (3.21)-(3.22), which in turn relied on the Dirac equa-

tions /p1
u(p1) = v̄(p2)/p2 = 0 for the external spinors. However, fM(1)

IR-finite is sand-

wiched between a pair of projectors rather than Dirac spinors in Eq. (3.22), which
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Collinear Factorization for the Amplitude Collinear Factorization for the UV-subtracted 
Amplitude as well!
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Figure 18: Illustration of a Ward identity that has to be satisfied by the UV sub-

divergence counterterms for the bubble and vertex. Note that we are discussing the

counterterms at the integrand level, and the counterterms in the figure are not local

vertices but nonlocal functions of the loop momentum l which is suppressed in the

notation.

Eq. (5.29), provided that we subtract the aforementioned UV subdivergence coun-

terterms from both the original amplitude and the IR counterterms in Eq. (5.29).

5.3.2 Sub-divergence counterterms for type I/II wavefunction and vertex

diagrams

In the large l limit, the modified vertex expression Eq. (5.12) is logarithmically

divergent, so we can easily write down its UV sub-divergence counterterm by taking

the leading large-l limit of the expression,

Tl!1V
µ
sym = �

2i(1 � ✏)

(p1 + k)2(l2 � M2)2


p
µ
1 + k

µ
� (/p1 + /k)�µ

�
2lµ/l /k

l2 � M2

�
, (5.34)

where for brevity, we suppressed the symmetrization Eq. (5.3) that applies to all

diagrams.

Though the original type I bubble expression Eq. (5.13) is linearly divergent in

the limit of large l, the modified bubble expression Eq. (5.17) is only logarithmically
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