Infrared subtractions and numerical integration

with George Sterman
And
R. Haindl, G. Sterman, Z. Yang, M. Zeng in JHEP 04 (2021) 222
G. Sterman in JHEP 07 (2019) 056

Thanks to: Zeno Capatti, Dario Kermanschah, Valentin Hirschi, Andrea Pelloni, Ben Ruijl
Nikos Kalntis , Armin Schweizer

The challenge of QCD two-loop

 amplitudes for processes with many particles in the final state.- A dream that is tangible.
- Significant efforts and amazing new results.
- Challenge: "master" integrals with many scales in dimensional regularisation.
- Even more powerful methods are needed (Wjj, diboson+jet, WWZ, ttH, ...)
- Understand the singularity structure

Channel	$H^{(1)[0]}$	$H^{(1)[1]}$	$H^{(2)[0]}$	$H^{(2)[1]}$	$H^{(2)[2]}$
$\mathrm{gg} \rightarrow \mathrm{ggg}$	16.135254222	0.19163044752	464.47846208	-58.116292408	0.60077232705
$\bar{q} q \rightarrow \mathrm{ggg}$	9.5879406141	-3.0604943308	184.44415807	-61.765802987	6.3615768297
$\bar{q} \mathrm{~g} \rightarrow \bar{q} \mathrm{gg}$	26.908169290	-3.6373308269	867.25232363	-230.76277359	12.598811302
$\mathrm{gg} \rightarrow q \bar{q} \mathrm{~g}$	24.495592766	-2.5939909248	745.87682394	-166.84486839	6.1899943330
$\bar{q} q \rightarrow Q \bar{Q} \mathrm{~g}$	10.460907919	-4.2060557725	212.42454564	-80.136400792	8.2094005806
$\bar{q} Q \rightarrow Q \bar{q} \mathrm{~g}$	27.104747640	-4.0829938180	705.58902507	-209.42216177	12.483148067
$\bar{q} \bar{Q} \rightarrow \bar{q} \bar{Q} \mathrm{~g}$	42.313652168	-8.0064067852	1628.2933493	-562.78735847	44.198947852
$\bar{q} \mathrm{~g} \rightarrow \bar{q} Q \bar{Q}$	28.068256507	-6.3593609865	935.81439233	-324.32790785	29.070926975
$\bar{q} q \rightarrow q \bar{q} \mathrm{~g}$	20.846053179	-4.1292696285	520.14108472	-160.80597165	10.876062192
$\bar{q} \bar{q} \rightarrow \bar{q} \bar{q} g$	42.259655399	-7.9918854619	1624.7163564	-561.33769564	44.056509019
$\bar{q} \mathrm{~g} \rightarrow \bar{q} q \bar{q}$	28.497167934	-6.2611415380	947.84964732	-322.54996102	28.093290494

Table 2: Reference values for the evaluation of squared finite remainders at each power of N_{f}, as defined in eqs. (2.24) and (2.25) on the phase-space point given in eq. (B.1)

Abreu, Cordero, Ita, Page, Sotnikov

Singularities of scattering amplitudes

$$
\int_{-\infty}^{\infty} d E \ldots \frac{\cdots}{E^{2}-\omega^{2}+i \delta}=\int_{-\infty}^{\infty} d E \ldots \frac{\cdots}{\omega}\left(\frac{1}{E-\omega+i \delta}-\frac{1}{E+\omega-i \delta}\right)
$$

$$
\omega \rightarrow \omega-i \delta \text { with } \delta \rightarrow 0
$$

Singularities

$$
\int_{-\infty}^{\infty} d E \ldots \frac{\cdots}{E^{2}-\omega^{2}+i \delta}=\int_{-\infty}^{\infty} d E \ldots \frac{\cdots}{\omega}\left(\frac{1}{E-\omega+i \delta}-\frac{1}{E+\omega-i \delta}\right)
$$

$$
\omega \rightarrow \omega-i \delta \text { with } \delta \rightarrow 0
$$

Soft massless particles

$$
\int_{-\infty}^{\infty} d E \ldots \frac{\cdots}{(E+i \delta)(E-i \delta)}
$$

- Poles due to soft massless particles.
- These singularities pinch the integration path from both sides.
- Condition for a TRUE INFINITY

Collinear massless particles

- A second source of infinities due to massless collinear particles.

- A singularity of one particle in the lower half-plane lines up with the singularity of a collinear particle in the higher half-pane.
- The singularities pinch the integration path from both sides.
- We cannot deform the path, a condition for a TRUE INFINITY!

Pinch singularities

- To know if a singularity develops, we need to study the behaviour of the integral in the vicinity of the pinch surface.
- We can calculate a degree of divergence.
- Scale variables which are perpendicular to the pinched surface with a small parameter and calculate the scaling of the integrand as the parameter is driven to zero.

Soft $\quad k^{\mu} \sim \delta Q, \quad d^{4} k \sim \delta^{4}$

Libby, Sterman

Collinear $k=x p+\alpha \eta+\beta p_{\perp}, \quad x \sim \delta^{0}, \alpha \sim \delta, \beta \sim \delta^{\frac{1}{2}} \quad d^{4} k \sim \delta^{2}$

Integrand:

$$
d^{4} k \mathscr{F}(k) \sim \delta^{n}
$$

Divergent: $n \leq 0$

Convergent: $\quad n>0$

Removing singularities

- Once a pinch surface which yields a singularity is identified, then we can remove the singularity with a subtraction.

$$
A=\int[d k] \mathscr{F}(k)
$$

Removing singularities

- Once a pinch surface which yields a singularity is identified, then we can remove the singularity with a subtraction.

Removing singularities

- Once a pinch surface which yields a singularity is identified, then we can remove the singularity with a subtraction.

$$
\begin{aligned}
& A=\int[d k] \mathscr{F}(k) \\
= & \int[d k][\mathscr{F}(k)-t \mathscr{F}(k)] \rightarrow \ldots \text { hard } \\
+ & \int[d k] t \mathscr{F}(k) \rightarrow \ldots \text { soft or jet }
\end{aligned}
$$

Nested subtractions

- Singular regions are interconnected. How can we create systematically an approximation of the loop integrals in all singular regions?
- Order the singular regions by their "volume"

Ma; Erdogan, Sterman; Collins;
Collins, Soper, Sterman

Nested subtractions

- Singular regions are interconnected. How can we create systematically an approximation of the loop integrals in all singular regions?
- Order the singular regions by their "volume"
- Subtract an approximation of the integrand in the smallest volume

Ma; Erdogan, Sterman; Collins;
Collins, Soper, Sterman

Nested subtractions

- Singular regions are interconnected. How can we create systematically an approximation of the loop integrals in all singular regions?
- Order the singular regions by their "volume"
- Subtract an approximation of the integrand in the smallest volume
- Then, proceed to the next volume and repeat until there are no more singularities to remove.

Ma; Erdogan, Sterman; Collins;
Collins, Soper, Sterman

Nested subtractions

- The procedure of nested subtractions has a solution for the finite remainder at any loop order as a Forest formula (similarly to BPHZ of UV renormalzation)
- It is valid term by term in an amplitude or a Feynman diagram.
- This forest formula structure combined with gauge symmetry, gives rise to the factorization of gauge theory amplitudes in terms of Jets, Soft and Hard fucntions.

Ma; Erdogan, Sterman; Collins; Collins, Soper, Sterman

$$
R^{(n)} \gamma^{(n)}=\gamma^{(n)}+\sum_{N \in \mathcal{N}\left[\gamma^{(n)}\right]} \prod_{\rho \in N}\left(-t_{\rho}\right) \gamma^{(n)}
$$

A concept that can bring further progress INFRARED FACTORIZATION

- UV Renormalized scattering amplitudes for wellseparated final-states take a simple factorized form

$$
\text { Amplitude }=\text { hard } \cdot \text { soft } \cdot \prod_{i} \text { jet }_{i}
$$

- "soft" and "jet" functions contain all divergences.
- These are universal functions. For any new process we should need to compute only the "hard" function.
- So far, we do not have a way to compute the "hard" function directly

Ma; Erdogan, Sterman; Schwartz; Collins

How would we like to use factorization?

From factorisation we could identify, remove and integrate separately the singular parts of amplitudes order by order in perturbation theory:
$\mathscr{H}^{(0)}=\mathscr{A}^{(0)}\left|\mathscr{X}^{(1)}=\mathscr{A}^{(1)}-\mathscr{J}^{(1)} \mathscr{H}^{(0)}-\mathcal{S}^{(1)} \mathscr{H}^{(0)}\right| \mathscr{H}^{(2)}=\mathscr{A}^{(2)}-\mathscr{g}^{(1)} \mathscr{H}^{(1)}-\delta^{(1)} \mathscr{H}^{(1)}-\mathscr{J}^{(2)} \mathscr{H}^{(0)}-\delta^{(2)} \mathscr{H}^{(0)}+\mathscr{J}^{(1)} \delta^{(1)} \mathscr{H}^{(0)}$
This procedure is universal...can be applied to any process, irrespectively of the complexity of its final state.

How would we like to use factorization?

$$
\text { Amplitude }=\int[d k] \mathscr{A}(k)=\left(\int \mathcal{S} \cdot \int \prod_{i} \mathscr{J}_{i}\right) \cdot \int[d k] \mathscr{A}(k) \cdot \mathcal{S}^{-1}(k) \cdot \prod_{i} \mathscr{J}_{i}^{-1}(k)
$$

This approach is not unique in its design...

$$
\text { Amplitude }=\int[d k] \overline{\mathscr{A}(k)}=\left(\int \overline{\mathcal{S}} \cdot \int \prod_{i} \overline{\mathscr{J}}_{i}\right) \cdot \int[d k] \overline{\mathscr{A}(k)} \cdot \overline{\mathcal{S}}^{-1}(k) \cdot \prod_{i} \overline{\mathscr{J}}_{i}^{-1}(k)
$$

Use Amplitudes of simpler processes in lieu of soft and jet functions

$$
\text { Amplitude }=\int[d k] \overline{\mathscr{A}(k)}=\left(\int \prod \mathscr{A}_{\mathrm{IR} \text {-approx. }}\right) \cdot \int[d k] \overline{\mathscr{A}(k)} \cdot \prod_{\mathscr{A}_{I R-\text { approx. }}^{-1}}(k)
$$

How would we like to use factorization?

Goal:

$$
\left(\int \Pi_{\alpha_{\mathrm{k}-\mathrm{max}}}\right)
$$

$$
\int[d k] \overline{\mathscr{A}(k)} \cdot \prod \mathscr{A}_{I R-a p p r o x}^{-1}(k)
$$

The analytic integration over the infrared approximation of the amplitude should be feasible

The integration of the hard amplitude remainder should be possible in exactly $\mathrm{D}=4$, numerically.

The integrand must be free of infrared and ultraviolet divergences locally.

Factorization and subtraction of soft singularities

Factorization and subtraction of soft singularities

Finite

Finite

Factorization and subtraction of soft singularities

Drawbacks: - Introduces novel ultraviolet singularities that need to be taken care with further subtractions

- Changes the denominator structure (linearised propagators), which need to be taken into account in treating integrable singularities.
- Subtracting strict soft and collinear limits leads to a proliferation of subtraction terms at two-loops

A Form factor subtraction

amplitude. More generally, the hard
function of a previous loop order.
$\mathscr{F}^{(1)}[$ Tree $]=\bar{\nu}\left(p_{2}\right)\left(-i g_{s} \gamma^{\mu} t^{a}\right) \frac{i}{k-p_{2}} \cdot \operatorname{Tree} \cdot \frac{i}{k-p_{1}}\left(-i g_{s} \gamma_{\mu^{\prime}} t^{a}\right) u\left(p_{1}\right) \frac{(-i)}{k^{2}}$

Generalised form factor at two-loops

$$
\mathscr{F}^{(2)}[\text { Tree }]=
$$

Composite vertex, the tree amplitude. More generally, the hard function of a previous loop order.

A main result of this work

$q+\bar{q} \rightarrow$ any set of heavy colourless particles

$$
\mathscr{H}_{1-\text { loop }}(k)=\mathscr{A}_{1-\text { loop }}-\mathscr{F}^{(1)}\left[\mathscr{A}_{0}\right]
$$

$$
\mathscr{H}_{2-l o o p}(k, l)=\mathscr{A}_{2-l o o p}-\mathscr{F}^{(2)}\left[\mathscr{A}_{0}\right]-\mathscr{F}^{(1)}\left[\mathscr{H}_{1-l o o p}\right]
$$

Free of ALL soft and collinear singularities LOCALLY!

$$
\int \mathscr{H}_{2-l o o p}^{(R)}(k, l)
$$ Integrable in $\mathrm{D}=4$ dimensions with numerical methods.

A main result of this work

$q+\bar{q} \rightarrow$ any set of heavy colourless particles

$\mathscr{H}_{2-\text { loop }}(k, l)=\mathscr{A}_{2-\text { loop }}-\mathscr{F}^{(2)}\left[\mathscr{A}_{0}\right]-\mathscr{F}^{(1)}\left[\mathscr{H}_{1-l o o p}\right]$
Due to factorisation, collinear singularities also get subtracted by the form-factor subtractions. But this is not a straightforward"out-of-the-box" result.

We must first write a suitable representation of the two-loop amplitude and form-factor integrands which render factorisation manifest locally.

Collinear singularities

Collinear singularities \rightarrow longitudinally polarised gluons

Fate of longitudinal gluons

$$
\sim \frac{1}{\not p}-\frac{1}{p p+\not k}
$$

$$
\sim \frac{1}{p^{2}}\left[-\eta^{\mu \nu}+\frac{(p+k)^{\mu}(p+k)^{\nu}}{(p+k)^{2}}\right]-\frac{1}{(p+k)^{2}}\left[-\eta^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{p^{2}}\right]
$$

Gauge symmetry: Ward identities at play, lead to cancellations and factorisation

Cancellation of collinear singularities at one-loop

Cancellation of collinear singularities at two-loops

- Ward identities leave remnants which cancel with shifts of momenta
- Collinear gluons emerging from one-loop triangle subgraphs are not purely longitudinal. Their polarisation can be random (loop polarisation).
- Self-eergy corrections lead to power rather than logarithmic singularities.

Loop momenta symmetrisation

Loop Momentum routing which is necessary for factorising the $k \| p_{2}$ singularity

Incompatible for factorising the $k \| p_{1}$ singularity

SOLUTION: We symmetrise the two-loop amplitude in the momenta of the virtual gluons

$$
\overline{\mathscr{A}^{(2)}}(k, l)=\frac{1}{2} \mathscr{A}^{(2)}(k, l)+\frac{1}{2} \mathscr{A}^{(2)}(l, k)
$$

Non-local cancellations requiring loop momenta shifts

Localising shift cancellations with non-abelian planar copies

Add a suitably engineered "zero" to the amplitude

$$
\begin{aligned}
& \mathscr{A}^{(2)} \rightarrow \mathscr{A}^{(2)}+f(k, l) \\
& \text { with } \int d^{d} k d^{d} l f(k, l)
\end{aligned}
$$

Localising shift cancellations with non-abelian planar copies

Eliminating local power singularities

Vacuum polarization diagrams contain a "doubled" propagator. This leads to power singularities:

$$
\frac{d^{4} k}{\left(k^{2}\right)^{2}\left(k+p_{1}\right)^{2}} \xrightarrow{k=x p_{1}+\delta \beta \eta+\sqrt{\delta} k_{\perp}} \frac{1}{\delta}
$$

We can replace vacuum polarisation integrands with equivalent (tensor reduced) integrands.

$$
\operatorname{mim}_{k}\left(\text { (1) } \operatorname{rim}_{k} \sim \frac{g_{s}^{2} B_{0}}{l^{2}(l+k)^{2}} \cdot \operatorname{mim}_{k}\right.
$$

IR singlularity structure becomes identical to the one of the one-loop amplitude.

Eliminating local power singularities

Self-energy corrections on quark lines adjacent to external legs exhibit power singularities too. We treat it in the same way replacing the integrand with an equivalent term (tensor reduction).

IR singlularity structure simplifies in the limit $k \| p_{1}$. But becomes more intricate in another limit, $k \| p_{2}$

Have we spoiled factorisation in another way?

Factorization in this limit is not local. We have been already in trouble, even before changing the integrand of self-energies.

Self-energy correction to
external leg. Vanishes upon
integration. But the integrand
is singular.

Have we spoiled factorisation in another way?

Factorization in this limit is not local. We have been already in trouble, even before changing the integrand of self-energies.

Have we spoiled factorisation in another way?

The diagrams with one-loop vertex corrections have their own problems too. We can solve all problems simultaneously if we modify the vertices too and impose a reflection symmetry on loop momenta transverse to the incoming momenta.

$$
l_{\perp} \leftrightarrow-l_{\perp}
$$

Collinear singularities from gluons emitted off one-loop vertices

Collinear singularities \rightarrow longitudinally and "loop" polarised gluons

$$
\ldots u(p) \frac{2(1-x)}{x} \frac{k^{\mu}}{k^{2}(k+p)^{2}}
$$

$$
k^{2}(k+p)^{2} l^{2}(l+p)^{2}(k+l+p)^{2}
$$

Eliminating Loop polarisations

$$
2(1-\epsilon) \frac{p_{2}}{2 p_{1} \cdot p_{2}} \frac{1}{(l-k)^{2}}\left[\frac{2 l^{\mu}-k^{\mu}}{l^{2}}-\frac{2 l^{\mu}-k^{\mu}+p_{1}^{\mu}}{\left(l+p_{1}\right)^{2}}\right]
$$

A main result of this work

$q+\bar{q} \rightarrow$ any set of heavy colourless particles

$$
\mathscr{H}_{1-\text { loop }}(k)=\mathscr{A}_{1-\text { loop }}-\mathscr{F}^{(1)}\left[\mathscr{A}_{0}\right]
$$

$$
\mathscr{H}_{2-l o o p}(k, l)=\mathscr{A}_{2-l o o p}-\mathscr{F}^{(2)}\left[\mathscr{A}_{0}\right]-\mathscr{F}^{(1)}\left[\mathscr{H}_{1-l o o p}\right]
$$

Free of ALL soft and collinear singularities LOCALLY!

$$
\int \mathscr{H}_{2-l o o p}^{(R)}(k, l)
$$ Integrable in $\mathrm{D}=4$ dimensions with numerical methods.

Check

$q+\bar{q} \rightarrow W^{+} W^{-}$

- Generation of amplitudes with QGRAF
- Automated application of Feynman rules
- Automated cloning of planar diagrams, proper routing of momenta and introduction of counterterms for loop polarisations.
- Automated numerical evaluation of amplitude with exact arithmetics at all infrared singular limits.

Ultraviolet Counterterms

- Ultraviolet divergences can be subtracted locally with a usual BPHZtype of procedure.
- Constructing approximations of the integrand has a simple step, which is power counting
- And a conceptual complication beyond one-loop... mixed UV and IR singularities... we want to subtract UV singularities without spoiling IR factorization.

$$
\mathscr{M}_{1}=\mathscr{M}_{1-\text { finite }}+T_{l \rightarrow \infty} \mathscr{M}_{1}
$$

$$
\begin{aligned}
& \mathscr{M}_{2}=\mathscr{M}_{2-\text { finite }}+T_{k \rightarrow \infty} \mathscr{M}_{2}+T_{l \rightarrow \infty} \mathscr{M}_{2} \\
& +T_{k, l \rightarrow \infty} \mathscr{M}_{2}-T_{k, l \rightarrow \infty}\left(T_{k \rightarrow \infty} \mathscr{M}_{2}+T_{l \rightarrow \infty} \mathscr{M}_{2}\right)
\end{aligned}
$$

Numerical integration

- Can such subtractions be used for evaluating loop amplitudes numerically?
- They are an important ingredient! They remove "pinch" singularities.
- Other singularities which can be avoided with appropriate contourdeformations are equally important.

Numerical integration

- A breakthrough in numerical integration has been achieved recently
- First integrate over the energy component of all loop momenta using Cauchy's theorem [Loop-Tree duality]
- This reduces the number of integrations.

Catani,Gleisberg,Krauss,Rodrigo, Winter; Bierenbaum, Catani, Draggiotis, Rodrigo; Capatti,Hirschi, Kermanschah, Ruijl; Aguilera-Verdugo, Driencourt-Mangin, Plenter, Ramırez-Uribe, Rodrigo, Sborlini, Torres Bobadilla, Tracz; Runkel, Szőr, Vesga, Weinzierl;..

$$
\begin{aligned}
& \int d^{4} k \rightarrow \int \frac{d^{3} \vec{k}}{|\vec{k}|}=\int d^{4} k \delta\left(k^{2}\right) \Theta\left(k^{0}\right) \\
& \text { Capatti, Hirschi, Kermanschah, Ruijl }
\end{aligned}
$$

Numerical integration

- A breakthrough in numerical integration has been achieved recently
- First integrate over the energy component of all loop momenta using Cauchy [Loop-Tree duality]
- This reduces the number of integrations.
- Then devise an algorithm to move the contour of remaining integrations away from non-pinched singularities.

Capatti, Hirschi, Kermanschah, Pelloni, Ruijl

Integrated Hard Functions for
$q \bar{q} \rightarrow W W Z$: the β_{0}-terms

Dario Kermanschah, Zeno Capatti interfacing/adapting the framework of "Local Unitarity"

Capatti, Hirschi, Kermanschah, Pelloni, Ruijl

Local subtractions may be complementary to other approaches

- Analytic integration
- Feynman parameter integration (removing the need for sector decomposition)
- Helping to set $\mathrm{D}=4$ exactly in reductions to master integrals
- Extracting logarithms (small fermion masses)

Example: two-loop cross-box

two-loop single single
limits soft collinear
$F_{X b o x}=F_{X b o x}^{(2)}+F_{X b o x}^{(1 s)}+F_{X b o x}^{(1 c)}$,
double
-soft
double
-collinear
$F_{\text {Xbox }}^{(2)}=\frac{N_{5}}{A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7}}$,
$F_{\text {Xbox }}^{(1 c)}=-\left[\frac{1}{A_{1} A_{2}}-\frac{1}{B_{1} B_{2}}\right] \frac{1}{s\left(1-x_{1}\right)}\left\{\left[\frac{N_{5}}{A_{4} A_{5} A_{6} A_{7}}\right]_{k_{1}=-x_{1} p_{1}}-\left[\frac{N_{5}}{A_{4} A_{5} A_{6} A_{7}}\right]_{k_{2}=0}\right\}$
$\left.-\left[\frac{1}{A_{2} A_{3}}-\frac{1}{B_{2} B_{3}}\right] \frac{1}{s\left(1-x_{3}\right)}\left\{\left[\frac{N_{5}}{A_{4} A_{5} A_{6} A_{7}}\right]_{k_{3}=-x_{2} p_{2}}-\left[\frac{N_{5}}{A_{4} A_{5} A_{6} A_{7}}\right]_{k_{2}=0}^{(1 s)}\right\}^{1} \quad F_{X b o x}^{(1}\right]=-\frac{1}{A_{1} A_{2} A_{3}}\left[\frac{N_{5}}{A_{4} A_{5} A_{6} A_{7}}\right] k_{k_{2}=0}$
$\left[\frac{1}{A_{4} A_{5}}-\frac{1}{B_{4} B_{5}}\right]\left[\frac{N_{5}}{A_{1} A_{2} A_{3} A_{6} A_{7}}\right]_{k_{5}=-x_{3} p_{3}}$
$\left[\frac{1}{A_{6} A_{7}}-\frac{1}{B_{6} B_{7}}\right]\left[\frac{N_{5}}{A_{1} A_{2} A_{3} A_{4} A_{5}}\right]_{k_{5}=-x_{4} p_{4}}$

Example: two-loop cross-box

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{box}}{ }^{\text {fin }} \equiv \int \frac{d^{d} k_{2}}{i \pi^{\frac{d}{2}}} \frac{d^{d} k_{5}}{i \pi^{\frac{d}{2}}} F_{X b o x}=\mathcal{O}\left(\epsilon^{0}\right) . \quad s^{3} \mathrm{X}_{\mathrm{box}}^{\text {fin }}=\frac{f_{\mathrm{X} \text { ox }}(y)}{y}+\frac{f_{\mathrm{Xox}}(1-y)}{1-y}, \\
& f_{\mathrm{X}_{\mathrm{box}}}(y)=\left[G_{R}(y)+i \pi G_{I}(y)\right] \log \left(\frac{\mu^{2}}{s}\right)+E_{R}(y)+i \pi E_{I}(y)
\end{aligned}
$$

$E_{R}(y)=-8 \pi^{2} \operatorname{Li}_{2}(y)+8 \operatorname{Li}_{2}(y) \log (1-y)^{2}-28 \log (y) \operatorname{Li}_{2}(y) \log (1-y)-18 \operatorname{Li}_{2}(y) \log (y)^{2}$
$+44 \mathrm{Li}_{3}(y) \log (1-y)+96 \mathrm{Li}_{3}(y) \log (y)-188 \mathrm{Li}_{4}(y)+\frac{17}{36} \pi^{4}+\frac{1}{12} \log (1-y)^{4}$ $+7 \log (y) \log (1-y) \pi^{2}-\frac{25}{6} \pi^{2} \log (1-y)^{2}-\frac{3}{2} \log (y)^{2} \pi^{2}+\log (y) \log (1-y)^{3}$ $+44 S_{12}(y) \log (1-y)-52 S_{12}(y) \log (y)+84 S_{13}(y)+88 S_{22}(y)-44 \zeta_{3} \log (1-y)$ $-4 \log (y) \zeta_{3}-\frac{1}{4} \log (y)^{4}+\log (y)^{3} \log (1-y)-\frac{9}{2} \log (y)^{2} \log (1-y)^{2}$,

Feynman parameterisation

$$
\text { Box }=\int \frac{\mathrm{d} k^{D}}{i \pi^{D / 2}} \frac{1}{A_{1} A_{2} A_{3} A_{4}}
$$

$$
\operatorname{Box}_{R}=\int \frac{\mathrm{d} k^{D}}{i \pi^{D / 2}} \frac{1-\frac{A_{24}}{t}-\frac{A_{13}}{s}}{A_{1} A_{2} A_{3} A_{4}} .=-2 \frac{s+t}{s t} \int_{[0,1]^{4}} \mathrm{~d} x_{0} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \frac{\delta\left(1-x_{0123}\right)}{s x_{1} x_{3}+t x_{2} x_{0}+i \delta} .
$$

λ	$\Re(I)$	$\chi^{2}(\mathrm{df})$	$\Im(I)$	$\chi^{2}(\mathrm{df})$
1	5.5104 ± 0.0019	$3.2(43)$	0.0001 ± 0.0005	$3.7(43)$
10	5.5104 ± 0.0019	$2.5(43)$	-0.001 ± 0.006	$3.6(43)$

M. Vicini

Feynman parameterisation $\mathrm{N}=4$ 5-point one-loop amplitude

$$
\left.\mathcal{M}_{5}^{(1-\text { loop })}\right|_{\text {IR-finite }}=\int \frac{\mathrm{d} k^{D}}{i \pi^{D / 2}} \frac{\mathcal{N}(k)}{A_{1} A_{2} A_{3} A_{4} A_{5}}
$$

$$
\mathcal{N}(k)=-\left[\left(k+p_{1234}\right)^{2} b_{5}+\left(k+p_{123}\right)^{2} b_{4}+\left(k+p_{123}\right)^{2}\left(k+p_{1234}\right)^{2} a_{5}\right.
$$

$$
+(k)^{2}\left(k+p_{1234}\right)^{2} a_{1}+\left(k+p_{12}\right)^{2}\left(k+p_{123}\right)^{2} a_{4}+\left(k+p_{12}\right)^{2} b_{3}+
$$

$$
\left.\left(k+p_{1}\right)^{2} b_{2}+(k)^{2}\left(k+p_{1}\right)^{2} a_{2}+\left(k+p_{1}\right)^{2}\left(k+p_{12}\right)^{2} a_{3}+(k)^{2} b_{1}\right]+o
$$

$$
b_{1}:=s_{23} s_{34}\left(\frac{s_{23} s_{34}+s_{12}\left(-s_{23}+s_{51}\right)+s_{45}\left(-s_{34}+s_{51}\right)}{R}-\frac{1}{2}\right)
$$

λ	$\Re(I)$	$\chi^{2}(\mathrm{df})$	$\Im(I)$	$\chi^{2}(\mathrm{df})$
0.5	2.693 ± 0.002	$0.4(43)$	-3.141 ± 0.002	$0.9(43)$
1.0	2.6931 ± 0.0011	$0.4(43)$	-3.1414 ± 0.0009	$1.1(43)$
14	2.69 ± 0.03	$0.01(43)$	-3.14 ± 0.04	$0.09(43)$
20	2.69 ± 0.08	$0.02(43)$	-3.14 ± 0.11	$0.06(43)$

M. Vicini

Small mass expansions

$$
\begin{gathered}
I\left[f_{m}\right]=\int d k_{i} f\left(k_{i}, m\right) \\
I\left[f_{m}\right]=\int f_{\text {approx }}\left(k_{i}, m\right)+\int\left[f\left(k_{i}, m\right)-f_{\text {approx }}\left(k_{i}, m\right)\right] \\
I\left[f_{m}\right]=\int f_{\text {approx }}\left(k_{i}, m\right)+\int\left[f\left(k_{i}, m\right)-f_{\text {approx }}\left(k_{i}, m\right)\right]_{m \rightarrow 0}+\mathcal{O}(m)
\end{gathered}
$$

Small mass expansions

CA, G. Sterman

Conclusions

- We have witnessed rapid progress in perturbative QCD, matching the precision of the LHC experiments. So far!
- Can we keep up? A need to keep reinventing our field and understanding perturbation theory at deeper levels.
- Infrared factorization has been crucial historically. This property can be exploited further.
- Achieved a form for a class of two-loop amplitude integrands in which factorisation furnishes local subtractions for the removal of infrared singularities, also consistently with a BPHZ subtraction of UV singularities.
- Next challenge: Extend to colourful final states.
- And numerical integration in $\mathrm{D}=4$ exactly. A lot of progress achieved already in the framework of Loop-Tree-Duality.

An one-loop example

"Ghost-terms" in triple gluon vertex get annihilated for physical (on-shell) external states.

ghost terms $\sim \ldots \bar{v}\left(p_{2}\right)\left(p_{1}+\not p_{2}\right) u\left(p_{1}\right)+\ldots \bar{v}\left(p_{2}\right)\left[p_{1}+(1-x) \not p_{2}\right] u\left(p_{1}\right)$

An one-loop example

$$
q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \rightarrow Q\left(p_{3}\right)+\bar{Q}\left(p_{4}\right)
$$

Finite

Soft and Collinear

An one-loop example

Soft singularities

Soft approximation

Soft approximation is a "form-factor" one-loop amplitude for the scattering of two partons off a composite external current which corresponds to the tree amplitude
$\boxtimes \equiv$

An one-loop example:

removing the soft singularities

$$
\begin{aligned}
& \mathscr{A}_{1}(k)-\mathcal{S}_{1}(k)={ }_{2} \\
& \text { (2) } \\
& + \\
& \text { Hex } \\
& +x^{2} \\
& \text { + }
\end{aligned}
$$

An one-loop example

Soft singularities

Soft approximation

Soft approximation is a "form-factor" one-loop amplitude for the scattering of two partons off a composite external current which corresponds to the tree amplitude

Ultraviolet Counterterms

- Ultraviolet divergences can be subtracted locally with a usual BPHZtype of procedure.
- Constructing approximations of the integrand has a simple step, which is power counting
- And a conceptual complication beyond one-loop... mixed UV and IR singularities... we want to subtract UV singularities without spoiling IR factorization.

$$
\mathscr{M}_{1}=\mathscr{M}_{1-\text { finite }}+T_{l \rightarrow \infty} \mathscr{M}_{1}
$$

$$
\begin{aligned}
& \mathscr{M}_{2}=\mathscr{M}_{2-\text { finite }}+T_{k \rightarrow \infty} \mathscr{M}_{2}+T_{l \rightarrow \infty} \mathscr{M}_{2} \\
& +T_{k, l \rightarrow \infty} \mathscr{M}_{2}-T_{k, l \rightarrow \infty}\left(T_{k \rightarrow \infty} \mathscr{M}_{2}+T_{l \rightarrow \infty} \mathscr{M}_{2}\right)
\end{aligned}
$$

One-loop self-energy/vertex graphs with ultraviolet divergences

UV vertex counteterm

$$
\Pi_{e}^{(1, U V)}(p, l) \equiv \dot{\phi}^{\phi^{p}}=-e^{2} \frac{\gamma^{\mu}(l+p p) \gamma_{\mu}}{\left[(l+p / 2)^{2}\right]^{2}} . \quad \begin{aligned}
& \text { Nagy, } \\
& \text { Soper }
\end{aligned}
$$

A possible UV self-energy counteterm

One-loop self-energy/vertex graphs with ultraviolet divergences

Recall the Ward-Identity:

$$
q_{\nu} \Gamma_{e e \gamma}^{(1), \nu}(p, q, l)=\Pi_{e}^{(1)}(p, l)-\Pi_{e}^{(1)}(p+q, l) .
$$

It is violated by the UV counterterms!

$$
q_{\nu} \Gamma_{e e \gamma}^{(1, U V), \nu}(l) \neq \Pi_{e}^{(1, U V)}(p, l)-\Pi_{e}^{(1, U V)}(p+q, l)
$$

One-loop self-energy/vertex graphs with ultraviolet divergences

$$
\begin{gathered}
\Pi_{e}^{(1)}(p, l) \equiv l \uparrow\{\begin{array}{l}
p+l=-e^{2} \frac{\gamma^{\mu}(l+\not p) \gamma_{\mu}}{l^{2}(l+p)^{2}} \\
\Pi_{e}^{(1, U V)}(p, l) \equiv
\end{array} \underbrace{p}_{(1)}=\left(-e^{2}\right)\left[\frac{\gamma^{\mu} / \gamma_{\mu}}{\left(l^{2}-M^{2}\right)^{2}}-\frac{\gamma^{\mu} / \not p l \gamma_{\mu}}{\left(l^{2}-M^{2}\right)^{3}}\right] \\
=-e^{2} \frac{\gamma^{\mu} / \gamma_{\mu}}{\left(l^{2}-M^{2}\right)^{2}}-p_{\nu} \Gamma_{e e \gamma}^{(1, U V), \nu}(l) .
\end{gathered}
$$

Respects the Ward-Identity: $q_{\nu} \Gamma_{e e \gamma}^{(1, U V), \nu}(l)=\Pi_{e}^{(1, U V)}(p, l)-\Pi_{e}^{(1, U V)}(p+q, l)$:

Diagrams with mixed UV and IR singularities

Collinear Factorization for the Amplitude

Collinear Factorization for the UV-subtracted Amplitude as well!

