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The challenge of QCD two-loop T o e
amplltUdeS fOr processes Wlth gg — ggg  16.135254222  0.19163044752 464.47846208 —58.116292408 0.60077232705
many part|C|eS |n the flnal State_ Gq — gee  9.5879406141 —3.0604943308 184.44415807 —61.765802987  6.3615768297

qg — qgg  26.908169290 —3.6373308269 867.25232363 —230.76277359  12.598811302
gg — qqg  24.495592766 —2.5939909248 745.87682394 —166.84486839  6.1899943330

Gq — QQg 10.460907919 —4.2060557725 212.42454564 —80.136400792  8.2094005806

¢ A dream that IS tanglble- qQ) — Qqg 27.104747640 —4.0829938180 705.58902507 —209.42216177  12.483148067

gQ — qQg 42.313652168 —8.0064067852 1628.2933493 —562.78735847  44.198947852

ge — qQQ 28.068256507 —6.3593609865 935.81439233 —324.32790785  29.070926975

e Significant efforts and amazing

Gq — qge  20.846053179 —4.1292696285 520.14108472 —160.80597165  10.876062192
New resu ItS . 47 — Gge  42.259655399 —7.9918854619 1624.7163564 —561.33769564  44.056509019
ge — Gqg  28.497167934 —6.2611415380 947.84964732 —322.54996102  28.093290494

® C hal |enge: “ maSter” integ raIS Table 2: Reference values for the evaluation of squared finite remainders at each power of
. . Ny, as defined in eqs. (2.24) and (2.25) on the phase-space point given in eq. (B.1).
with many scales Iin
dimensional regularisation.

e Even more powerful methods
are needed (Wjj, diboson-jet,
WWSZ, ttH, ... )

e Understand the singularity
structure




Singularities of scattering
amplitudes
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e The poles can lie inside the
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Singularities

e The poles can lie inside the

domain of integration. o

e |f we can deform the path of — Rek
integration away from the
poles, then they lead to no
singularities

w—=>w—Ii0WItho— 0



Soft massless particles

JOO dE...+
e (E + 10) (E — i0)

e Poles due to soft massless
narticles. t ImE

* [hese singularities pinch the
integration path from both
sides.

ReFE

e Condition for a TRUE INFINITY




Collinear massless particles

(1=x)-p
A second source of infinities due 14 /ﬁ
x o

to massless collinear particles. p
A singularity of one particle in t imE
the lower half-plane lines up with
the singularity of a collinear particle 1
particle in the higher half-pane. ..
3 ........... :
The singularities pinchthe 77 0 e ?' ReE

integration path from both sides.

We cannot deform the path, a
condition for a TRUE INFINITY!




Pinch singularities

e To know if a singularity develops, we need
to study the behaviour of the integral in
the vicinity of the pinch surface.

e \We can calculate a degree of divergence.
e Scale variables which are perpendicular to
the pinched surface with a small

parameter and calculate the scaling of the

integrand as the parameter is driven to
ZEero.

Soft  kH ~ 50, d*k ~ 6*

Libby,
Sterman

Integrand: d4kj(k) Y 5”

Divergent: n<0

Convergent: n>0

T—-6-T, 6~0



Removing singularities

e Once a pinch surface which
yields a singularity is identified,
then we can remove the
singularity with a subtraction.

A = J |dk|F (k)



Removing singularities

e Once a pinch surface which
yields a singularity is identified,
then we can remove the
singularity with a subtraction.

A = J[dk] F (k)

no singularity

N [[dk] F (k) — tF (k)|

approximation

integrand of integrand on
singular surface



Removing singularities

e Once a pinch surface which
yields a singularity is identified,
then we can remove the
singularity with a subtraction.

A = J[dk] F (k) //
no singuiarity

_ J[dk] F) ~ 1F 0] —m e

_|_J[dk] tp}(k) —p ...SOft Or jet



Nested subtractions

Ma; Erdogan, Sterman; Collins;

* Singular regions are Collins, Soper, Sterman
Interconnected. How can we

create systematically an
approximation of the loop
integrals in all singular regions??

* Order the singular regions by
their “volume”
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integrand in the smallest volume




Nested subtractions

Ma; Erdogan, Sterman; Collins;

Singular regions are Collins, Soper, Sterman
Interconnected. How can we

create systematically an
approximation of the loop
integrals in all singular regions??

Order the singular regions by
their “volume”

Subtract an approximation of the
integrand in the smallest volume

Then, proceed to the next
volume and repeat until there are
no more singularities to remove.




Nested subtractions

Ma; Erdogan, Sterman; Collins;
* The procedure of nested Collins, Soper, Sterman
subtractions has a solution for
the finite remainder at any loop
order as a Forest formula
(similarly to BPHZ of UV
renormalzation)

e |tis valid term by term in an
amplitude or a Feynman diagram.

* This forest formula structure
combined with gauge symmetry,
gives rise to the factorization of
gauge theory amplitudes in terms
of Jets, Soft and Hard fucntions.




A concept that can bring further progress
INFRARED FACTORIZATION

e UV Renormalized scattering amplitudes for well-
separated final-states take a simple factorized form

Amplitude = hard - soft - H jet. .

<
Ng

An
all-orders

- “soft” and “jet” functions contain all divergences. theorem

* These are universal functions. For any new process §<§ ‘D
we should need to compute only the “hard” function.

e So far, we do not have a way to compute the “hard”

function directly Ma,; Erdogan, Sterman; Schwartz;
Collins



How would we like to use
factorization?

Amplitude = Z e-Master;= E dirPelylogsinomentay-= Numbers
] k

)
<~= [[dk] (k) = Js - JHJ} - J[dk] A (k) - S~ (k) - H(f#(k)

Analytic Integration Numerical integrand
Universal process-dependent  of hard function
Integration

From factorisation we could identify, remove and integrate separately the singular parts of amplitudes order by order in
perturbation theory:

HO =0 | gD = g _ gigpO® _ ggp® | 9p) = ) _ ghgph) _ ghgp(l) _ g@gp0) _ s@g0) 4 7(h o) gpO)

This procedure is universal...can be applied to any process, irrespectively of the complexity of its final state.



How would we like to use
factorization?

Amplitude = [[dk] ol (k) = (J [H j) J[dk (k) - S7(k) - H 771k

This approach is not unique in its design...

Ampliade = | 46705 - ( E [H;) [CECESCN 1 Ealt

Use Amplitudes of simpler processes in lieu of soft and jet functions

Amplitude = [[dk A(k) = (JH%R appmx> J (dk| A (k) - Hﬂm_appm (k)



How would we like to use
factorization?

Goal: ﬂ The analytic integration over the infrared
IR—approx. approximation of the amplitude should be feasible

The integration of the hard amplitude

I I — remainder should be possible in exactly D=4,
Goal: J [dk] 527(]{) . Q{ l (k) numerically.

[IR—approx.

The integrand must be free of infrared and
ultraviolet divergences locally.



Factorization and subtraction
of soft singularities
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Factorization and subtraction
of soft singularities
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Factorization and subtraction
of soft singularities

>SN q A wt
P(
X N
o R .
E . = Finite

. e W =
_ ’PL et —_ A~ W
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Drawbacks: - Introduces novel ultraviolet singularities that need

to be taken care with further subtractions
- Changes the denominator structure (linearised propagators),

which need to be taken into account in treating integrable singularities.
- Subtracting strict soft and collinear limits leads to a proliferation of
subtraction terms at two-loops



A Form factor subtraction

k ? o +
1 > S | e W XA Ww
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Composite vertex, the tree
amplitude. More generally, the hard
function of a previous loop order.




FO [Tree| =

Generalised form factor at

two-loops

+

0 X X X LA L
28,
2z
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Composite vertex, the tree

R N amplitude. More generally, the hard

function of a previous loop order.



A main result of this work

g + g — any set of heavy colourless particles

%l—loop(k) — ‘Qil—loop I ‘O}(l) [‘Q[O]

%2—100]9(]{9 [) = ‘QYZ—ZOOp - F [‘Qi()] - FW [%1—100]9]

Free of ALL soft and collinear singularities LOCALLY!

2—loop numerical methods.

J %(R) ( k’ l) Integrable in D=4 dimensions with



A main result of this work

g + g — any set of heavy colourless particles

%Z—ZOOP(k9 l) — ‘Q[2—100p il ‘6}(2) [‘Q[O] I 9(1) [%1—laap]

Due to factorisation, collinear singularities also
get subtracted by the form-factor subtractions.
But this is not a straightforward “out-of-the-box“ result.

We must first write a suitable representation of the two-loop
amplitude and form-factor integrands which render factorisation
manifest locally.



Collinear singularities

Collinear singularities — longitudinally polarised gluons

k-n
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Fate of longitudinal gluons
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Gauge symmetry: Ward identities at play, lead to cancellations
and factorisation
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Cancellation of collinear
singularities at two-loops

- Ward identities leave remnants which cancel with shifts of momenta

- Collinear gluons emerging from one-loop triangle subgraphs are not
purely longitudinal. Their polarisation can be random (loop polarisation).

- Self-eergy corrections lead to power rather than logarithmic singularities.



Loop momenta symmetrisation

Loop Momentum routing which is necessary for factorising the k || p, singularity
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amplitude in the momenta of the virtual gluons 9) 9)




Non-local cancellations

requiring loop momenta shifts
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Localising shift cancellations
with non-abelian planar copies

Add a suitably engineered “zero” to the amplitude

AP = AP + fk, 1)

with Jddkddl ik, D)



and f(k,[]) =

Localising shift cancellations

with non-abelian planar copies

¥ ik 0
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Eliminating local power
singularities

Vacuum polarization diagrams contain
—\ € ) o
W a “doubled” propagator. This leads to
& power singularities:
© _ " k=xp, +5 pn+1/6k,
W —_—

(k2) (k+ pr)?
We can replace vacuum polarisation integrands with equivalent (tensor reduced)

integrands. o
\4 @ ” =y %3 Bo ——OYYSY VYY)
£° (g4x)? :

[R singlularity structure becomes identical to the one of the one-loop amplitude.




Eliminating local power
singularities

¢ Self-energy corrections on quark lines adjacent
I{ e W to external legs exhibit power singularities too.
We treat it in the same way replacing the integrand
el with an equivalent term (tensor reduction).

W {Wz 5
?‘L > S e > . LC%B CQ‘

Tk {9\ U{*? X K\(b

[R singlularity structure simplifies in the limit k || p;. But becomes more intricate

in another limit, k || p,



Have we spoiled
factorisation in another way?

Factorization in this limit is not local. We have been already in trouble, even
before changing the integrand of self-energies.

Self-energy correction to
external leg. Vanishes upon
integration. But the integrand

me* is singular.
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Have we spoiled
factorisation in another way?

Factorization in this limit is not local. We have been already in trouble, even
before changing the integrand of self-energies.
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Have we spoiled
factorisation in another way?

The diagrams with one-loop vertex corrections have their own problems too.
We can solve all problems simultaneously if we modify the vertices too and

impose a reflection symmetry on loop momenta transverse to the incoming
momenta.
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Collinear singularities from gluons
emitted off one-loop vertices

Collinear singularities — longitudinally and “loop” polarised gluons
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Eliminating Loop
polarisations
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A main result of this work

g + g — any set of heavy colourless particles

%l—loop(k) — ‘Qil—loop I ‘O}(l) [‘Q[O]

%2—100]9(]{9 [) = ‘QYZ—ZOOp - F [‘Qi()] - FW [%1—100]9]

Free of ALL soft and collinear singularities LOCALLY!

2—loop numerical methods.

J %(R) ( k’ l) Integrable in D=4 dimensions with



Check
g+qg— WW~

"Simplify spin-lines exposing the epsilonic part. Needs modification for fermion-log

"Allign QCD and QED vertices"

"Number of terms", 117

"We now choose kinematic values - momenta, polarizations - as in the paj

"One loop"
"Double soft"

Generation of amplitudes with QGRAF "Sof Colincar PI

"Soft Collinear P2"
"Triple Collinear P2"
"Collinear pairs P2-P1"

Automated application of Feynman rules Triple Collnear P

"Collinear pairs P1-P2"
"Single Soft"

Automated cloning of planar diagrams, ‘Single Collinar P1
. . . "Single Collinear P2"

proper routing of momenta and introduction of o

counterterms for loop polarisations. ;

0

Automated numerical evaluation of amplitude
with exact arithmetics at all infrared singular limits.




Ultraviolet Counterterms

» Ultraviolet divergences can be My = M\ _inire + 11 o |
subtracted locally with a usual BPHZ-
type of procedure. My = Moy_gie + Tiosooly + Ty oMl

» Constructing approximations of the + T3 1oy — Th oo (Tk—mo My+ T, %2)

integrand has a simple step, which is
power counting

* And a conceptual complication
beyond one-loop... mixed UV and IR
singularities... we want to subtract UV
singularities without spoiling IR
factorization.




Numerical integration

e Can such subtractions be used for
evaluating loop amplitudes
numerically?

e They are an important ingredient!
They remove “pinch” singularities. T

_ . . ReE
e QOther singularities which can be

avolded with appropriate contour-
deformations are equally important.




Numerical integration

e A breakthrough in numerical integration

has been achieved recently T E
e First integrate over the energy particle 1 Cauchy
component of all loop momenta using Ny
Cauchy’s theorem [Loop-Tree duality] o -‘
H ; ® ReE
* This reduces the number of integrations. e

Catani,Gleisberg,Krauss,Rodrigo, Winter; Bierenbaum, Catani, Draggiotis, Rodrigo;
Capatti,Hirschi, Kermanschah, Ruijl; Aguilera-Verdugo, Driencourt-Mangin,
Plenter, Ramirez-Uribe, Rodrigo, Sborlini,Torres Bobadilla, Tracz; Runkel, Sz6r,

Vesga, Weinzierl;...

3—>

Jd“k — [ d_,k = Jd4k5(k2)®(k0)
| k|

Capatti, Hirschi, Kermanschah, Ruijl



Numerical integration

* A breakthrough in numerical integration
has been achieved recently

* First integrate over the energy
component of all loop momenta using
Cauchy [Loop-Tree duality]

* This reduces the number of integrations.

* Then devise an algorithm to move the
contour of remaining integrations away
from non-pinched singularities.

Capatti, Hirschi, Kermanschah, Pelloni, Ruijl
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A radial field centered In
the inside of all ellipsoids!




Integrated Hard Functions for
qq — WWZ: the ﬁo—terms

One loop interference with Born (PS2) _ Two loop nf interference with Born (PS2)

Dario Kermanschah, Zeno Capatti
interfacing/adapting the framework of “Local Unitarity”

Capatti, Hirschi, Kermanschah, Pelloni, Ruijl



Local subtractions may be
complementary to other approaches

e Analytic integration

e Feynman parameter integration (removing the need for
sector decomposition)

e Helping to set D=4 exactly in reductions to master integrals

e Extracting logarithms (small fermion masses)



Example: two-loop
Cross-box

two-loop single single
limits soft collinear
2 1ls lc
FXbOfC — )((b)oa:—l_F)((bo):c—l_F)(( )

box’

N
F) >

bor Ay Ay Ay Ay As Ag Ay

F<1C)=[11] 1 [J\@,] [ N5]
Xbox A1A2 BlB2 (1—371) A4A5A6A7 k1=—z1p1 A4A5A6A7 ko=0

_[ 11 ] 1 {[ N; ] _[ N ] }

AsAs ByBs| s(1 — x3) AgAsA6Ar | _ AAsAgA7 |, _

243 B 31 13 1 i\ﬁﬁ 7 ks=—2ps AT k=0 A1A2A3
B [A4A5 B B4B5] [A1A2A3A6A7]k5m3p3

on A A
AgA7r  BegBr| | A1 Ay A3 Ay As k5:—$4p4.

|

double
-soft

N

Ay As AgAr

double
-collinear

:| k2:0




Example: two-loop
Cross-box

d%ky dk
Xboxﬁn — / d2 d5 FXboaj — O(GO).

12 T2

2

Fxo ) = [Grly) +inG1(y)] log (“_

S

Er(y) = —8m* Lis(y) + 8 Lis(y) log(1 — y)* — 28 log(y) Liz(y) log(1 — y) — 18 Liz(y) log(y)’

17 1
+44 Liz(y) log(1 —y) + 96 Liz(y) log(y) — 188 Lia(y) + o T+ 15 1o8(1 - y)*
25 3

+7 log(y) log(1 —y) m* — — 7" log(1 — y)* — 5 log(y)* 7" + log(y) log(1 — y)°

+44 S12(y) log(1 — y) — 52 S12(y) log(y) + 84 S13(y) + 88 Saa(y) — 44 (3 log(1 — y)

1 9

—4 log(y) G5 — 7 log(y)" +log(y)” log(1 — y) — 7 log(y)* log(1 — ),




Feynman parameterisation

/ dkP 1
Box = : _—,
Z7'(D/2 A1A2A3A4

D 1_ Au _ A S+t o(1 — x
s — [ 0TI gy S0 0m)
itD/2 A1ArA3A4 st 0,1]4 SX1X3 + txo2Xxg + 10

R0 S0

| 1 | 5.5104 + 0.0019 | 3.2 (43) | 0.0001 £ 0.0005 | 3.7 (43)

10 | 5.5104 + 0.0019 | 2.5(43) | -0.001 & 0.006 | 3.6 (43)

M. Vicini




Feynman parameterisation
N=4 5-point one-loop amplitude

M(l—loop)‘ o / dxP N(k)
5 IR-finite i7TD/2 A1A2A3A4A5

N (k) = —[(k + p1234)?bs + (k + p123)*by + (k + p123)* (k + p1234)?as
+ (k)2 (k + p1o3a)?ar + (k + p12)? (k + p1o3)?ag + (k + p12)°bs+
(k+ p1)?b2 + (k)*(k + p1)*az + (k+ p1)*(k + p12)®az + (k)*b1] + 0

b $23534 + S12(—S23 +S51) + S45(—S34 +S51) 1
e S

R0 U

05 | 2.693 +0.002 | 0.4 (43) | -3.141 £ 0.002 | 0.9 (43)
1.0 | 2.6931 4 0.0011 | 0.4 (43) | -3.1414 + 0.0009 | 1.1 (43)
14 | 269+ 0.03 | 0.01(43) | -3.144+0.04 | 0.09 (43)
20 | 269 +0.08 |0.02(43)| -3.14+0.11 | 0.06 (43)

M. Vicini




Small mass expansions

1fnl = [ dbi f(0icm)

I1f,] = / Frommoe (ki) + / s ) — Faspron ks, 1)

I\ fm| = /fapprOX(kiv m) + / S (Kiym) — fapprox(Ki, m)]m_m + O(m)




Py

/ddk1 dk, 1
iﬂ'% iﬂ'g B1BsBs B4 As
K3

/dd/ﬁdd/@l N S [ 1 ]
ime ire | AvA2AsAsAs BBy [A3AuAs |, .,

1 1 1 1
_|_ _— | —
B3 B, [A1A2A5L4$4p4 BBy B; By [AJ ka=x4p4,

k1=—x2p2

K

U Dpox|a, (1) = 2Lig(v1) 4 2Li4(vs) — 2Lig(vs) — 2Lig(vy)
—2Liz(vy) L, (m3) — 2Lig(v3) L, (m3) + 2Liz(vs) L, (s) + 2Liz(ve) L, (1)

+Lig(v1)Li(m%) + Lig(vg)Li(mg) — LiQ(US)LZ(S) — Lig(vt)LZ(t)
1 1 1 )

5 In(1 = v Ly(md) + 5 In(1 = vs) Ly (m3) — 5 (1 = ve) L

—%mu —u) L3 ().

CA, G. Sterman

mass expansions



Conclusions

We have witnessed rapid progress in perturbative QCD, matching the precision of
the LHC experiments. So far!

Can we keep up? A need to keep reinventing our field and understanding
perturbation theory at deeper levels.

Infrared factorization has been crucial historically. This property can be exploited
further.

Achieved a form for a class of two-loop amplitude integrands in which
factorisation furnishes local subtractions for the removal of infrared singularities,
also consistently with a BPHZ subtraction of UV singularities.

Next challenge: Extend to colourful final states.

And numerical integration in D=4 exactly. A lot of progress achieved already in the
framework of Loop-Tree-Duality.



An one-loop example

“Ghost-terms” in triple gluon vertex get annihilated for physical (on-shell)
external states.

2"k X S
k=xp, i
- S
P

ghost terms ~ ...5(p)(f, +fou(p) + .5 [+ (1 =) fo] u(p)




An one-loop example

q(py) + G(py) = O(p3) + O(py)

1 e
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An one-loop example

Soft singularities

off-shell
propagator

P‘ ?l"'P‘L'k P\ ?
%""j\i‘?‘f )P“ —- Ny W Lf
g | " And | ‘
| |
A > s Ao R | P
off-shell 3
propagator
Soft approximation
>P‘ - > ?Lt \P‘ ?Lt
, ' —
~ny | o
| | |
> ‘ P, k P lz,
P, ﬁ 3

Soft approximation is a “form-factor” one-loop amplitude for the scattering of two partons off a composite external
current which corresponds to the tree amplitude
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An one-loop example:
removing the soft singularities

52[1(]{) I CSDl(k) = W + > ( % .

P
P\ ?‘1‘ P\ R -
K i
T é“‘“ + }é > ¥
?3 P2 P3




An one-loop example

Soft singularities

off-shell
propagator

P\ ?l"'P‘L'k P\

Y
%""j\i‘?‘f )P“ —- Ny W Lf
> | " And | ‘
| |
A > s Ao R | P
off-shell 3
propagator
Soft approximation
;‘ — ?Lt \P‘ ?Lt
, ' —
~ny | —
' __>__L\/>_,VL\<_ IZI
S \ P, k P
P, ﬁ s

Soft approximation is a “form-factor” one-loop amplitude for the scattering of two partons off a composite external
current which corresponds to the tree amplitude
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Ultraviolet Counterterms

» Ultraviolet divergences can be My = M\ _inire + 11 o |
subtracted locally with a usual BPHZ-
type of procedure. My = Moy_gie + Tiosooly + Ty oMl

» Constructing approximations of the + T3 1oy — Th oo (Tk—mo My+ T, %2)

integrand has a simple step, which is
power counting

* And a conceptual complication
beyond one-loop... mixed UV and IR
singularities... we want to subtract UV
singularities without spoiling IR
factorization.




One-loop self-energy/vertex graphs with ultraviolet divergences

o 1P
p+1
(1), _ I o PV D o, g = b1 U+ P
T D= s e =) e SCURTE O & 2+ p)?
p+l+gqg
logarithmic LOCALLY powq—like |
UV-singularity UV-singularity
A - N
T = o = () PO gy B 2P N
o I (l+p/2)7] Soper

UV vertex counteterm A possible UV self-energy counteterm



One-loop self-energy/vertex graphs with ultraviolet divergences

VD

,1/( Z) _ 'p+l B ( ) (p+l+% (Zﬁ+l)7u H(l)(pvl)ElT vp—l—l:_QQVM(l__
ee P, 4, — lr 'WV\:q:V o (p_|_q_|_ Z)Q(p )le € ZQ(Z — )
p+l+q

H(l Uv) (p l)

I
X
||

|
QN

e
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Recall the Ward-Identity: ¢, T'{1)" (p,q,1) = Hgl)(p, [) — Hgl)(p +q,1) .

eery

tis violated by the UV ¢, TtV (1) £ TIEHY) (p, 1) — TIEMYY) (p + g, 1),

counterterms!
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One-loop self-energy/vertex graphs with ultraviolet divergences

CUR O A

1,UV _ g 2 - 3 7 Ml l H _
Hg’ )(p, l) — gé(l) — (_6) (ZQV_ZJ\ZQ)Q (; _%\]2)3

Iy ’
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Respects the Ward-Identity: qvpéi’yUV)’V(l) = He(zl’UV) (P, 1) — HS’UV) (p+q,1)



Diagrams with mixed UV and IR singularities
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Collinear Factorization for the Amplitude Collinear Factorization for the UV-subtracted

Amplitude as well!



