Elliptic integrals

Stefan Weinzierl

Institut für Physik, Universität Mainz
June 15, 2022

Introduction

- The simplest Feynman integrals evaluate to multiple polylogarithms
- all one-loop integrals
- many of the higher loop integrals we have calculated
- The next-to-simplest Feynman integrals involve an elliptic curve (content of this talk).
- There are even more complicated Feynman integrals (several elliptic curves, Calabi-Yau's, not covered here).

Fantastic Beasts and Where to Find Them

We do not have to go very far to encounter elliptic integrals in precision calculations: The simplest example is the two-loop electorn self-energy in QED:
There are three Feynman diagrams contributing to the two-loop electron self-energy in QED with a single fermion:

All master integrals are (sub-) topologies of the kite graph:

One sub-topology is the sunrise graph with three equal non-zero masses:

(Sabry, '62)

Fantastic Beasts and Where to Find Them

Where is the elliptic curve?

For the sunrise it's very simple: The second graph polynomial defines an elliptic curve in Feynman parameter space:

$$
-p^{2} x_{1} x_{2} x_{3}+\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right) m^{2}=0
$$

Fantastic Beasts and Where to Find Them

Indications for elliptic Feynman integrals:

- Maximal cut with a square root of a cubic or quartic polynomial
- Irreducible second-order differential operator
- Direct integration: An integration step with a square root of a cubic or quartic polynomial
- A differential equation in dlog form, with algebraic arguments, where not all square roots can be rationalised

Comments for the experts

- Maximal cut:
- The elliptic curve from the maximal cut for the sunrise integral is not isomorphic to the one from Feynman parameters. They are isogenic, meaning one lattice is a sub-lattice of the other.
- Irreducible second-order differential operator:
- Not every irreducibly second-order differential operator is the Picard-Fuchs operator of an elliptic curve. The ones which are are tabulated.
(Movasati and Reiter, '09)
- Direct integration/dlog form:
- This does not necessarily imply that the result cannot be expressed in polylogs.

$$
\begin{array}{ll}
\text { Drell-Yan not rationalisable: } & \text { Besier, Festi, Harrison, Naskrecki, '19; } \\
\text { Drell-Yan in polylogs: } & \text { Heller, von Manteuffel, Schabinger, '19; } \\
\text { dlog not polylogarithmic: } & \text { Brown, Duhr, '20 }
\end{array}
$$

Which approach?

- Physics is about numbers.
- Best strategy depends on the number of kinematic variables the process depends on.
- For a physical observable we usually only need a few digits for the highest term in perturbation theory.
- For amplitudes we may need quadruple precision in singular limits (soft/collinear).
- For master integrals / special functions we may want $O(100)-O(1000)$ digits to use PSLQ.

Options

From many scales / automated to fewer scales / fast evaluations:

- Purely numerical: Sector decomposition, numerical integration in loop momentum space.
- Semi-numerical: Unitarity methods, numerical integration of a differential equation
- Semi-analytical: Expansion in a small parameter
- Analytical: Reduction to standarised special functions

This talk: Reduction to standarised special functions, which we can evaluate fast to $O(100)-O(1000)$ digits.

Section 1

Algebraic curves of genus zero and one

Algebraic curves

- Ground field \mathbb{C}
- Algebraic curve in $\mathbb{C P}^{2}$ defined by a homogeneous polynomial $P(x, y, z)$:

$$
P(x, y, z)=0
$$

We usually work in the chart $z=1$.

- If the curve is smooth and d the degree of P the genus of the curve is given by

$$
g=\frac{1}{2}(d-1)(d-2)
$$

Elliptic curves

Definition (Elliptic curve over \mathbb{C})

An algebraic curve in $\mathbb{C P}^{2}$ of genus one with one marked point.

Example (Weierstrass normal form)

In the chart $z=1$:

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

Example (Quartic form)

In the chart $z=1$:

$$
y^{2}=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)
$$

Three shades of an elliptic curve

Complex algebraic curve $y^{2}=4 x^{3}-g_{2} x-g_{3}$

Real Riemann surface of genus one with one marked point

Complex plane modulo lattice: \mathbb{C} / Λ

Periods of an elliptic curve

Example

The Legendre form:

$$
y^{2}=x(x-1)(x-\lambda)
$$

The periods are

$$
\psi_{1}=2 \int_{0}^{\lambda} \frac{d x}{y}=4 K(\sqrt{\lambda}) \quad \psi_{2}=2 \int_{1}^{\lambda} \frac{d x}{y}=4 i K(\sqrt{1-\lambda})
$$

$K(x)$: complete elliptic integral of the first kind

Notation

Convention: Normalise $\left(\psi_{2}, \psi_{1}\right) \rightarrow(\tau, 1)$, where

$$
\tau=\frac{\psi_{2}}{\psi_{1}}
$$

and require $\operatorname{Im}(\tau)>0$.

Definition (The complex upper half-plane)

$$
\mathbb{H}=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau)>0\}
$$

Definition (The nome squared)

$$
\bar{q}=e^{2 \pi i \tau}
$$

For $\tau \in \mathbb{H}$ we have $|\bar{q}|<1$.

Section 2

Moduli spaces

Moduli spaces

$\mathcal{M}_{g, n}$: Space of isomorphism classes of smooth (complex, algebraic) curves of genus g with n marked points.
complex curve

Coordinates

Genus 0: $\quad \operatorname{dim} \mathcal{M}_{0, n}=n-3$.
Sphere has a unique shape
Use Möbius transformation to fix $z_{n-2}=1, z_{n-1}=\infty, z_{n}=0$
Coordinates are $\left(z_{1}, \ldots, z_{n-3}\right)$
Genus 1: $\quad \operatorname{dim} \mathcal{M}_{1, n}=n$.
One coordinate describes the shape of the torus
Use translation to fix $z_{n}=0$
Coordinates are $\left(\tau, \mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathbf{n}-1}\right)$

Section 3

Iterated integrals

Iterated integrals

For $\omega_{1}, \ldots, \omega_{k}$ differential 1-forms on a manifold M and $\gamma:[0,1] \rightarrow M$ a path, write for the pull-back of ω_{j} to the interval $[0,1]$

$$
f_{j}(\lambda) d \lambda=\gamma^{*} \omega_{j}
$$

The iterated integral is defined by

$$
I_{\gamma}\left(\omega_{1}, \ldots, \omega_{k} ; \lambda\right)=\int_{0}^{\lambda} d \lambda_{1} f_{1}\left(\lambda_{1}\right) \int_{0}^{\lambda_{1}} d \lambda_{2} f_{2}\left(\lambda_{2}\right) \ldots \int_{0}^{\lambda_{k-1}} d \lambda_{k} f_{k}\left(\lambda_{k}\right)
$$

Chen ' 77

Translation to physics

- Manifold M : kinematic space, coordinates are the kinematic variables.
- $\gamma(0)$: Boundary point
- $\gamma(1)$: Point, where we would like to evaluate the integral.

Standard special functions

- Defined by giving the ω 's.
- Alternatively, we may specify primitives of the differential one-forms:

$$
\omega=d \Omega .
$$

Ω is related to the symbol.

- May do this for genus zero and genus one.

Iterated integrals on $\mathcal{M}_{0, n}$

We are interested in differential one-forms, which have only simple poles:

$$
\omega^{\mathrm{mpl}}\left(z_{j}\right)=\frac{d y}{y-z_{j}}
$$

Multiple polylogarithms:

$$
G\left(z_{1}, \ldots, z_{k} ; y\right)=\int_{0}^{y} \frac{d y_{1}}{y_{1}-z_{1}} \int_{0}^{y_{1}} \frac{d y_{2}}{y_{2}-z_{2}} \ldots \int_{0}^{y_{k-1}} \frac{d y_{k}}{y_{k}-z_{k}}, \quad z_{k} \neq 0
$$

Iterated integrals on $\mathcal{M}_{1, n}$

- Coordinates are $\left(\tau, z_{1}, \ldots, z_{n-1}\right)$
- Decompose an arbitrary path along $d \tau$ and $d z_{j}$
- Two classes of iterated integrals:
(1) Integration along z
(2) Integration along τ
- What are the differential one-forms we want to integrate?

Differential one-forms on $\mathcal{M}_{1, n}$

(1) From modular forms $\left(f_{k}(\tau)\right.$ modular form):

$$
\omega_{k}^{\text {modular }}=2 \pi i f_{k}(\tau) d \tau
$$

(2) From the Kronecker function:

$$
\omega_{k}^{\text {Kronecker }}=(2 \pi i)^{2-k}\left[g^{(k-1)}(z, \tau) d z+(k-1) g^{(k)}(z, \tau) \frac{d \tau}{2 \pi i}\right]
$$

Modular forms

A meromorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is a modular form of modular weight k for $\mathrm{SL}_{2}(\mathbb{Z})$ if
(1) f transforms under modular transformations as

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} \cdot f(\tau) \quad \text { for } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

(2) f is holomorphic on \mathbb{H},
(3) f is holomorphic at $i \infty$.

Modular forms for congruence subgroups: Require transformation properties only for subgroup 「 (plus holomorphicity on \mathbb{H} and at the cusps).

The Kronecker function

Define the first Jacobi theta function $\theta_{1}(z, \bar{q})$ by

$$
\theta_{1}(z, \bar{q})=-i \sum_{n=-\infty}^{\infty}(-1)^{n} \bar{q}^{\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}} e^{i \pi(2 n+1) z}
$$

The Kronecker function $F(z, \alpha, \tau)$:

$$
F(z, \alpha, \tau)=\theta_{1}^{\prime}(0, \bar{q}) \frac{\theta_{1}(z+\alpha, \bar{q})}{\theta_{1}(z, \bar{q}) \theta_{1}(\alpha, \bar{q})}=\frac{1}{\alpha} \sum_{k=0}^{\infty} g^{(k)}(z, \tau) \alpha^{k}
$$

We are interested in the coefficients $g^{(k)}(z, \tau)$ of the Kronecker function.

The coefficients $g^{(k)}(z, \tau)$ of the Kronecker function

\bar{q}-expansion:

$$
\begin{aligned}
& g^{(0)}(z, \tau)=1 \\
& g^{(1)}(z, \tau)=-2 \pi i\left[\frac{1+\bar{w}}{2(1-\bar{w})}+\overline{\mathrm{E}}_{0,0}(\bar{w} ; 1 ; \bar{q})\right] \\
& g^{(k)}(z, \tau)=-\frac{(2 \pi i)^{k}}{(k-1)!}\left[-\frac{B_{k}}{k}+\overline{\mathrm{E}}_{0,1-k}(\bar{w} ; 1 ; \bar{q})\right], \quad k>1,
\end{aligned}
$$

where $\bar{w}=\exp (2 \pi i z), B_{k}$ denotes the k-th Bernoulli number and

$$
\begin{aligned}
\overline{\mathrm{E}}_{n ; m}(\bar{w} ; \bar{v} ; \bar{q}) & =\operatorname{ELi}_{n ; m}(\bar{w} ; \bar{v} ; \bar{q})-(-1)^{n+m} \operatorname{ELi}_{n ; m}\left(\bar{w}^{-1} ; \bar{v}^{-1} ; \bar{q}\right) \\
\operatorname{ELi}_{n ; m}(\bar{w} ; \bar{v} ; \bar{q}) & =\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{\bar{w}^{j}}{j^{n}} \frac{\bar{v}^{k}}{k^{m}} \bar{q}^{j k}
\end{aligned}
$$

Iterated integrals on $\mathcal{M}_{1, n}$: Integration along z

Differential one-forms:

$$
\omega_{k}^{\text {Kronecker }, z}\left(z_{j}, \tau\right)=(2 \pi i)^{2-k} g^{(k-1)}\left(z-z_{j}, \tau\right) d z
$$

Elliptic multiple polylogarithms:

$\widetilde{\Gamma}\left(\begin{array}{lll}n_{1} & \ldots & n_{r} \\ z_{1} & \ldots & z_{r}\end{array} ; z ; \tau\right)=(2 \pi i)^{n_{1}+\cdots+n_{r}-r} I\left(\omega_{n_{1}+1}^{\text {Kronecker }, z}\left(z_{1}, \tau\right), \ldots, \omega_{n_{r}+1}^{\text {Kronecker }, z}\left(z_{r}, \tau\right) ; z\right)$
Broedel, Duhr, Dulat, Tancredi, '17

- $\tau=\mathrm{const}$
- meromorphic version, only simple poles
- not double periodic!

Comments on elliptic multiple polylogarithms

- There exist non-equivalent definitions of elliptic multiple polylogarithms.
- Desirable properties are
- double periodic
- meromorphic
- only simple poles
- It is not possible to have all three properties.
- double periodic + meromorphic

Levin, Racinet, '07

- double periodic + only simple poles

Brown, Levin, '11

- meromorphic + only simple poles Broedel, Duhr, Dulat, Tancredi, '17

More variants of elliptic polylogarithms

Some authors consider iterated integrals of the form

$$
\int_{0}^{y_{0}} d y f(y) G\left(z_{1}, \ldots, z_{k-1} ; y\right)
$$

where only the outermost integration is non-polylogarithmic, for example

$$
f(y)=\frac{1}{\sqrt{\left(y-z_{1}\right)\left(y-z_{2}\right)\left(y-z_{3}\right)\left(y-z_{4}\right)}}
$$

Can be reduced to $\widetilde{\Gamma}\left(\begin{array}{lll}n_{1} & \ldots \\ z_{1} & \ldots & n_{r} \\ z_{r}\end{array} ; z ; \tau\right)$.
Remiddi, Tancredi, '17;
Bourjaily, McLeod, Spradlin, von Hippel, Wilhelm, '17;
Hidding, Moriello, '17;

Iterated integrals on $\mathcal{M}_{1, n}$: Integration along τ

Differential one-forms:

$$
\begin{aligned}
\omega_{k}^{\text {Kronecker }, \tau}\left(z_{j}\right) & =\frac{(k-1)}{(2 \pi i)^{k-2}} g^{(k)}\left(z_{j}, \tau\right) \frac{d \tau}{2 \pi i} \\
& =\frac{(k-1)}{(2 \pi i)^{k}} g^{(k)}\left(z_{j}, \tau\right) \frac{d \bar{q}}{\bar{q}}
\end{aligned}
$$

- Integrate in \bar{q}
- No poles in $0<|\bar{q}|<1$.
- Possibly a simple pole at $\bar{q}=0$ ("trailing zero")

Comments on integration on $\mathscr{M}_{1, n}$

- It is advantageous to integrate in τ :
- Analytic expressions shorter
- Easier to evaluate numerically
- Boundary condition at $\tau=i \infty$:
- Elliptic curve degenerates, geometric genus equals zero
- Feynman integrals expressible in terms of multiple polylogarithms

Section 4

Modular transformations

Modular transformations

Let's assume we choose as periods $\left(\psi_{2}, \psi_{1}\right)$, while somebody else made the choice $\left(\psi_{2}^{\prime}, \psi_{1}^{\prime}\right)$.

The two choices are related by a (2×2)-matrix γ :

$$
\binom{\psi_{2}^{\prime}}{\psi_{1}^{\prime}}=\gamma\binom{\psi_{2}}{\psi_{1}}
$$

This is called a modular transformation.
Transformation should be invertible: $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$

Modular transformations

By a modular transformation we may map τ to the fundamental domain, resulting in

$$
|\bar{q}| \leq e^{-\pi \sqrt{3}} \approx 0.0043
$$

resulting in a fast converging series.

Modular transformations

Let us now consider the transformation on $\mathcal{M}_{1, n}$

$$
\tau^{\prime}=\gamma(\tau), \quad z_{j}^{\prime}=\frac{z_{j}}{c \tau+d}, \quad \text { with } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \text {. }
$$

Modular transformations

Let f be a modular form of modular weight k for a congruence subgroup of level N and consider the coordinate transformation

$$
\tau=\gamma^{-1}\left(\tau^{\prime}\right)=\frac{a \tau^{\prime}+b}{c \tau^{\prime}+d}, \quad \gamma^{-1} \in \Gamma
$$

We have

$$
\begin{aligned}
I(f ; \tau) & =2 \pi i \int_{i \infty}^{\tau} f(\tilde{\tau}) d \tilde{\tau} \\
& =2 \pi i \int_{\gamma(i \infty)}^{\gamma(\tau)}\left(c \tilde{\tau}^{\prime}+d\right)^{k-2} \underbrace{\left(\left.f\right|_{k} \gamma^{-1}\right)\left(\tilde{\tau}^{\prime}\right)}_{\in \mathcal{M}_{k}\left(\Gamma_{N}\right)} d \tilde{\tau}^{\prime}
\end{aligned}
$$

For $k \neq 2$ we pick up a power of the automorphic factor $\left(c \tilde{\tau}^{\prime}+d\right)$ and leave the space of iterated integrals of modular forms!

Transformations of multiple polylogarithms

In the case of multiple polylogarithms

$$
G\left(z_{1}, \ldots, z_{k} ; y\right)
$$

the transformations

$$
y^{\prime}=1-y, \quad y^{\prime}=\frac{1}{y}, \quad y^{\prime}=\frac{1}{1-y}, \quad y^{\prime}=\frac{1-y}{1+y}
$$

don't leave the space of multiple polylogarithms.

Modular transformations

Let $J=\left(J_{1}, J_{2}, \ldots\right)$ denote a basis of master integrals of uniform weight. The definition of J may depend on the choice of the periods.

Solution:

In order not to leave the space of iterated integrals on $\mathcal{M}_{1, n}$ a base transformation

$$
\tau^{\prime}=\gamma(\tau), \quad z_{j}^{\prime}=\frac{z_{j}}{c \tau+d}
$$

needs to be accompanied by a fibre transformation

$$
J^{\prime}=U J
$$

S.W., '20

Modular transformations

Drawback:

As a modular transformation is always accompanied by a fibre transformation, there is no black-box numerical evaluation algorithm just for iterated integrals of $\omega^{\text {modular }}$ and $\omega^{\text {Kronecker }}$.

Feynman integrals are linear combinations of iterated integrals of $\omega^{\text {modular }}$ and $\omega^{\text {Kronecker }}$.
Feynman integrals transform nicely, individual iterated integrals not.

Section 5

Numerics

GiNaC

GiNaC was initiated in 1999 by Ch. Bauer, A. Frink and R. Kreckel at the University of Mainz.

Despite it's name, it is a computer algebra system. Allows symbolic calculations in C++.

Shipped with major linux distributions (Ubuntu, Debian, Fedora, ...).

Available at http://www.ginac.de.
GiNaC contains a sub-package to evaluate multiple polylogarithms and elliptic multiple polylogarithms with arbitrary precision.
J. Vollinga, S.W., (2004); M. Walden, S.W., (2020)

Example

```
ginsh - GiNaC Interactive Shell (GiNaC V1.8.0)
    _, Copyright (C) 1999-2020 Johannes Gutenberg University Mainz,
    | Germany. This is free software with ABSOLUTELY NO WARRANTY.
    ._) i N a C | You are welcome to redistribute it under certain conditions.
<-------------' For details type 'warranty;'.
Type ?? for a list of help topics.
> Digits=50;
5 0
> evalf(G({0,0,1},1));
-1.202056903159594285399738161511449990764986292340498881794
```


Elliptic integration kernels

- Kernels related to $g^{(k)}(z, \tau)$:

Kronecker_dtau_kernel (k, z_j) ; Kronecker_dz_kernel (k, z_j, tau);

- Kernels related to modular forms:

Eisenstein_kernel(k, a, b, K); modular_form_kernel(k, P, qbar);

- Kernels related to ELi-functions:

ELi_kernel(n, m, x, y); Ebar_kernel(n, m, x, y);

- User-defined kernels:
user_defined_kernel(f, y);

Example

```
Digits = 50;
ex tau = 10*I;
ex qbar = evalf(exp(2*Pi*I*tau));
ex z = 0.9;
ex g_2 = Kronecker_dtau_kernel (2,z);
ex g_3 = Kronecker_dtau_kernel(3,z);
std::cout << iterated_integral(lst{g_3,g_2},qbar).evalf() << std::endl;
3.2253571394850843286565907071596312651610339124775388346726E-27
-4.370890856300573854123107098377978052316020623730771456153E-85*I
```


Section 6

Conclusions

Conclusions and recommendations

High precision numerical values for elliptic Feynman integrals:

- Standarised special functions: Iterated integrals of $\omega_{k}^{\text {modular }}$ and $\omega_{k}^{\text {Kronecker }}$ on the moduli space $\mathscr{M}_{1, n}$.
- Choose an integration path, that first stays on the hypersurface $\bar{q}=0$ and then integrate for $z_{j}=$ const in \bar{q}.
- Integration on the hypersurface $\bar{q}=0$ gives multiple polylogarithms.
- Integration along τ (or \bar{q}) gives elliptic iterated integrals.
- Advantages:
- There are no poles along the integration path for the \bar{q}-integration, except possibly at $\bar{q}=0$ ("trailing zero").
- By a modular transformation we can always achieve $|\bar{q}| \leq 0.0043$. This gives a very fast converging series expansion.

